JPS6336805B2 - - Google Patents

Info

Publication number
JPS6336805B2
JPS6336805B2 JP59080866A JP8086684A JPS6336805B2 JP S6336805 B2 JPS6336805 B2 JP S6336805B2 JP 59080866 A JP59080866 A JP 59080866A JP 8086684 A JP8086684 A JP 8086684A JP S6336805 B2 JPS6336805 B2 JP S6336805B2
Authority
JP
Japan
Prior art keywords
hollow fiber
polysulfone resin
solution
pores
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59080866A
Other languages
Japanese (ja)
Other versions
JPS60222112A (en
Inventor
Tamyuki Eguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP8086684A priority Critical patent/JPS60222112A/en
Publication of JPS60222112A publication Critical patent/JPS60222112A/en
Publication of JPS6336805B2 publication Critical patent/JPS6336805B2/ja
Priority to JP2090913A priority patent/JPH0636859B2/en
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は孔径の大きいポリスルホン樹脂からな
る中空糸状フイルター(中空糸)およびその製法
に関する。 〔従来の技術・発明が解決しようとする問題点〕 中空糸状フイルターは、平面上フイルターと比
較して単位体積当りの有効膜面積を大きくするこ
とができるので、フイルター装置が小型になる、
フイルター装置の構造が簡単になる、流体の流れ
が均一になるなどの優れた特徴を有し、最近各方
面で平面状フイルターにかわつて利用されるよう
になつてきている。 中空糸状フイルターの中で孔径が大きい中空糸
状フイルターとしては、ポリビニルアルコール、
酢酸セルロース、ポリメチルメタクリレート、ポ
リプロピレンまたはポリエチレンなどの樹脂から
製造される中空糸状フイルターが知られている。
しかし、前記樹脂から製造される中空糸状フイル
ターは、性能上または製法上必ずしも満足できる
ものではない。 たとえば性能上の問題としては、耐熱性が不足
するため高温を必要とする蒸気滅菌ができない、
濾過速度が小さい、耐薬品性が不足する、機械的
強度が不足する、生体適合性が不足するなどの欠
点を有しており、製造上の問題としては、高分子
量の増孔剤を使用するため、それを抽出除去する
ために時間がかかる、毒性の強い溶媒を使用する
必要があるなどの欠点を有している。 一方、ポリスルホン樹脂は耐熱性、機械的強
度、耐薬品性および生体適合性などにおいて優れ
た性質を有する樹脂であり、限外濾過膜や逆浸透
膜の支持体などに利用されてきており、それらに
関する文献も多数公表されている。しかしなが
ら、ポリスルホン樹脂を用いて、少なくとも内
面・外面ともに孔径0.01μm以上の孔を有する中
空糸状フイルターは本発明に至るまで作製されて
おらず、従来から知られている技術では、少なく
とも内面と外面に孔径数μmに至る孔径の大きい
中空糸状フイルターを作製することは不可能であ
る。 たとえば特開昭54―16378号、同54―143777号、
同54―145379号、同56―152704号および同57―
82515号の各公報、ジヤーナル・オブ・アプライ
ド・ポリマー・サイエンス(Journal of
Applied Polymer Science)第20巻、2377〜
2394頁(1976年)、同第21巻、165〜180頁(1977
年)および同第21巻、1883〜1900頁(1977年)な
どにポリスルホン樹脂からなる中空糸の製法が記
載されている。しかし、前記文献は、中空糸の内
表面または外表面のいずれか一面または両面に、
実質的に0.01μm未満の孔径を含有する薄い緻密
な層を有する、いわゆる非対称構造の中空糸の製
法についてのべたものであり、可及的に緻密な層
を薄くしたものでも透水量が小さい。 〔問題点を解決するための手段〕 本発明者は前記諸欠点を解消するため鋭意研究
を重ねた結果、中空糸の内面から外面まで厚さ全
体にわたつて網状組織からなり、その最大孔径が
0.1〜5μmであり、前記中空糸の内表面には網状
組織の一部が開口してできた最大孔径が0.1〜
10μmの不定形の孔を有し、前記中空糸の外表面
には網状組織の一部が開口してできた最大孔径が
0.01〜5μmの楕円もしくは円形の孔を有するポリ
スルホン樹脂からなる中空糸状フイルターを用い
ることにより、前記諸欠点を解消しうることを見
出した。 すなわち本発明では、中空糸状フイルターをポ
リスルホン樹脂を用いて作製することにより、中
空糸状フイルターの耐熱性、機械的強度、透水
性、耐薬品性および生体適合性を良好にすること
ができ、中空糸の内面から外面まで厚さ全体にわ
たつて最大孔径が0.1〜5μmの網状組織にし、そ
の内表面および外表面に網状組織が開口してでき
た孔が存在し、かつ内表面には最大孔径0.1〜
10μmの不定形の孔、そして外表面には最大孔径
0.01〜5μmの楕円もしくは円形の孔を形成するこ
とにより、透水性(濾過性)を良好にするという
顕著な効果がえられる。 〔実施例〕 本発明の中空糸状フイルター(以下、本発明の
フイルターという)はポリスルホン樹脂から形成
されており、代表的なポリスルホン樹脂として
は、式(): または式(): で示される繰返し単位を有するものがあげられ
る。それらのうち式()で示される繰返し単位
を有するポリスルホン樹脂は限外濾過膜の素材と
しても古くから利用されており、機械的強度、耐
熱性、耐薬品性および生体適合性などの基本的な
特性に優れており、本発明のフイルター用素材と
してもとくに好ましい。 本発明のフイルターは中空糸の内面から外面ま
での厚さ全体にわたつて網状組織を有しており、
その最大孔径が0.1〜5μmであり、前記中空糸の
内表面には網状組織の一部が開口してできた最大
孔径が0.1〜10μmの不定形の孔が存在し、前記外
表面には網状組織の一部が開口してできた最大孔
径が0.01〜5μmの楕円もしくは円形の孔が存在し
ている。 本発明のフイルターの構造を図面を用いてさら
に詳細に説明する。 第1図〜第7図は本発明の中空糸の顕微鏡によ
る繊維形状の観察写真であり、 第1図は本発明の中空糸の一実施態様の倍率
100倍の断面形状観察写真、 第2図は第1図に示した中空糸断面の内の
外表面より部分の倍率1000倍での断面形状観察写
真、 第3図は第1図に示した中空糸の倍率5000倍の
内表面形状観察写真、 第4図は第1図に示した中空糸の倍率10000倍
の外表面形状観察写真、 第5図は第1図に示した中空糸断面の内表面に
近い部分を倍率10000倍で観察した形状観察写真、 第6図は第1図に示した中空糸断面の内表面と
外表面との間に中央部の倍率10000倍の形状観察
写真、 第7図は第1図に示した中空糸断面の外表面に
近い部分および外表面を倍率10000倍で観察した
形状観察写真、 である。 第1図および第2図は前記一実施態様の断面が
均一な網状組織であり、その最大孔径が約1.5μm
であることを示している。第3図および第4図は
前記中空糸の内表面および外表面には孔が存在
し、孔の最大孔径がそれぞれ約1μmおよび約
1.5μmであることを示している。 第1図に示す中空糸の内表面を拡大した第3図
および中空糸断面の内表面に近い部分を拡大した
第5図は網状組織の一部が最大孔径以下の広い連
続的な孔径分布で不定形に内表面で開口している
様子を、また外表面に近い部分および外表面を拡
大した第7図は網状組織の一部が外表面上で楕円
または円形に開口している様子を示している。 なお、ここでいう最大孔径とは中空糸の形状観
察写真で観察される孔のうちで最も大きい短径を
意味する。 前記図面およびそれらについての説明から明ら
かなように、本発明のフイルターは下記特徴を有
する。 (1) 中空糸の内表面と外表面との間は網状組織か
ら構成されている。 (2) 中空糸の内表面および外表面には、前記網状
組織の孔と比較してきわめて小さい孔しか有さ
ない緻密層がない。 (3) 中空糸の内表面および外表面の孔は、網状組
織の一部が外部に向つて開口したものある。 (4) 内表面の細孔は不定形で最大孔径以下で連続
的な広い孔径分布を有し、かつ内表面の空孔率
(全表面積にしめる孔面積の割合)が大きい。 (5) 透水量が大きく、2×10-3g/cm・mmHg・分
以上となり、40×10-3g/cm・mmHg・分にも達
する。 (6) 外表面の細孔は楕円もしくは円形である。 前記特徴は本発明のフイルターが従来のポリス
ルホン樹脂製の中空糸と著しく異なつている新し
いものであることを示している。 本発明のフイルターの内径および厚さについ
て、技術上とくに限定されるものではないが、通
常はそれぞれ100μm〜3mm、20〜500μmの範囲で
用途に応じて選択される。 中空糸の内表面および外表面に存在する孔の最
大孔径については、内表面に存在する孔の最大孔
径が0.1μm未満または外表面に存在する孔の最大
孔径が0.01μm未満のばあいには従来から存在す
る限外濾過膜と透水量があまりかわらなくなり、
本発明の特徴の一つである透水性が良好であると
いう利点が失なわれる。もちろん比較的大きい物
質も中空糸状フイルターを透過するという本発明
の特徴も失なわれる。また前記内表面、断面およ
び外表面の最大孔径がそれぞれ10μm、5μmおよ
び5μmをこえると中空糸の機械的強度が低下す
る。したがつて実用上内表面、断面および外表面
の最大孔径は、それぞれ0.1〜10μm、0.1〜5μmお
よび0.01〜5μmの範囲にする必要がある。なお網
状組織の孔径は、中空糸の厚さ全体にわたつて均
一なことが好ましいが、あまり極端な差でなけれ
ば許容される。 本発明のフイルターはポリスルホン樹脂を含有
する溶液を環状のノズルから内部凝固液とともに
押出し、ノズルから50cm以内、好ましくは20cm以
内の乾式距離を経たのち全体を外部凝固液に接触
させる中空糸状フイルターの形成法において、前
記溶液の組成を温度を降下させていくと粘度上昇
から粘度下降に移る転移温度(以下、Tcという)
を有する組成とし、前記溶液を前記Tc以上に保
持しながら環状ノズルから押出し、内部凝固液、
ノズルから50cm以内、好ましくは20cm以内の乾式
距離にある中空糸に接する気体および外部凝固液
を前記Tc未満に保持する中空糸状フイルターの
製法により製造される。 前記製造法において (1) ポリスルホン樹脂を含有する溶液として、
Tc未満では粘度が下降する組成のものを使用
してTc以上に保持しながら環状ノズルから押
出し、 (2) 内部凝固液、乾式距離内の中空糸に接する気
体および外部凝固液をTc以下に保持すること
により、中空糸の内表面から外表面まで厚さ全
体にわたつて網状組織を有するポリスルホン樹
脂からなる中空糸状フイルターをうることが可
能になるという、著しい効果がえられる。 本発明のフイルターの製法(以下、本発明の製
法という)に用いるポリスルホン樹脂を含有する
溶液は前記ポリスルホン樹脂を特定の溶剤に溶解
した溶液であり、中空糸を紡糸するばあいの紡糸
原液である。 前記紡糸原液を調製するために用いられる溶剤
としては、好ましいTcをうるために比較的沸点
の高いものが好ましく、たとえばジメチルスルホ
キシドやポリスルホン樹脂の良溶剤であるN―メ
チル―2―ピロリドン、ジメチルホルムアミド、
ジメチルアセトアミドなどの1種または2種以上
を主剤とし、これらに前記紡糸原液のTcを調整
するために用いられるポリスルホン樹脂の非溶剤
であるグリセリン、プロピレングリコール、エチ
レングリコール、ブタンジオールなどの多価アル
コール類、シクロヘキサノールなどの高沸点を有
するアルコール類などの1種または2種以上を混
合した混合溶剤などがあげられる。これらの混合
溶剤を用いることにより本発明の製法に好ましい
Tcの溶液がえられる。 前記紡糸原液中のポリスルホン樹脂の濃度は8
〜25%(重量%、以下同様)、好ましくは10〜17
%である。前記濃度が8%未満では紡糸原液の粘
度が低く、紡糸が困難になる。一方前記濃度が25
%をこえると孔径の大きな中空糸を作製できなく
なる。 前記紡糸原液のTcは30〜150℃、好ましくは50
〜150℃である。Tcが30℃未満では紡糸後の内部
凝固液、乾式雰囲気および外部凝固液をTc未満
にするために冷却機などを使用する必要が生じ
る。一方、Tcが150℃をこえると紡糸原液の粘度
が低くなり、紡糸が困難になる。なおTcは多く
のばあい前記紡糸原液の曇点温度と密接な関係を
有し、紡糸原液の温度低下による相分離と関係し
ている。第8図は本発明の製法に用いる紡糸原液
の1種であるポリスルホン樹脂(ユニオンカーバ
イド社製、P―3500)13.0%、プロピレングリコ
ール26.1%およびN―メチル―2―ピロリドン
60.9%からなる溶液の粘度と温度との関係を示す
グラフであり、第9図は第8図に示す溶液のポリ
スルホン樹脂の含有割合を13.0%にし、前記2種
の溶剤の組成を変化させたときのTcの変化を示
すグラフである。第9図に示されているように非
溶剤の含有割合を変化させることにより、溶液の
Tcが調整されうる。第8図に示されるような特
性を有する溶液の溶剤は、従来からその溶質の非
溶剤とよばれているが、Tc未満では確かに非溶
剤であるがTc以上では良溶剤の性質を示してい
る。第8図に示されているように、Tc未満の温
度で溶液の粘度が温度の低下とともに急激に低下
する組成の溶液が、本発明の製法に好適である。 本発明の製法に用いる内部凝固剤および外部凝
固剤(以下、凝固剤という)はポリスルホン樹脂
の非溶剤であり、かつポリスルホン樹脂の溶剤と
相溶するもので、紡糸原液と接触するとポリスル
ホン樹脂を凝固させる作用を有するものである。
前記凝固剤としては、水、水とポリスルホン樹脂
の前記良溶剤との混合溶剤、メタノール、エタノ
ール、イソプロパノールなどのアルコール類など
があげられる。 本発明の製法では、Tcを有する組成の前記紡
糸原液をTc以上に保持し、内部凝縮液とともに
ノズルから押出し中空糸を形成する。前記中空糸
の内径や厚さは、もちろんノズルの寸法、ドラフ
ト率、ふくらまし率によつて当然変化するが、内
表面、断面および外表面の構造は、ドラフト率に
ついては約0.8〜3の範囲、ふくらまし率につい
ては約0.4〜1.3の範囲であまりそれらの影響をう
けず、かつ内部凝固液の温度などの他の紡糸条件
を変化させることにより、適正に修正することが
できる。ただしドラフト率およびふくらまし率は
下記のように定義されている。 ドラフト率=V(d21−d22)π/4q1 ふくらまし率=4q2/Vd22π (式中、d1は環状ノズルの外径、d2は環状ノズル
の内径、q1は紡糸原液の送り量、q2は内部凝固液
の送り量、Vは紡糸速度を示す。)従来の方法で
はドラフト率およびふくらまし率はともに約1に
しなければ中空糸が紡糸中に切れたり、破裂した
りして欠陥の多いものになる。この点においても
本発明の製法は、許容巾が広く優れている。前記
ノズルは環状ノズルのものが通常用いられる。紡
糸速度は前記ドラフト率およびふくらまし率の値
を満足するように前記の式にもとづいて他の因子
との関係で設定すればよいが、数10m/分のとき
が取扱い上簡単である。 ノズルから紡糸された紡糸原液は、ノズルから
50cm以内の乾式距離をへたのち全体が外部凝固液
と接触する。このとき、内部凝固液、ノズルから
50cm以内の乾式距離にある中空糸に接する気体お
よび外部凝固液が、前記紡糸原液のTc未満に保
持される。前記乾式距離が数cm以下のばあいに
は、この間に全体の凝固をすすめることは比較的
困難なため、Tc未満の外部凝固液および内部凝
固液を用いて凝固させることが必須である。一
方、乾式距離が数cm以上あるばあいは、この間で
全体の凝固をすすめることが比較的容易なため、
内部凝固液および外部凝固液ともにTc以上で、
乾式距離内の気体温度をTc未満にして凝固させ
ることも不可能ではないが、内部凝固液、外部凝
固液および乾式距離内の気体温度を全てTc未満
にする方がよい。また凝固は乾式距離内で実質的
に終了させるのが好ましい。前記乾式距離内の気
体として特殊な気体を用いる必要はなく、空気で
充分であり、とくに密閉にしたり特殊な雰囲気に
する必要もなく、開放状態でよい。また外部凝固
液中への浸漬時間は一般に数秒間でよい。 紡糸原液のTcと内部凝固液、外部凝固液およ
び乾式距離内の気体のうちの低いものとの温度差
は10℃以上、さらに好ましくは20℃以上に設定す
るのが望ましい。 前記のごとく紡糸条件を適正に設定すれば、紡
糸原液は凝固液の抽出作用と冷却作用により急激
に凝固し、凝固液との接触面でポリスルホン樹脂
の凝集が充分に発達することができず、緻密な層
のない構造の中空糸になる。また紡糸原液のポリ
スルホン樹脂の濃度を約10〜17%にするときには
同一の紡糸原液を用いて、たとえば紡糸原液の温
度を変化させるだけで約0.01μmから数μmの孔径
を有するものまで容易に作製することができる。 通常、紡糸された紡糸原液の凝固液による凝固
は、前記凝固液による前記紡糸原液からの溶剤の
抽出のみによつておこる。しかるに本発明の製法
では、ポリスルホン樹脂の凝固は凝固液によつて
前記溶剤が抽出されるとともに紡糸原液が冷却さ
れてTc未満になり、それによつて凝固をおこす
ことが同時に進行しておこる。したがつて、本発
明の製法では、前記溶剤抽出に起因する凝固作用
の観点から見たばあい、従来と異なり、凝固液と
して急激な作用を有するものも、緩慢な作用を有
するものも使用することができる。しかしながら
従来の方法では、急激な溶剤抽出による凝固作用
を有する凝固液を使用するばあい、前記凝固液と
接触する表面は孔径が0.01μm未満の緩密な層と
なり、断面は比較的均一な網状組織とはならず、
表面から内部に向つて網状組織の孔が次第に大き
くなるいわゆる非対称構造のものができる。一
方、緩慢な溶剤抽出による凝固作用を有する凝固
液と接触するばあいには、従来の方法では中空糸
全体が極めて透水量の小さい、緻密な構造にな
る。その理由は、従来の方法では凝固される紡糸
原液にTcが存在しなかつたり、たとえ存在して
も紡糸原液温度、内部凝固液、乾燥距離内の中空
糸と接する気体および外部凝固液の各温度の関係
が本発明の製法における条件と異なつているため
である。すなわち従来の方法では、凝固されるべ
き紡糸原液の凝固は凝固液による溶剤の抽出のみ
により行なわれるからである。 外部凝固液に浸漬された中空糸は、引き続き中
空糸中の残存溶剤を除去するため水などに浸漬さ
れ、さらに必要ならば乾燥される。乾燥は作製し
た中空糸が変形しない約150℃以下で行なうこと
が望ましい。 以上記載したように、本発明の中空糸状フイル
ターは簡単な製法で作製され、内表面から外表面
に至るまで孔径が大きく、したがつて透水量も大
きく、高温における蒸気滅菌にたえ、機械的強
度、耐薬品性および生体適合性に優れており、一
般用フイルターとしてまた医療用フイルターとし
て利用価値の極めて高いものである。 以下実施例を用いて本発明のフイルターおよび
製法を具体的に示す。 実施例 1〜8、10〜11 ポリスルホン樹脂(P―3500)13部(重量部、
以下同様)をプロピレングリコール29.5%とN―
メチル―2―ピロリドン(以下、NMPという)
70.5%との混合溶剤87部に加え、110℃で3時間
撹拌して溶解させた。前記溶液を減圧にして脱泡
してえられた紡糸原液(A)を第1表に示す条件で内
径400μm、外径600μmの環状ノズルから3.4g/分
で押出し、同時に温度調節した内部凝固液を2.5
c.c./分で押出して紡糸し、中空糸をえた。 えられた中空糸の特性を第1表に示す。 第1表のDi maxは顕微鏡を用いて観察した中
空糸内表面に存在する孔の最大短径、Dn maxは
前記と同様にして観察した中空糸断面の網状組織
に存在する孔の最大短径、Do maxは前記と同様
にして観察した中空糸外表面に存在する孔の最大
短径を示す。 実施例 9 ポリスルホン樹脂(P―3500)13部をプロピレ
ングリコール28.7%とNMP71.3%との混合溶剤
87部に加え、110℃で3時間撹拌して溶解した。
前記溶液を減圧にして脱泡したのち、えられた紡
糸原液(B)を第1表に示す条件で内径350μm、外径
550μmの環状ノズルから3.2g/分で抽出し、同時
に温度調節した内部凝固液を1.8c.c./分で押出し
て紡糸し、中空糸をえた。 えられた中空糸の特性を実施例1と同様にして
測定した結果を第1表に示す。
[Industrial Application Field] The present invention relates to a hollow fiber filter (hollow fiber) made of a polysulfone resin with a large pore size, and a method for manufacturing the same. [Prior art/problems to be solved by the invention] Hollow fiber filters can have a larger effective membrane area per unit volume than planar filters, so the filter device can be made smaller.
They have excellent features such as simplifying the structure of the filter device and making the flow of fluid uniform, and have recently come to be used in place of flat filters in various fields. Among hollow fiber filters, hollow fiber filters with large pore diameters include polyvinyl alcohol,
Hollow fiber filters made from resins such as cellulose acetate, polymethyl methacrylate, polypropylene or polyethylene are known.
However, hollow fiber filters manufactured from the above resins are not necessarily satisfactory in terms of performance or manufacturing method. For example, performance problems include the inability to perform steam sterilization, which requires high temperatures, due to lack of heat resistance.
It has drawbacks such as low filtration rate, lack of chemical resistance, lack of mechanical strength, and lack of biocompatibility, and manufacturing problems include the use of high-molecular-weight pore-forming agents. Therefore, it has the disadvantages that it takes time to extract and remove it, and it is necessary to use a highly toxic solvent. On the other hand, polysulfone resin has excellent properties such as heat resistance, mechanical strength, chemical resistance, and biocompatibility, and has been used as a support for ultrafiltration membranes and reverse osmosis membranes. Many related documents have also been published. However, until the present invention, a hollow fiber filter having pores with a pore diameter of 0.01 μm or more on both the inner and outer surfaces has not been manufactured using polysulfone resin. It is impossible to produce a hollow fiber filter with a large pore diameter of several μm. For example, JP-A-54-16378, JP-A-54-143777,
No. 54-145379, No. 56-152704 and No. 57-
Publications No. 82515, Journal of Applied Polymer Science
Applied Polymer Science) Volume 20, 2377~
2394 pages (1976), Volume 21, pp. 165-180 (1977
21, pp. 1883-1900 (1977), etc., describe a method for manufacturing hollow fibers made of polysulfone resin. However, the above document discloses that on one or both of the inner surface or outer surface of the hollow fiber,
This article describes a method for manufacturing a hollow fiber with a so-called asymmetric structure, which has a thin dense layer containing pores with a pore size of substantially less than 0.01 μm, and even if the dense layer is made as thin as possible, the amount of water permeation is small. [Means for Solving the Problems] As a result of extensive research in order to eliminate the above-mentioned drawbacks, the inventors of the present invention found that the hollow fibers are composed of a network structure over the entire thickness from the inner surface to the outer surface, and the maximum pore diameter of the hollow fibers is
The inner surface of the hollow fiber has a maximum pore diameter of 0.1 to 5 μm, which is formed by opening a part of the network structure.
The hollow fiber has irregularly shaped pores of 10 μm, and the maximum pore diameter formed by opening a part of the network on the outer surface of the hollow fiber.
It has been found that the above-mentioned drawbacks can be overcome by using a hollow fiber filter made of polysulfone resin having elliptical or circular pores of 0.01 to 5 μm. That is, in the present invention, by manufacturing the hollow fiber filter using polysulfone resin, the heat resistance, mechanical strength, water permeability, chemical resistance, and biocompatibility of the hollow fiber filter can be improved. A network structure with a maximum pore diameter of 0.1 to 5 μm is formed over the entire thickness from the inner surface to the outer surface, and pores formed by the network structure are present on the inner and outer surfaces, and the inner surface has a maximum pore diameter of 0.1 μm. ~
Irregular pores of 10μm and maximum pore diameter on the outer surface
By forming elliptical or circular pores of 0.01 to 5 μm, a remarkable effect of improving water permeability (filtration performance) can be obtained. [Example] The hollow fiber filter of the present invention (hereinafter referred to as the filter of the present invention) is formed from a polysulfone resin, and a typical polysulfone resin has the formula (): or expression(): Examples include those having a repeating unit shown in the following. Among them, polysulfone resin having a repeating unit represented by the formula () has been used as a material for ultrafiltration membranes for a long time, and has basic properties such as mechanical strength, heat resistance, chemical resistance, and biocompatibility. It has excellent properties and is particularly preferred as a material for the filter of the present invention. The filter of the present invention has a network structure over the entire thickness from the inner surface to the outer surface of the hollow fibers,
The maximum pore diameter is 0.1 to 5 μm, and the inner surface of the hollow fiber has irregularly shaped pores with a maximum pore diameter of 0.1 to 10 μm, which are formed by opening a part of the network structure, and the outer surface has a network structure. There are elliptical or circular pores with a maximum diameter of 0.01 to 5 μm that are formed by opening a part of the tissue. The structure of the filter of the present invention will be explained in more detail using the drawings. Figures 1 to 7 are microscopic observation photographs of the fiber shape of the hollow fiber of the present invention, and Figure 1 is the magnification of one embodiment of the hollow fiber of the present invention.
Figure 2 is a photograph of the cross-sectional shape observed at 100x magnification. Figure 2 is a photograph taken at 1000x magnification of the inner outer surface of the hollow fiber cross section shown in Figure 1. Figure 3 is the hollow fiber shown in Figure 1. Figure 4 is an observation photograph of the inner surface shape of the fiber at 5000x magnification. Figure 4 is an observation photograph of the outer surface shape of the hollow fiber shown in Figure 1 at 10000x magnification. Figure 5 is the inner surface shape of the hollow fiber cross section shown in Figure 1. Figure 6 is a shape observation photograph of the part near the surface observed at 10,000x magnification. Figure 7 is a shape observation photograph of the portion near the outer surface and the outer surface of the cross section of the hollow fiber shown in Figure 1, observed at a magnification of 10,000 times. Figures 1 and 2 show the cross section of the embodiment described above as a uniform network structure, the maximum pore size of which is approximately 1.5 μm.
It shows that. Figures 3 and 4 show that there are pores on the inner and outer surfaces of the hollow fibers, and the maximum diameters of the pores are about 1 μm and about 1 μm, respectively.
It shows that it is 1.5μm. Figure 3 is an enlarged view of the inner surface of the hollow fiber shown in Figure 1, and Figure 5 is an enlarged view of the section of the hollow fiber near the inner surface. Figure 7, which shows an amorphous opening on the inner surface, and an enlarged view of a portion near the outer surface and the outer surface, shows a part of the network structure opening on the outer surface in an elliptical or circular shape. ing. In addition, the maximum pore diameter here means the largest short diameter of the pores observed in the shape observation photograph of the hollow fiber. As is clear from the drawings and the description thereof, the filter of the present invention has the following features. (1) The space between the inner and outer surfaces of the hollow fiber is composed of a network structure. (2) On the inner and outer surfaces of the hollow fibers there is no dense layer with very small pores compared to the pores of the network. (3) Some of the pores on the inner and outer surfaces of the hollow fibers have a network structure that opens outward. (4) The pores on the inner surface are amorphous and have a wide continuous pore size distribution below the maximum pore diameter, and the porosity (ratio of pore area to total surface area) of the inner surface is large. (5) Water permeability is large, exceeding 2×10 -3 g/cm・mmHg・min, and even reaching 40×10 −3 g/cm・mmHg・min. (6) The pores on the outer surface are oval or circular. The above characteristics indicate that the filter of the present invention is new and significantly different from conventional hollow fibers made of polysulfone resin. The inner diameter and thickness of the filter of the present invention are not particularly limited technically, but are usually selected in the range of 100 μm to 3 mm and 20 to 500 μm, respectively, depending on the purpose. Regarding the maximum pore diameter of the pores existing on the inner and outer surfaces of the hollow fiber, if the maximum pore diameter of the pores existing on the inner surface is less than 0.1 μm or the maximum pore diameter of the pores existing on the outer surface is less than 0.01 μm, The water permeability is no longer much different from conventional ultrafiltration membranes,
The advantage of good water permeability, which is one of the characteristics of the present invention, is lost. Of course, the feature of the present invention that even relatively large substances can pass through the hollow fiber filter is also lost. Furthermore, when the maximum pore diameters of the inner surface, cross section, and outer surface exceed 10 μm, 5 μm, and 5 μm, respectively, the mechanical strength of the hollow fiber decreases. Therefore, in practice, the maximum pore diameters of the inner surface, cross section, and outer surface must be in the ranges of 0.1 to 10 μm, 0.1 to 5 μm, and 0.01 to 5 μm, respectively. It is preferable that the pore diameter of the network is uniform over the entire thickness of the hollow fiber, but it is acceptable if the difference is not too extreme. In the filter of the present invention, a solution containing polysulfone resin is extruded through an annular nozzle together with an internal coagulating liquid, and after a dry distance of within 50 cm, preferably within 20 cm from the nozzle, the entire filter is brought into contact with an external coagulating liquid. In the method, the transition temperature (hereinafter referred to as Tc) at which the composition of the solution changes from an increase in viscosity to a decrease in viscosity as the temperature is lowered.
The solution is extruded from an annular nozzle while maintaining the temperature above the Tc, and the internal coagulation liquid,
It is produced by a process for producing a hollow fiber filter that maintains the gas and external coagulation liquid in contact with the hollow fibers within 50 cm, preferably within 20 cm, of the nozzle at a dry distance below the Tc. In the above manufacturing method, (1) as a solution containing polysulfone resin,
Use a material whose viscosity decreases below Tc and extrude it from the annular nozzle while keeping it above Tc. (2) Keep the internal coagulating liquid, the gas in contact with the hollow fiber within the dry distance, and the external coagulating liquid below Tc. By doing so, a remarkable effect can be obtained in that it becomes possible to obtain a hollow fiber filter made of polysulfone resin having a network structure over the entire thickness from the inner surface to the outer surface of the hollow fiber. The solution containing the polysulfone resin used in the filter manufacturing method of the present invention (hereinafter referred to as the "manufacturing method of the present invention") is a solution in which the polysulfone resin is dissolved in a specific solvent, and is a spinning stock solution when spinning hollow fibers. The solvent used to prepare the spinning dope is preferably one with a relatively high boiling point in order to obtain the desired Tc, such as dimethyl sulfoxide, N-methyl-2-pyrrolidone, dimethylformamide, which are good solvents for polysulfone resins, etc. ,
One or more types such as dimethylacetamide are used as the main ingredient, and polyhydric alcohols such as glycerin, propylene glycol, ethylene glycol, and butanediol, which are non-solvents for the polysulfone resin used to adjust the Tc of the spinning dope, are used as the main ingredient. and alcohols having a high boiling point such as cyclohexanol. By using these mixed solvents, it is preferable for the production method of the present invention.
A solution of Tc is obtained. The concentration of polysulfone resin in the spinning stock solution is 8
~25% (wt%, same below), preferably 10-17
%. If the concentration is less than 8%, the viscosity of the spinning dope will be low, making spinning difficult. While the concentration is 25
%, it becomes impossible to produce hollow fibers with large pore diameters. The Tc of the spinning stock solution is 30 to 150°C, preferably 50
~150℃. If Tc is less than 30°C, it will be necessary to use a cooler or the like to bring the internal coagulation liquid, drying atmosphere, and external coagulation liquid below Tc after spinning. On the other hand, when Tc exceeds 150°C, the viscosity of the spinning stock solution decreases, making spinning difficult. In many cases, Tc has a close relationship with the clouding point temperature of the spinning dope, and is related to phase separation due to a decrease in the temperature of the spinning dope. Figure 8 shows 13.0% polysulfone resin (manufactured by Union Carbide, P-3500), 26.1% propylene glycol and N-methyl-2-pyrrolidone, which is a type of spinning dope used in the manufacturing method of the present invention.
9 is a graph showing the relationship between the viscosity and temperature of a solution consisting of 60.9%, and FIG. 9 is a graph showing the relationship between the viscosity and temperature of a solution shown in FIG. It is a graph showing the change in Tc over time. By changing the content of non-solvent as shown in Figure 9, the solution
Tc can be adjusted. The solvent of a solution having the characteristics shown in Figure 8 has traditionally been called a non-solvent for the solute, but below Tc it is certainly a non-solvent, but above Tc it exhibits the properties of a good solvent. There is. As shown in FIG. 8, a solution having a composition in which the viscosity of the solution decreases rapidly with decreasing temperature at a temperature below Tc is suitable for the production method of the present invention. The internal coagulant and external coagulant (hereinafter referred to as coagulants) used in the manufacturing method of the present invention are non-solvents for polysulfone resin and are compatible with the solvent for polysulfone resin, and coagulate polysulfone resin when they come into contact with the spinning dope. It has the effect of causing
Examples of the coagulant include water, a mixed solvent of water and the good solvent for polysulfone resin, and alcohols such as methanol, ethanol, and isopropanol. In the manufacturing method of the present invention, the spinning stock solution having a composition having Tc is maintained at a temperature higher than Tc, and is extruded from a nozzle together with an internal condensate to form a hollow fiber. The inner diameter and thickness of the hollow fibers naturally vary depending on the nozzle dimensions, draft rate, and inflation rate, but the structure of the inner surface, cross section, and outer surface is such that the draft rate is in the range of about 0.8 to 3. The swelling ratio is within the range of about 0.4 to 1.3 and is not affected by these factors, and can be appropriately adjusted by changing other spinning conditions such as the temperature of the internal coagulating liquid. However, draft rate and inflating rate are defined as follows. Draft rate = V (d 2 / 1 − d 2 / 2 ) π / 4q 1 Swelling rate = 4q 2 /Vd 2 / 2 π (where d 1 is the outer diameter of the annular nozzle, d 2 is the inner diameter of the annular nozzle , q 1 is the feed rate of the spinning stock solution, q 2 is the feed rate of the internal coagulation liquid, and V is the spinning speed.) In the conventional method, the draft rate and the swelling rate must both be set to about 1, otherwise the hollow fibers would be damaged during spinning. They can break or burst, resulting in many defects. In this respect as well, the manufacturing method of the present invention has a wide tolerance. The nozzle is usually an annular nozzle. The spinning speed may be set based on the above formula in relation to other factors so as to satisfy the values of the draft rate and swelling rate, but a speed of several 10 m/min is easy to handle. The spinning solution spun from the nozzle is
After passing a dry distance of less than 50 cm, the entire body comes into contact with the external coagulation liquid. At this time, the internal coagulating liquid and the nozzle
The gas and external coagulation liquid contacting the hollow fibers within a dry distance of 50 cm are kept below the Tc of the spinning dope. When the drying distance is several cm or less, it is relatively difficult to proceed with solidification of the entire product during this time, so it is essential to perform solidification using an external coagulation liquid and an internal coagulation liquid having a temperature lower than Tc. On the other hand, if the drying distance is several centimeters or more, it is relatively easy to proceed with the entire solidification during this time.
Both internal coagulation liquid and external coagulation liquid are above Tc,
Although it is possible to coagulate the gas within the dry distance below Tc, it is better to keep the internal coagulation liquid, external coagulation liquid, and gas temperature within the dry distance below Tc. It is also preferred that the coagulation is substantially completed within the dry distance. There is no need to use a special gas as the gas within the dry distance, and air is sufficient, and there is no need to seal it or create a special atmosphere, and it may be in an open state. Further, the immersion time in the external coagulation liquid generally only takes a few seconds. It is desirable that the temperature difference between the Tc of the spinning dope and the lower one of the internal coagulating liquid, external coagulating liquid, and gas within the dry distance be set to 10°C or more, more preferably 20°C or more. If the spinning conditions are properly set as described above, the spinning dope will rapidly solidify due to the extraction and cooling effects of the coagulating liquid, and the agglomeration of the polysulfone resin will not develop sufficiently at the contact surface with the coagulating liquid. It becomes a hollow fiber with a structure without dense layers. In addition, when the concentration of polysulfone resin in the spinning dope is about 10 to 17%, the same spinning dope can be used to easily produce products with pore diameters from about 0.01 μm to several μm by simply changing the temperature of the spinning dope. can do. Usually, the coagulation of the spun dope by the coagulating solution occurs only by the extraction of the solvent from the spinning dope by the coagulating solution. However, in the production method of the present invention, coagulation of the polysulfone resin occurs at the same time that the solvent is extracted by the coagulation liquid and the spinning dope is cooled to below Tc, thereby causing coagulation. Therefore, in the production method of the present invention, from the viewpoint of the coagulation effect caused by the solvent extraction, unlike the conventional method, both a coagulating liquid that has a rapid effect and a liquid that has a slow effect are used. be able to. However, in the conventional method, when using a coagulating liquid that has a coagulating effect by rapid solvent extraction, the surface that comes into contact with the coagulating liquid forms a loose layer with a pore size of less than 0.01 μm, and the cross section has a relatively uniform network shape. Not an organization,
A so-called asymmetric structure is created in which the pores of the network gradually become larger from the surface toward the inside. On the other hand, in the case of contact with a coagulating liquid that has a coagulating effect due to slow solvent extraction, in the conventional method, the entire hollow fiber becomes a dense structure with extremely low water permeability. The reason for this is that in the conventional method, Tc does not exist in the spinning dope to be coagulated, or even if Tc exists, the temperature of the spinning dope, the temperature of the internal coagulating liquid, the gas in contact with the hollow fiber within the drying distance, and the temperature of the external coagulating liquid. This is because the relationship is different from the conditions in the manufacturing method of the present invention. That is, in the conventional method, the spinning stock solution to be coagulated is coagulated only by extraction of the solvent by the coagulating solution. The hollow fibers immersed in the external coagulation liquid are subsequently immersed in water or the like to remove residual solvent in the hollow fibers, and further dried if necessary. It is desirable that drying be carried out at a temperature of about 150° C. or lower so that the hollow fibers produced do not deform. As described above, the hollow fiber filter of the present invention is manufactured using a simple manufacturing method, has large pores from the inner surface to the outer surface, has a large water permeability, and is suitable for steam sterilization at high temperatures. It has excellent strength, chemical resistance, and biocompatibility, and is extremely useful as a general filter or a medical filter. The filter and manufacturing method of the present invention will be specifically described below using Examples. Examples 1 to 8, 10 to 11 13 parts of polysulfone resin (P-3500) (parts by weight,
(same below) with propylene glycol 29.5% and N-
Methyl-2-pyrrolidone (hereinafter referred to as NMP)
The mixture was added to 87 parts of a mixed solvent of 70.5% and dissolved by stirring at 110°C for 3 hours. The spinning dope (A) obtained by defoaming the solution under reduced pressure was extruded at 3.4 g/min from an annular nozzle with an inner diameter of 400 μm and an outer diameter of 600 μm under the conditions shown in Table 1, and at the same time the internal coagulation liquid was obtained by controlling the temperature. 2.5
Hollow fibers were obtained by extrusion and spinning at cc/min. Table 1 shows the properties of the hollow fibers obtained. In Table 1, Di max is the maximum minor diameter of the pores present on the inner surface of the hollow fiber observed using a microscope, and Dn max is the maximum minor diameter of the pores present in the network structure of the cross section of the hollow fiber observed in the same manner as above. , Do max indicates the maximum short diameter of the pores present on the outer surface of the hollow fiber observed in the same manner as above. Example 9 13 parts of polysulfone resin (P-3500) was mixed with a mixed solvent of 28.7% propylene glycol and 71.3% NMP.
The mixture was added to 87 parts and stirred at 110°C for 3 hours to dissolve.
After degassing the solution by reducing the pressure, the obtained spinning stock solution (B) was prepared under the conditions shown in Table 1 with an inner diameter of 350 μm and an outer diameter.
Extracted from a 550 μm annular nozzle at 3.2 g/min, the temperature-controlled internal coagulated liquid was extruded at 1.8 cc/min and spun to obtain hollow fibers. The properties of the obtained hollow fibers were measured in the same manner as in Example 1, and the results are shown in Table 1.

【表】【table】

【表】 実施例12および比較例 内径300μm、外径360μmで内表面、断面部分お
よび外表面の最大孔径がそれぞれ0.4μm、1μmお
よび1μmの中空糸を実施例1と同様の方法により
作製した。えられた中空糸150本を内径9mm、外
径13mm、長さ160mmのポリカーボネートパイプに
収納し、両端をウレタン樹脂でポツテイングした
装置を作製した。 えられた装置を120℃で30分間蒸気滅菌したの
ち該装置を用いて、バブルポイントおよび牛血の
濾過性能を測定した。 比較として、蒸気滅菌を行なわない装置を用い
て上記と同様にして、バブルポイントおよび牛血
の濾過性能を測定した。 測定の結果、えられた装置の性能は蒸気滅菌の
有無による変化がなく、高温における蒸気滅菌に
たえうることがわかつた。また前記装置の外観も
蒸気滅菌により変化しなかつた。
[Table] Example 12 and Comparative Example Hollow fibers with an inner diameter of 300 μm, an outer diameter of 360 μm, and maximum pore diameters of 0.4 μm, 1 μm, and 1 μm on the inner surface, cross section, and outer surface, respectively, were produced in the same manner as in Example 1. A device was fabricated in which the 150 hollow fibers obtained were housed in a polycarbonate pipe with an inner diameter of 9 mm, an outer diameter of 13 mm, and a length of 160 mm, and both ends were potted with urethane resin. The obtained device was steam sterilized at 120° C. for 30 minutes, and then the bubble point and bovine blood filtration performance were measured using the device. For comparison, bubble points and bovine blood filtration performance were measured in the same manner as above using an apparatus that does not perform steam sterilization. As a result of the measurements, it was found that the performance of the obtained device did not change depending on the presence or absence of steam sterilization, and it was found that it could withstand steam sterilization at high temperatures. Also, the appearance of the device did not change due to steam sterilization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第7図は本発明の中空糸の繊維形状の
観察写真であり、第1図は本発明の中空糸の一実
施態様の倍率100倍の断面形状観察写真、第2図
は第1図に示した中空糸断面の内の外表面よ
り部分の倍率1000倍での断面形状観察写真、第3
図は第1図に示した中空糸の倍率5000倍の内表面
形状観察写真、第4図は第1図に示した中空糸の
倍率10000倍の外表面形状観察写真、第5図は第
1図に示した中空糸断面の内表面に近い部分を倍
率10000倍で観察した形状観察写真、第6図は第
1図に示した中空糸断面の内表面と外表面との間
の中央部の倍率10000倍の形状観察写真、第7図
は第1図に示した中空糸断面の外表面に近い部分
および外表面を倍率10000倍で観察した形状観察
写真、第8図は本発明に用いる紡糸原液(P―
3500 13.0%、プロピレングリコール26.1%、
NMP 60.9%)に関する粘度と温度との関係を示
すグラフ、第9図は第8図に示す紡糸原液の溶剤
の組成を変化させたときのTcの変化を示すグラ
フである。
1 to 7 are observation photographs of the fiber shape of the hollow fiber of the present invention, FIG. 1 is an observation photograph of the cross-sectional shape of an embodiment of the hollow fiber of the present invention at 100x magnification, and FIG. Photograph of cross-sectional shape observed at 1000x magnification of the inner outer surface of the hollow fiber cross-section shown in Figure 1, No. 3
The figure is an observation photograph of the inner surface shape of the hollow fiber shown in Figure 1 at a magnification of 5,000 times, Figure 4 is an observation photograph of the outer surface shape of the hollow fiber shown in Figure 1 at a magnification of 10,000 times, and Figure 5 is an observation photograph of the outer surface shape of the hollow fiber shown in Figure 1. Figure 6 is a shape observation photograph of the part near the inner surface of the hollow fiber cross section shown in Figure 1, observed at 10,000x magnification. Figure 7 is a shape observation photograph taken at a magnification of 10,000 times, Figure 7 is a shape observation photograph of the portion near the outer surface of the hollow fiber cross section shown in Figure 1 and the outer surface observed at a magnification of 10,000 times, Figure 8 is the spinning yarn used in the present invention. Stock solution (P-
3500 13.0%, propylene glycol 26.1%,
FIG. 9 is a graph showing the relationship between viscosity and temperature for NMP (60.9%), and FIG. 9 is a graph showing changes in Tc when the composition of the solvent in the spinning dope shown in FIG. 8 is changed.

Claims (1)

【特許請求の範囲】 1 中空糸の内面から外面まで厚さ全体にわたつ
て網状組織からなり、その最大孔径が0.1〜5μm
であり、前記中空糸の内表面には網状組織の一部
が開口してできた最大孔径が0.1〜10μmの不定形
の孔を有し、前記中空糸の外表面には網状組織の
一部が開口してできた最大孔径が0.01〜5μmの楕
円もしくは円形の孔を有するポリスルホン樹脂か
らなることを特徴とする中空糸状フイルター。 2 ポリスルホン樹脂を含有する溶液を環状ノズ
ルから内部凝固液とともに押出し、ノズルから50
cm以内の乾式距離を経たのち全体を外部凝固液に
接触させる中空糸の形成法において、前記溶液の
組成を温度を降下させていくと粘度上昇から粘度
下降に移る転移温度を有する組成とし、前記溶液
を前記転移温度以上に保持しながら環状ノズルか
ら押出し、内部凝固液、ノズルから50cm以内の乾
式距離にある中空糸に接する気体および外部凝固
液を前記転移温度未満に保持することを特徴とす
る中空糸状フイルターの製法。 3 前記転移温度が30〜150℃である特許請求の
範囲第2項記載の製法。
[Claims] 1. The hollow fiber is composed of a network structure over the entire thickness from the inner surface to the outer surface, and the maximum pore diameter thereof is 0.1 to 5 μm.
The inner surface of the hollow fiber has irregularly shaped pores with a maximum pore diameter of 0.1 to 10 μm formed by opening of a part of the network, and the outer surface of the hollow fiber has a part of the network. A hollow fiber filter characterized in that it is made of polysulfone resin and has oval or circular pores with a maximum pore diameter of 0.01 to 5 μm. 2 Extrude the solution containing polysulfone resin from the annular nozzle together with the internal coagulating liquid, and
In a method for forming a hollow fiber in which the entire body is brought into contact with an external coagulating liquid after passing through a dry distance of less than cm, the composition of the solution is such that as the temperature is lowered, the composition has a transition temperature at which the viscosity increases and the viscosity decreases; It is characterized by extruding the solution through an annular nozzle while maintaining the solution above the transition temperature, and maintaining the internal coagulation liquid, the gas in contact with the hollow fiber within a dry distance of 50 cm from the nozzle, and the external coagulation liquid below the transition temperature. Manufacturing method of hollow fiber filter. 3. The manufacturing method according to claim 2, wherein the transition temperature is 30 to 150°C.
JP8086684A 1984-04-20 1984-04-20 Hollow yarn-shaped filter and its manufacture Granted JPS60222112A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8086684A JPS60222112A (en) 1984-04-20 1984-04-20 Hollow yarn-shaped filter and its manufacture
JP2090913A JPH0636859B2 (en) 1984-04-20 1990-04-04 Hollow fiber filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8086684A JPS60222112A (en) 1984-04-20 1984-04-20 Hollow yarn-shaped filter and its manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2090913A Division JPH0636859B2 (en) 1984-04-20 1990-04-04 Hollow fiber filter

Publications (2)

Publication Number Publication Date
JPS60222112A JPS60222112A (en) 1985-11-06
JPS6336805B2 true JPS6336805B2 (en) 1988-07-21

Family

ID=13730261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8086684A Granted JPS60222112A (en) 1984-04-20 1984-04-20 Hollow yarn-shaped filter and its manufacture

Country Status (1)

Country Link
JP (1) JPS60222112A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391102A (en) * 1986-10-03 1988-04-21 Kanegafuchi Chem Ind Co Ltd Membrane for separating blood plasma component
JPH0756084B2 (en) * 1986-10-15 1995-06-14 東レ株式会社 Polysulfone resin hollow system and method for producing the same
GB2221917B (en) * 1988-05-16 1992-10-21 Nippon Steel Corp Organic polymer separation membrane having fluorene skeleton and oxygen enrichment device utilizing same
JPH0227352A (en) * 1988-07-15 1990-01-30 Konica Corp Method and apparatus for processing stabilizer for silver halide photographic sensitive material
US4968331A (en) * 1989-05-15 1990-11-06 Nippon Steel Corporation Organic polymer separation membrane having fluorene skeleton and oxygen enrichment device utilizing same
JP3232117B2 (en) 1991-11-19 2001-11-26 鐘淵化学工業株式会社 Polysulfone porous hollow fiber
WO1997034687A1 (en) * 1996-03-21 1997-09-25 Kaneka Corporation Hollow yarn membrane used for blood purification and blood purifier

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531474A (en) * 1978-08-29 1980-03-05 Nitto Electric Ind Co Ltd Selective permeable membrane
JPS561527A (en) * 1979-06-19 1981-01-09 Fujitsu Ltd Exhaust gas disposal method for semiconductor manufacturing equipment
JPS56154051A (en) * 1980-03-14 1981-11-28 Brunswick Corp Anisotropic film and its manufacture
JPS5891822A (en) * 1981-11-27 1983-05-31 Kuraray Co Ltd Polysulfone hollow fiber membrane, its production and filtration therewith
JPS58114702A (en) * 1981-12-28 1983-07-08 Kuraray Co Ltd Polysulfone hollow fiber membrane and its production
JPS5915434A (en) * 1982-07-20 1984-01-26 Teijin Ltd Production of porous polysulfone membrane
JPS5958041A (en) * 1982-09-28 1984-04-03 Teijin Ltd Preparation of porous polysulfone membrane
JPS59189903A (en) * 1983-04-09 1984-10-27 Kanegafuchi Chem Ind Co Ltd Hollow yarn like filter and preparation thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531474A (en) * 1978-08-29 1980-03-05 Nitto Electric Ind Co Ltd Selective permeable membrane
JPS561527A (en) * 1979-06-19 1981-01-09 Fujitsu Ltd Exhaust gas disposal method for semiconductor manufacturing equipment
JPS56154051A (en) * 1980-03-14 1981-11-28 Brunswick Corp Anisotropic film and its manufacture
JPS5891822A (en) * 1981-11-27 1983-05-31 Kuraray Co Ltd Polysulfone hollow fiber membrane, its production and filtration therewith
JPS58114702A (en) * 1981-12-28 1983-07-08 Kuraray Co Ltd Polysulfone hollow fiber membrane and its production
JPS5915434A (en) * 1982-07-20 1984-01-26 Teijin Ltd Production of porous polysulfone membrane
JPS5958041A (en) * 1982-09-28 1984-04-03 Teijin Ltd Preparation of porous polysulfone membrane
JPS59189903A (en) * 1983-04-09 1984-10-27 Kanegafuchi Chem Ind Co Ltd Hollow yarn like filter and preparation thereof

Also Published As

Publication number Publication date
JPS60222112A (en) 1985-11-06

Similar Documents

Publication Publication Date Title
US4612119A (en) Hollow fiber filter medium and process for preparing the same
EP0543355B1 (en) Polysulfone porous hollow fiber
JP5305296B2 (en) Polyamide hollow fiber membrane and method for producing the same
EP0037836B1 (en) Polyvinylidene fluoride resin hollow filament microfilter and process for producing same
JP5433921B2 (en) Polymer porous hollow fiber membrane
JP5293959B2 (en) Hollow fiber membrane and method for producing the same
WO1997022405A1 (en) Hollow fiber type filtration membrane
JP6675335B2 (en) Polyamide ultrafiltration membrane having organic solvent resistance and method for producing the same
JP2006088148A (en) Hollow fiber membrane having excellent water permeability
JP2012020231A (en) Highly permeable polyamide hollow fiber membrane and method of producing the same
JP2736992B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JP6105875B2 (en) Polyamide ultrafiltration membrane having organic solvent resistance and method for producing the same
JPS6336805B2 (en)
JPS61164602A (en) Hllow yarn membrane made of polysulfone resin and its preparation
JP6152193B2 (en) Polyamide ultrafiltration membrane having organic solvent resistance and method for producing the same
CA2480432A1 (en) Hollow fibres
JP2011078920A (en) Permselective hollow fiber membrane
JP2528893B2 (en) Method for producing polysulfone hollow fiber membrane
JPH0636859B2 (en) Hollow fiber filter
JP5894687B2 (en) Highly permeable polyamide hollow fiber membrane and method for producing the same
KR100200041B1 (en) Sponge-like polysulphone hollow fibre membrane having active layer and manufacturing method thereof
JP2000107577A (en) Production of permselective hollow fiber membranes
JPH03174233A (en) Production of aromatic polysulfone hollow-fiber membrane
KR20170096652A (en) Acetylated alkyl cellulose separation membrane and method for preparing the same
KR20230079041A (en) Nanofiltration membrane and its manufacturing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term