JP2888726B2 - Ultra-fine steel wire excellent in wire drawability and fatigue strength and method for producing the same - Google Patents

Ultra-fine steel wire excellent in wire drawability and fatigue strength and method for producing the same

Info

Publication number
JP2888726B2
JP2888726B2 JP10264093A JP10264093A JP2888726B2 JP 2888726 B2 JP2888726 B2 JP 2888726B2 JP 10264093 A JP10264093 A JP 10264093A JP 10264093 A JP10264093 A JP 10264093A JP 2888726 B2 JP2888726 B2 JP 2888726B2
Authority
JP
Japan
Prior art keywords
wire
less
steel
inclusions
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10264093A
Other languages
Japanese (ja)
Other versions
JPH06312209A (en
Inventor
世紀 西田
潤二 中島
征雄 落合
修道 芹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14332843&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2888726(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10264093A priority Critical patent/JP2888726B2/en
Publication of JPH06312209A publication Critical patent/JPH06312209A/en
Application granted granted Critical
Publication of JP2888726B2 publication Critical patent/JP2888726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はゴム、有機材料の補強用
に使用されている高強度で高延性の極細鋼線に関するも
のである。これらの鋼線は、乗用車用カーカスコード、
ソーワイヤなどに使用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength, high-ductility ultrafine steel wire used for reinforcing rubber and organic materials. These steel wires are used in carcass cords for passenger cars,
It can be used for saw wires and the like.

【0002】[0002]

【従来の技術】一般的に使用されている0.15〜0.
35mmφのスチールコードなど伸線された高炭素鋼極細
線は、通常必要に応じて熱間圧延した後に調整冷却した
直径4.0〜5.5mmの線材を一次伸線加工後、最終パ
テンティング処理を行い、その後ブラスメッキ処理を経
て最終湿式伸線加工により製造されている。このような
極細鋼線の多くは、2本撚り、5本撚りなどの撚り線加
工を施した状態でスチールコードとして使用されてい
る。これらの極細線は 1)より高強度であること、 2)高速伸線性が優れていること、 3)疲労特性が優れていること、 4)高速撚り線性が優れること、 等の特性を具備しなければならない。
2. Description of the Related Art Generally used 0.15-0.
High-carbon steel ultrafine wires drawn, such as 35 mmφ steel cords, are usually hot-rolled as necessary, adjusted and cooled, and then wire-drawn with a diameter of 4.0 to 5.5 mm. After that, it is manufactured by a final wet drawing process through a brass plating process. Many of such ultra-fine steel wires are used as steel cords after being subjected to stranded wire processing such as double twisting or five twisting. These ultrafine wires have characteristics such as 1) higher strength, 2) excellent high-speed drawability, 3) excellent fatigue characteristics, 4) excellent high-speed stranded wire characteristics, and the like. There must be.

【0003】このため、従来から要望に応じた高品質の
鋼材が開発されている。例えば、特開昭60−2048
65号公報には、Mn含有量を0.3%未満に規制して
鉛パテンティング後の過冷組織の発生を抑え、C,S
i,Mn等の元素量を規制することによって、撚り線時
の断線が少なくした高強度および高靱延性の極細線およ
びスチールコード用高炭素鋼線材が開示されており、ま
た、特開昭63−24046号公報には、Si含有量を
1.00%以上とすることによって鉛パテンティング材
の引張強さを高くして伸線加工率を小さくした高靱性高
延性極細線用線材が開示されている。
[0003] For this reason, high-quality steel materials have been conventionally developed in response to requests. For example, JP-A-60-2048
No. 65 discloses that the Mn content is restricted to less than 0.3% to suppress the generation of a supercooled structure after lead patenting,
By controlling the amount of elements such as i and Mn, ultra-fine wires and high-carbon steel wires for steel cords having high strength and high toughness and ductility with reduced disconnection at the time of stranded wires have been disclosed. Japanese Patent Publication No. 24046 discloses a wire for a high toughness and high ductility ultrafine wire in which the tensile strength of a lead patenting material is increased by setting the Si content to 1.00% or more to reduce the draw ratio. ing.

【0004】また一方で、これらの特性に悪影響を与え
るものの一つとして硬質の酸化物系非金属介在物があ
る。一般的に酸化物系介在物の中でもAl2 3 ,Si
2 ,CaO,TiO2 ,MgO等の単組成の介在物は
硬度も高く非延性である。従って伸線性に優れた高炭素
鋼線材製造のためには、溶鋼の清浄性を高めるととも
に、酸化物系介在物を低融点化し軟質化する必要があ
る。この鋼の清浄度を上げ、非延性介在物の軟質化を図
る方法として、特公昭57−22969号公報に示され
る伸線性の良好な高炭素鋼線材用鋼の製造法及び特開昭
55−24961号公報に示される極細線の製造方法が
示されているが、これらの技術の基本思想は、Al2
3 −SiO2 −MnOの三元系の酸化物系非金属介在物
の組成制御によるものである。
[0004] On the other hand, there is a hard oxide-based nonmetallic inclusion as one which adversely affects these properties. Generally, among oxide-based inclusions, Al 2 O 3 , Si
Inclusions of a single composition, such as O 2 , CaO, TiO 2 , and MgO, have high hardness and are non-ductile. Therefore, in order to produce a high carbon steel wire having excellent drawability, it is necessary to improve the cleanliness of molten steel and to lower the melting point of oxide-based inclusions to make them softer. As a method for increasing the cleanliness of the steel and softening the non-ductile inclusions, a method for producing a steel for a high-carbon steel wire rod with good drawability disclosed in Japanese Patent Publication No. 57-22969 is disclosed. No. 24961 discloses a method for manufacturing an ultrafine wire, but the basic idea of these techniques is that of Al 2 O.
3 is due to the composition control of oxide-based nonmetallic inclusions ternary -SiO 2 -MnO.

【0005】一方、特開昭50−71507号公報で
は、非金属介在物をAl2 3 ,SiO2 ,MnOの三
元状態図におけるスペーサータイト領域にすることによ
って製品の伸線性を改善することが提案され、また、特
開昭50−81907号公報では溶鋼中に添加するAl
量を規制することによって有害な介在物を減少せしめ
て、伸線性を改善する方法が開示されている。
On the other hand, Japanese Patent Application Laid-Open No. 50-71507 discloses that the drawability of a product is improved by making nonmetallic inclusions into a spacer tight region in a ternary phase diagram of Al 2 O 3 , SiO 2 and MnO. And Japanese Patent Application Laid-Open No. 50-81907 discloses an aluminum alloy added to molten steel.
Methods for improving drawability by reducing harmful inclusions by regulating the amount are disclosed.

【0006】また、特公昭57−35243号公報にお
いては、非延性介在物指数20以下のスチールコード製
造に関し、Al完全規制の下で取鍋溶鋼内にキャリアー
ガス(不活性ガス)と共にCaO含有フラックスを吹込
み、予備脱酸した後、Ca,Mg,REMの一種または
二種以上を含む合金を吹込み介在物を軟質化する方法が
提案されている。
Japanese Patent Publication No. 57-35243 relates to the production of a steel cord having a non-ductile inclusion index of 20 or less, and a CaO-containing flux together with a carrier gas (inert gas) in a molten steel in a ladle under the full regulation of Al. After pre-deoxidation, a method of softening inclusions by blowing an alloy containing one or more of Ca, Mg, and REM has been proposed.

【0007】しかしながら、ナイロン、ポリエステルが
主に使用されていた0.02〜0.15mmφの高強度超
極細線の分野においても、高剛性、高疲労寿命の極細鋼
線の開発が望まれている。
However, even in the field of high-strength ultra-fine wires of 0.02 to 0.15 mmφ, in which nylon and polyester are mainly used, development of ultra-fine steel wires having high rigidity and long fatigue life is desired. .

【0008】[0008]

【発明が解決しようとする課題】本発明は、従来、達成
し得なかった高強度、高延性、高疲労寿命の超極細線を
提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an ultra-fine wire having a high strength, a high ductility and a long fatigue life, which could not be achieved conventionally.

【0009】[0009]

【課題を解決するための手段】本発明は前記課題を解決
するためになされたもので、その要旨は、 (1)重量%で C:0.9〜1.10% Si:0.4%以下 Mn:0.5%以下 P:0.020%以下 S:0.020%以下 Al:0.003%以下 に加えて以下の元素のいづれかあるいは両方を添加し Cr:0.10〜0.30% Ni:0.10〜1.00% 残部鉄及び不可避的不純物からよりなる鋼で、鋳片の介
在物組成がMnO+CaO,SiO2 , Al2 3 の四
元系で見た場合に、図1のイ、ロ、ハ、ニ、ホ、ヘ、
ト、チ、リ、ヌで囲まれる領域Iとなる介在物が80%
以上で、ブラスめっき、Cuめっき、Niめっきのいづ
れかを施し、引張強さが、4000MPa以上、(−1
450×logD+3400)MPa以下で、円相当直
径が0.02〜0.15mmφであることを特徴とする伸
線加工性および疲労強度の優れた超極細鋼線。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and its gist is as follows: (1) C: 0.9 to 1.10% by weight% Si: 0.4% Mn: 0.5% or less P: 0.020% or less S: 0.020% or less Al: 0.003% or less In addition to one or both of the following elements, Cr: 0.10-0. 30% Ni: 0.10 to 1.00% Steel consisting of the balance of iron and unavoidable impurities. The inclusion composition of the slab is MnO + CaO, SiO 2, Al 2 O 3 , when viewed in a quaternary system, 1, a, b, c, d, e, f,
80% of the inclusions are in the region I surrounded by
With the above, one of brass plating, Cu plating, and Ni plating is performed, and the tensile strength is 4000 MPa or more, and (−1)
An ultra-fine steel wire excellent in wire drawability and fatigue strength, which has a diameter of not more than 450 × logD + 3400) MPa and an equivalent circle diameter of 0.02 to 0.15 mmφ.

【0010】但し、 D:円相当直径(mm) (2)鋼成分が重量%で、更に、Cu:0.10〜0.
80%を含む(1)記載の伸線加工性および疲労強度の
優れた超極細鋼線。 (3)重量%で C:0.9〜1.10% Si:0.4%以下 Mn:0.5%以下 P:0.020%以下 S:0.020%以下 Al:0.003%以下 に加えて以下の元素のいづれかあるいは両方を添加し Cr:0.10〜0.30% Ni:0.10〜1.00% 残部鉄及び不可避的不純物からよりなる鋼で、鋳片の介
在物組成がMnO+CaO,SiO2 , Al2 3 の四
元系で見た場合に、図1のイ、ロ、ハ、ニ、ホ、ヘ、
ト、チ、リ、ヌで囲まれる領域Iとなる介在物が80%
以上に調整したビレットを、熱間圧延によって4.0〜
7.0mmφの線材とし、調整冷却により、パーライト組
織化し、中間パテンティングを加えながら伸線加工によ
り、0.3から1.2mmφのワイヤとし、850℃以上
1000℃以下の温度範囲に加熱した後、550〜60
0℃の温度範囲で最終パテンティング処理を行うことに
より引張強さを{(530+980×Cwt%)±50}
MPaに調整し、ブラスめっき、Cuめっき、Niめっ
きのいづれかを施し、真歪で(−1.23×logD+
3.00)以上、(−1.23×logD+4.00)
以下の加工を行い円相当直径が0.02〜0.15mmφ
のワイヤとすることを特徴とする伸線加工性および疲労
強度の優れた超極細鋼線の製造方法。
However, D: circle equivalent diameter (mm) (2) Steel component is% by weight, and Cu: 0.10-0.
(1) The ultrafine steel wire having excellent drawability and fatigue strength according to (1), containing 80%. (3) By weight% C: 0.9 to 1.10% Si: 0.4% or less Mn: 0.5% or less P: 0.020% or less S: 0.020% or less Al: 0.003% In addition to the following, one or both of the following elements are added: Cr: 0.10 to 0.30% Ni: 0.10 to 1.00% Steel consisting of the balance iron and unavoidable impurities, with the interposition of slabs When the composition of the material is viewed as a quaternary system of MnO + CaO, SiO 2, and Al 2 O 3 , as shown in FIG.
80% of the inclusions are in the region I surrounded by
The billet adjusted as described above was hot-rolled to 4.0 to 4.0.
After making a 7.0 mmφ wire, forming a pearlite structure by controlled cooling, drawing into a wire of 0.3 to 1.2 mmφ while adding intermediate patenting, and heating to a temperature range of 850 ° C or more and 1000 ° C or less , 550-60
By performing the final patenting treatment in a temperature range of 0 ° C., the tensile strength is reduced to {(530 + 980 × Cwt%) ± 50}.
Adjusted to MPa, brass plating, Cu plating, Ni plating, and true strain (-1.23 × logD +
3.00) or more, (-1.23 × logD + 4.00)
The following processing is performed and the circle equivalent diameter is 0.02-0.15mmφ
A method for producing an ultra-fine steel wire having excellent drawability and fatigue strength, characterized in that it is used as a wire.

【0011】但し、 D:円相当直径(mm) (4)出発鋼成分が重量%で、更に、Cu:0.10〜
0.80%を含む鋼である。(3)記載の伸線加工性お
よび疲労強度の優れた超極細鋼線の製造方法。 (5)伸線加工において、アプローチ角が10°±2°
である引き抜き用ダイスによって伸線加工する(3)ま
たは(4)記載の伸線加工性および疲労特性の優れた超
極細鋼線の製造方法。
D: circle equivalent diameter (mm) (4) Starting steel component is% by weight, and Cu: 0.10 to 0.10
Steel containing 0.80%. (3) A method for producing an ultra-fine steel wire having excellent drawability and fatigue strength as described in (3). (5) In drawing, the approach angle is 10 ° ± 2 °
(3) or (4), wherein the wire is drawn by a drawing die.

【0012】[0012]

【作用】以下本発明を詳細に説明する。先ず本発明の組
成及び介在物限定理由に関して説明する。なお、以下に
示す%は重量%である。本発明の鋼組成の限定理由は下
記の通りである。
The present invention will be described below in detail. First, the composition of the present invention and the reasons for limiting inclusions will be described. The percentages shown below are percentages by weight. The reasons for limiting the steel composition of the present invention are as follows.

【0013】通常のパテンティング処理においては、C
が0.8%近傍の共析成分においても、旧オーステナイ
ト粒界に沿って微量の初析フェライトが析出すること、
また、この初析フェライトが伸線後の延性低下の原因と
なることを本発明者らは発見した。Cは経済的かつ有効
な強化元素であるが、この初析フェライトの析出量低下
にも有効な元素である。従って、引張強さ4000MP
a以上の極細線とし延性を高めるためにはCは0.9%
以上とすることが必要であるが、高すぎると延性が低下
し伸線性が劣化するのでその上限は1.10%とする。
In a normal patenting process, C
A small amount of eutectoid ferrite precipitates along the prior austenite grain boundaries even in the eutectoid component near 0.8%,
The present inventors have also discovered that this pro-eutectoid ferrite causes a reduction in ductility after drawing. C is an economical and effective strengthening element, but is also an effective element for reducing the amount of precipitation of pro-eutectoid ferrite. Therefore, the tensile strength of 4000MP
C is 0.9% in order to increase the ductility by using an extra fine line of a or more.
It is necessary to make the above, but if it is too high, the ductility is reduced and the drawability is deteriorated. Therefore, the upper limit is set to 1.10%.

【0014】Siは鋼の脱酸のために必要な元素であ
り、従ってその含有量があまりに少ないとき、脱酸効果
が不十分になる。また、Siは熱処理後に形成されるパ
ーライト中のフェライト相に固溶しパテンティング後の
強度を上げるが、反面フェライトの延性を低下させ伸線
後の極細線の延性を低下させるため0.4%以下とす
る。
[0014] Si is an element necessary for deoxidizing steel, and therefore, when its content is too small, the deoxidizing effect becomes insufficient. Further, Si forms a solid solution in the ferrite phase in the pearlite formed after the heat treatment and increases the strength after patenting, but on the other hand, it decreases the ductility of the ferrite and decreases the ductility of the ultrafine wire after the wire drawing. The following is assumed.

【0015】Mnは鋼の焼き入れ性を確保するために小
量のMnを添加することが望ましい。しかし、多量のM
nの添加は偏析を引き起こしパテンティングの際にベイ
ナイト、マルテンサイトという過冷組織が発生しその後
の伸線性を害するため0.5%以下とする。本発明のよ
うな過共析鋼の場合、パテンティング後の組織において
セメンタイトのネットワークが発生しやすくセメンタイ
トの厚みのあるものが析出しやすい。この鋼において高
強度高延性を実現するためには、パーライトを微細に
し、かつ先に述べたようなセメンタイトネットワークや
厚いセメンタイトを無くす必要がある。Crはこのよう
なセメンタイトの異常部の出現を抑制しさらに、パーラ
イトを微細にする効果を持っている。しかし、多量の添
加は熱処理後のフェライト中の転移密度を上昇させるた
め、引き抜き加工後の極細線の延性を著しく害すること
になる。従って、Crの添加量はその効果が期待できる
0.10%以上としフェライト中の転移密度を増加させ
延性を害することの無い0.30%以下とする。
As for Mn, it is desirable to add a small amount of Mn in order to secure the hardenability of steel. However, a large amount of M
The addition of n causes segregation, generates a supercooled structure of bainite and martensite during patenting, and impairs the subsequent drawability. In the case of the hypereutectoid steel as in the present invention, a cementite network is easily generated in the structure after patenting, and a thick cementite is easily precipitated. In order to achieve high strength and high ductility in this steel, it is necessary to make pearlite fine and eliminate the cementite network and thick cementite as described above. Cr has the effect of suppressing the appearance of such an abnormal portion of cementite and further reducing the pearlite. However, the addition of a large amount increases the transition density in the ferrite after the heat treatment, and thus significantly impairs the ductility of the ultrafine wire after the drawing. Therefore, the addition amount of Cr is set to 0.10% or more at which the effect can be expected, and 0.30% or less which does not increase the transition density in ferrite and does not impair ductility.

【0016】NiもCrと同じ効果があるため、必要に
よりその効果を発揮する0.1%以上添加する。Niも
添加量が多くなり過ぎるとフェライト相の延性を低下さ
せるので上限を1.0%とする。Cuは線材の腐食疲労
特性を向上させる元素であるので、ワイヤー被覆ゴムの
種類等によっては必要によりその効果を発揮する0.1
%以上添加することが望ましい。Cuも添加量が多くな
り過ぎるとフェライト相の延性を低下させるので上限を
0.8%とする。
Since Ni also has the same effect as Cr, if necessary, 0.1% or more is added to exhibit the effect. If the addition amount of Ni is too large, the ductility of the ferrite phase is reduced, so the upper limit is made 1.0%. Since Cu is an element for improving the corrosion fatigue characteristics of the wire rod, its effect may be exerted if necessary depending on the type of the wire coating rubber or the like.
% Or more is desirable. If the addition amount of Cu is too large, the ductility of the ferrite phase is reduced, so the upper limit is made 0.8%.

【0017】従来の極細鋼線と同様に、延性を確保する
ためSの含有量を0.025%以下とし、PもSと同様
に線材の延性を害するので含有量を0.025%以下と
するのが望ましい。極細線の延性を低下させる原因とし
てAl2 3 ,Al2 3 −MgO等のAl2 3 を主
成分とする非延性介在物の存在がある。従って、本発明
においては非延性介在物による延性低下を避けるため
に、鋼中のAl含有量を0.003%以下にする必要が
ある。
As in the case of the conventional ultrafine steel wire, the content of S is set to 0.025% or less in order to secure ductility, and the content of P is set to 0.025% or less because P also impairs the ductility of the wire similarly to S. It is desirable to do. As a cause of reducing the ductility of the ultrafine wire, there is a non-ductile inclusion mainly composed of Al 2 O 3 such as Al 2 O 3 and Al 2 O 3 —MgO. Therefore, in the present invention, in order to avoid a decrease in ductility due to non-ductile inclusions, the Al content in steel needs to be 0.003% or less.

【0018】次に、本発明の介在物組成の限定理由に関
して説明する。鋼線中の非金属介在物は、介在物融点が
低い方が加工時の介在物の伸びが大きく線材圧延加工時
の断線防止に有効である。しかし、特公昭57−229
69号公報、特開昭55−24961号公報に示される
Al2 3 ,SiO2 ,MnOの三元状態図におけるス
ペーサータイト領域にする方法では、硬質の介在物の出
現が避けられず、伸線加工性、疲労特性の優れた超極細
鋼線を得る事が出来なかった。
Next, the reasons for limiting the inclusion composition of the present invention will be described. As for the nonmetallic inclusions in the steel wire, the lower the melting point of the inclusions, the greater the elongation of the inclusions during processing, which is effective for preventing disconnection during wire rod rolling. However, Japanese Patent Publication No. 57-229
In the ternary phase diagram of Al 2 O 3 , SiO 2 , and MnO disclosed in Japanese Unexamined Patent Application Publication No. 69-24969 and Japanese Unexamined Patent Publication No. Sho 55-24961, the method of forming a spacer tight region in a ternary phase diagram cannot avoid the appearance of hard inclusions. An ultra-fine steel wire having excellent wire workability and fatigue properties could not be obtained.

【0019】そこで、本発明者らが研究を進めた結果、
本発明の鋳片で見られる介在物は主としてMnO,Ca
O,SiO2 , Al2 3 からなり、鋳片からビレット
に分塊圧延する際、主に介在物の変形が進行することが
わかった。図2に示すように、鋳片の介在物組成を、M
nO+CaO,SiO2 , Al2 3 四元系で見た融点
1500℃以下の組成にすると、鋳片からビレットに分
塊圧延後、伸びた介在物の割合が急増する。これにより
伸線加工後の介在物組成も低融点組成となり、0.15
mmφ以下の超極細線の伸線の際に断線をおこすことなく
伸線加工を行う事が可能となる。
Then, as a result of the research conducted by the present inventors,
The inclusions found in the slab of the present invention are mainly MnO, Ca
It was found that deformation of inclusions mainly progressed during slab rolling from cast slabs to billets, which consisted of O, SiO 2, and Al 2 O 3 . As shown in FIG. 2, the inclusion composition of the slab was changed to M
When the composition has a melting point of 1500 ° C. or less as viewed in the quaternary system of nO + CaO, SiO 2, and Al 2 O 3 , the ratio of the elongated inclusions after the bulk slab rolling from the slab to the billet rapidly increases. As a result, the inclusion composition after wire drawing also has a low melting point composition,
It is possible to perform wire drawing without breaking the wire when drawing ultra-fine wires of mmφ or less.

【0020】また図3に、横軸に領域Iの介在物の割合
をとって、縦軸にハンター疲労試験での疲労強度σ
Fatigue をワイヤの引張強さσT.S.で割って規格化した
値とワイヤを2t製造する際の断線回数を取った値を示
す。この部に示されるように、介在物組成が図1の領域
Iに80%以上存在する場合には伸線加工性が向上し、
疲労強度が高くなる。ここでの断線回数は0.8mmから
0.062μmまで20Kg伸線加工した時の断線回数を
示した。
FIG. 3 shows the ratio of inclusions in the region I on the horizontal axis and the fatigue strength σ in the hunter fatigue test on the vertical axis.
A value obtained by dividing Fatigue by the tensile strength σ TS of the wire and a value obtained by taking the number of times of disconnection when manufacturing 2 t of the wire are shown. As shown in this part, when the inclusion composition is 80% or more in the region I of FIG. 1, the wire drawing processability is improved,
Increases fatigue strength. The number of disconnections here indicates the number of disconnections when 20 kg wire drawing was performed from 0.8 mm to 0.062 μm.

【0021】従って、図1の領域Iには計数される介在
物の80%以上が存在する必要がある。以下、製造方法
の限定理由について述べる。先の鋼組成と含有する介在
物が前記範囲内にある鋼を熱間圧延により、4.0mmφ
以上7.0mmφ以下の線材とする。この時の線径は円相
当直径で、実際の断面形状は、円、楕円、三角などの多
角形のいづれでも良い。4.0mmφ未満の線径とする場
合には生産性が著しく低下する。また、7.0mmφを越
えた場合には、調整冷却において充分な冷却速度が得ら
れないため、7.0mmφ以下とする。
Therefore, it is necessary that 80% or more of the counted inclusions exist in the region I of FIG. Hereinafter, the reasons for limiting the manufacturing method will be described. The steel having the above-mentioned steel composition and inclusions in the above range is hot-rolled to 4.0 mmφ.
A wire rod having a diameter of 7.0 mmφ or less is used. The wire diameter at this time is a circle equivalent diameter, and the actual cross-sectional shape may be any of a polygon such as a circle, an ellipse, and a triangle. When the wire diameter is less than 4.0 mmφ, the productivity is significantly reduced. On the other hand, if it exceeds 7.0 mmφ, a sufficient cooling rate cannot be obtained in the controlled cooling.

【0022】また線材圧延後の調整冷却において、初析
セメンタイトが出現すると伸線性が著しく低下するた
め、熱間圧延後の調整冷却の際の線材中心部の冷却速度
をvとすると logv≧0.2066×Cwt. %+0.09976 を満足する冷却速度で冷却することで、実質、パーライ
ト組織とする必要がある。
Also, in the controlled cooling after the wire rod rolling, the drawability is remarkably reduced when proeutectoid cementite appears, so that if the cooling rate of the center of the wire during the controlled cooling after the hot rolling is v, logv ≧ 0. By cooling at a cooling rate that satisfies 2066 × Cwt.% + 0.09976, it is necessary to substantially form a pearlite structure.

【0023】これらの熱間圧延線材を伸線加工により線
径を0.3から1.2mmφのワイヤとする。線径を0.
3mmφ未満にするとパテンティング処理の際の張力制御
が困難となり、線径の安定したワイヤを得ることができ
ない。また、1.2mmφ超のワイヤとすると最終製品線
径を0.15mmφ以下とする場合に良好な結果を得るこ
とができないので最終パテンティング処理前の線径を
1.2mmφ以下とする。この時、伸線加工は引き抜き加
工でもローラーダイスのどちらを用いても良い。
These hot-rolled wires are formed into wires having a wire diameter of 0.3 to 1.2 mmφ by drawing. Set the wire diameter to 0.
If the diameter is less than 3 mmφ, it becomes difficult to control the tension during the patenting process, and a wire having a stable wire diameter cannot be obtained. If the wire diameter exceeds 1.2 mmφ, good results cannot be obtained when the final product wire diameter is 0.15 mmφ or less. Therefore, the wire diameter before final patenting treatment is 1.2 mmφ or less. At this time, for the wire drawing, either a drawing process or a roller die may be used.

【0024】パテンティング処理により、引張強さが
(530+980×Cwt.%)MPaに調整されたと
き、真歪みで4.0以上の加工における強度延性バラン
スが最も優れている。{(530+980×Cwt.%)
−50}MPa以下となった場合、伸線加工後の引張強
さを充分に得ることができない。{(530+980×
Cwt.%)+50}MPa以上となった場合には、強度
は高いがパーライト組織中にベイナイト組織が多く出現
しているので、伸線加工中の加工硬化率が低下し、同一
減面率での到達強度が低下し、延性も低下する。従っ
て、パテンティング処理における引張強さを{(530
+980×Cwt.%)±50}MPaに調整する必要が
ある。
When the tensile strength is adjusted to (530 + 980 × Cwt.%) MPa by the patenting treatment, the strength-ductility balance in the processing with a true strain of 4.0 or more is the most excellent. {(530 + 980 × Cwt.%)
If the temperature is lower than −50 ° MPa, the tensile strength after wire drawing cannot be sufficiently obtained. {(530 + 980 ×
Cwt. %) + 50 ° MPa or more, although the strength is high, a large amount of bainite structure appears in the pearlite structure, so that the work hardening rate during wire drawing decreases, and the same area reduction rate is reached. The strength is reduced and the ductility is also reduced. Therefore, the tensile strength in the patenting process was reduced to {(530).
+ 980 × Cwt. %) It is necessary to adjust to ± 50 ° MPa.

【0025】最終パテンティング処理条件における加熱
温度は、850℃未満であるとセメンタイトを短時間で
全て固溶させる事が困難であり、1000℃超ではパテ
ンティング処理中のワイヤ張力のコントロールが極めて
難しくなり、ワイヤ径がばらついてしまう。恒温変態温
度は、550℃未満であるとベイナイト組織が出現し、
伸線後のワイヤ延性が低下し、逆に600℃超であると
パーライト組織のラメラ間隔が粗くなるため、パテンテ
ィング後の強度及び伸線加工後の強度を充分得ることが
出来ない。
If the heating temperature under the final patenting treatment conditions is less than 850 ° C., it is difficult to completely dissolve cementite in a short time, and if it exceeds 1000 ° C., it is extremely difficult to control the wire tension during the patenting treatment. And the wire diameter varies. When the isothermal transformation temperature is lower than 550 ° C., a bainite structure appears,
If the wire ductility after wire drawing is lowered, and if it exceeds 600 ° C., the lamella spacing of the pearlite structure becomes coarse, so that the strength after patenting and the strength after wire drawing cannot be sufficiently obtained.

【0026】これらのワイヤは、乾式伸線、湿式伸線の
いづれかあるいは組み合わせで製造されているが、伸線
の過程においてダイスの磨耗を出来るだけ起こしにくく
するため表面にめっきを施すことが望ましい。これらの
めっきはブラスメッキ、Cuめっき、Niめっきなどが
経済的に望ましいがこれ以外のめっきでも良い。湿式伸
線加工において真歪みで(−1.23×logD+4.
00)以上の加工では、強度が上がり過ぎるため疲労特
性が低下する。また、(−1.23×logD+3.0
0)以下の加工では、4000MPa以上の強度を得る
ことができない。
These wires are manufactured by either dry drawing or wet drawing, or a combination thereof. However, it is preferable that the surface be plated in order to make the die less likely to wear in the drawing process. As these platings, brass plating, Cu plating, Ni plating and the like are economically desirable, but other platings may be used. With a true strain in the wet wire drawing, (−1.23 × logD + 4.
In the above-mentioned processing, the strength is excessively increased and the fatigue characteristics are reduced. Also, (−1.23 × logD + 3.0)
In the processing below 0), a strength of 4000 MPa or more cannot be obtained.

【0027】以上の製造工程において使用する引き抜き
ダイスに、アプローチ角が10°±2°である引き抜き
用ダイスを使用することで、従来の14°±2°のダイ
スに比べ、内部に圧縮残留応力を働かせて伸線加工をす
ることが可能となり、いっそう優れた超極細線を製造す
ることが可能となる。この製造工程により円相当直径が
0.02〜0.15mmφのワイヤを製造することで、疲
労寿命の高い素線を製造することができる。また、この
ようにして製造された素線は、優れた延性を具備するた
め、撚り線においても疲労特性の優れたコードを製造す
ることが可能となる。
By using a drawing die having an approach angle of 10 ° ± 2 ° as the drawing die used in the above manufacturing process, the compressive residual stress inside is reduced as compared with the conventional 14 ° ± 2 ° die. Can be used to perform wire drawing, and it is possible to produce an even more excellent ultra-fine wire. By manufacturing a wire having an equivalent circle diameter of 0.02 to 0.15 mmφ by this manufacturing process, a strand having a long fatigue life can be manufactured. In addition, since the strand produced in this manner has excellent ductility, it is possible to produce a cord having excellent fatigue properties even with a stranded wire.

【0028】[0028]

【実施例】以下に実施例に基づいて本発明の効果を記
す。転炉出鋼後、二次精練処理を行い表1に示した溶鋼
組成に成分調整した後に、連続鋳造法により鋳造を行
い、300×500mmの鋳片を製造した。
EXAMPLES The effects of the present invention will be described below based on examples. After the steel output from the converter, secondary refining treatment was performed to adjust the components to the molten steel composition shown in Table 1, and then casting was performed by a continuous casting method to produce a slab of 300 × 500 mm.

【0029】[0029]

【表1】 [Table 1]

【0030】さらにこの鋳片を分塊圧延してビレットを
製造し、5.5mmφの熱間圧延した後に調整冷却を行い
5.5mmφの線材を製造した。調整冷却はステルモア冷
却にて行った。この5.5mmφの線材を伸線加工と中間
パテンティング処理により1.2〜2.0mmφのワイヤ
とした(表2および表3)。
Further, the slab was subjected to slab rolling to produce a billet, hot-rolled to 5.5 mmφ, and then adjusted and cooled to produce a 5.5 mmφ wire. Adjustment cooling was performed by Stemoremore cooling. This 5.5 mmφ wire was formed into a 1.2 to 2.0 mmφ wire by wire drawing and intermediate patenting (Tables 2 and 3).

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】この後、900℃に加熱し、550〜60
0℃の温度範囲で最終パテンティング処理を行うことで
組織と引張強さを調整し、ブラスめっきを行ってから最
終湿式伸線を行った。それぞれの鋼線の製造における、
パテンティング処理時のワイヤ径、パテンティング処理
後の引張強さ、伸線加工後の最終ワイヤ径は表2および
表3に示される通りである。
Thereafter, the mixture is heated to 900 ° C.
The structure and tensile strength were adjusted by performing a final patenting treatment in a temperature range of 0 ° C., followed by brass plating, and then a final wet drawing. In the production of each steel wire,
The wire diameter during the patenting process, the tensile strength after the patenting process, and the final wire diameter after the wire drawing process are as shown in Tables 2 and 3.

【0034】これらのワイヤ特性を引張試験、捻回試
験、疲労試験により評価した。
These wire properties were evaluated by a tensile test, a twist test, and a fatigue test.

【0035】[0035]

【表4】 [Table 4]

【0036】表4中の疲労特性は、ハンター疲労試験に
おいて疲労強度を測定し、疲労強度が引張強さの0.3
3以上の場合を◎、0.3以上の場合を○として表し、
0.3未満の場合を×で表した。また、疲労強度はハン
ター疲労試験を用いて測定し、疲労強度として106
下の繰り返しで破壊しない強度を疲労強度とした。表中
の鋼1〜12は本発明鋼であり、鋼13〜17は比較鋼
である。
The fatigue properties in Table 4 were obtained by measuring the fatigue strength in a hunter fatigue test, and the fatigue strength was 0.3% of the tensile strength.
A case of 3 or more is represented by ◎, a case of 0.3 or more is represented by ○,
The case of less than 0.3 was represented by x. Further, the fatigue strength was measured using a Hunter fatigue test, a strength which is not broken in 10 6 or less repeated as the fatigue strength was fatigue strength. Steels 1 to 12 in the table are the present invention steels, and steels 13 to 17 are comparative steels.

【0037】比較鋼13は鋼組成が本発明範囲外で製造
方法は同じ場合である。比較鋼14は鋼組成が本発明範
囲で、鋳片中の介在物的中率が本発明より低く、これ以
外のワイヤの製造方法は本発明方法と同じ場合である。
比較鋼15は鋼組成と介在物組成が同じで熱間圧延後の
調整冷却において初析セメンタイトの出現した場合であ
る。
The comparative steel 13 has a steel composition outside the scope of the present invention and the same manufacturing method. The comparative steel 14 has a steel composition within the range of the present invention, the inclusion ratio in the slab is lower than that of the present invention, and the other method of manufacturing the wire is the same as the method of the present invention.
Comparative steel 15 has the same steel composition and inclusion composition, and shows the case where proeutectoid cementite appears in the controlled cooling after hot rolling.

【0038】比較鋼16は鋼組成および介在物組成が本
発明と同じで、最終パテンティング材の引張り強さが特
許請求の範囲から高くなった場合である。比較鋼17は
鋼組成および介在物組成が本発明と同じで、最終パテン
ティング処理後の伸線減面率が本発明より大きい場合で
ある。表2および表3より、本発明鋼を用いて製造した
ワイヤの場合にはいずれも4000MPa以上の強度と
優れた伸線加工性および疲労寿命を持ち合わせることが
分かる。この中で、本発明鋼11と12はダイスアプロ
ーチ角による効果を比較した場合であるが、アプローチ
角が10°の本発明鋼12の方がより引張強さが高く、
優れた疲労強度を示している。
Comparative steel 16 has the same steel composition and inclusion composition as in the present invention, and the tensile strength of the final patenting material is higher than in the claims. Comparative steel 17 is the case where the steel composition and the inclusion composition are the same as those of the present invention, and the wire reduction ratio after the final patenting treatment is larger than that of the present invention. From Tables 2 and 3, it can be seen that all of the wires manufactured using the steel of the present invention have a strength of 4000 MPa or more, excellent wire drawing workability and fatigue life. Among them, the steels of the present invention 11 and 12 are the case where the effect by the die approach angle is compared, and the steel 12 of the present invention having the approach angle of 10 ° has higher tensile strength,
It shows excellent fatigue strength.

【0039】一方、比較鋼13においては鋼成分が本発
明鋼と異なるため4000MPa以上の強度が得られて
いない。比較鋼14においては、4000MPa以上の
強度が得られているが鋳片中の介在物組成が本発明鋼と
異なるため、断線回数が多く疲労特性において良好な結
果が得られていない。
On the other hand, the comparative steel 13 does not have a strength of 4000 MPa or more because the steel composition is different from that of the steel of the present invention. In Comparative Steel 14, although the strength of 4000 MPa or more was obtained, the composition of the inclusions in the slab was different from that of the steel of the present invention, so the number of disconnections was large and good results were not obtained in the fatigue characteristics.

【0040】比較鋼15においては、熱間圧延後に初析
セメンタイトが出現したため、最終ワイヤまでの製造が
出来なかった。比較鋼16においては、最終パテンティ
ング処理における引張強さが高すぎるため、最終ワイヤ
での疲労特性が劣化して良好な結果が得られていない。
比較鋼17に於いては、最終湿式伸線の際の減面率が高
すぎるため、最終ワイヤでの疲労特性が劣化して良好な
結果が得られていない。
In the comparative steel 15, since the proeutectoid cementite appeared after the hot rolling, the production to the final wire could not be performed. In Comparative Steel 16, since the tensile strength in the final patenting treatment was too high, the fatigue properties of the final wire deteriorated, and good results were not obtained.
In Comparative Steel 17, since the area reduction rate in the final wet drawing was too high, the fatigue properties of the final wire deteriorated and good results were not obtained.

【0041】[0041]

【発明の効果】本発明の高強度高延性鋼線及び高強度高
延性極細線製造用鋳片及び線材を用いて直径0.02mm
以上、0.15mmφ以下の極細鋼線を製造した場合、疲
労寿命の優れた超極細鋼線を製造することが可能とな
る。
According to the present invention, a high strength and high ductility steel wire of the present invention and a high strength and high ductility ultrafine wire production slab and a wire rod having a diameter of 0.02 mm
As described above, when an ultrafine steel wire having a diameter of 0.15 mmφ or less is manufactured, it becomes possible to manufacture an ultrafine steel wire having an excellent fatigue life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の適性介在物組成を示す図である。FIG. 1 is a view showing a suitable inclusion composition of the present invention.

【図2】鋼中介在物融点とビレットでの非延性介在物量
との関係を示す図である。
FIG. 2 is a graph showing the relationship between the melting point of inclusions in steel and the amount of non-ductile inclusions in a billet.

【図3】介在物適性割合と伸線加工性および疲労特性と
の関係である。
FIG. 3 is a relationship between inclusion suitability ratio, wire drawing workability, and fatigue characteristics.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/16 C22C 38/16 C23C 30/00 C23C 30/00 B (72)発明者 芹川 修道 千葉県君津市君津1番地 新日本製鐵株 式会社 君津製鐵所内 (56)参考文献 特開 昭62−130258(JP,A) 特開 昭53−54114(JP,A) 特開 昭57−67111(JP,A) (58)調査した分野(Int.Cl.6,DB名) B21C 1/00 C22C 38/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI C22C 38/16 C22C 38/16 C23C 30/00 C23C 30/00 B (72) Inventor Shudo Serikawa Kimitsu, Kimitsu-shi, Chiba Nippon Steel Corporation Kimitsu Works (56) References JP-A-62-130258 (JP, A) JP-A-53-54114 (JP, A) JP-A-57-67111 (JP, A) (58 ) Field surveyed (Int. Cl. 6 , DB name) B21C 1/00 C22C 38/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で C:0.9〜1.10% Si:0.4%以下 Mn:0.5%以下 P:0.020%以下 S:0.020%以下 Al:0.003%以下 に加えて以下の元素のいづれかあるいは両方を添加し Cr:0.10〜0.30% Ni:0.10〜1.00% 残部鉄及び不可避的不純物からよりなる鋼で、鋳片の介
在物組成がMnO+CaO,SiO2 , Al2 3 の四
元系で見た場合に、図1のイ、ロ、ハ、ニ、ホ、ヘ、
ト、チ、リ、ヌで囲まれる領域Iとなる介在物が80%
以上で、ブラスめっき、Cuめっき、Niめっきのいづ
れかを施し、引張強さが、4000MPa以上、(−1
450×logD+3400)MPa以下で、円相当直
径が0.02〜0.15mmφであることを特徴とする伸
線加工性および疲労強度の優れた超極細鋼線。但し、 D:円相当直径(mm)
C: 0.9 to 1.10% by weight% Si: 0.4% or less Mn: 0.5% or less P: 0.020% or less S: 0.020% or less Al: 0. Cr: 0.10 to 0.30% Ni: 0.10 to 1.00% Steel containing the balance of iron and unavoidable impurities. When the inclusion composition of MnO + CaO, SiO 2, and Al 2 O 3 is viewed as a quaternary system, the inclusions a, b, c, d, e, and f in FIG.
80% of the inclusions are in the region I surrounded by
With the above, one of brass plating, Cu plating, and Ni plating is performed, and the tensile strength is 4000 MPa or more, and (−1)
An ultra-fine steel wire excellent in wire drawability and fatigue strength, which has a diameter of not more than 450 × logD + 3400) MPa and an equivalent circle diameter of 0.02 to 0.15 mmφ. However, D: circle equivalent diameter (mm)
【請求項2】 鋼成分が重量%で、更に、Cu:0.1
0〜0.80%を含む請求項1記載の伸線加工性および
疲労強度の優れた超極細鋼線。
2. The steel component in weight%, and Cu: 0.1
The ultrafine steel wire according to claim 1, which contains 0 to 0.80% and has excellent drawability and fatigue strength.
【請求項3】重量%で C:0.9〜1.10% Si:0.4%以下 Mn:0.5%以下 P:0.020%以下 S:0.020%以下 Al:0.003%以下 に加えて以下の元素のいづれかあるいは両方を添加し Cr:0.10〜0.30% Ni:0.10〜1.00% 残部鉄及び不可避的不純物からよりなる鋼で、鋳片の介
在物組成がMnO+CaO,SiO2 , Al2 3 の四
元系で見た場合に、図1のイ、ロ、ハ、ニ、ホ、ヘ、
ト、チ、リ、ヌで囲まれる領域Iとなる介在物が80%
以上に調整したビレットを、熱間圧延によって4.0〜
7.0mmφの線材とし、調整冷却により、パーライト組
織化し、中間パテンティングを加えながら伸線加工によ
り、0.3から1.2mmφのワイヤとし、850℃以上
1000℃以下の温度範囲に加熱した後、550〜60
0℃の温度範囲で最終パテンティング処理を行うことに
より引張強さを{(530+980×Cwt%)±50}
MPaに調整し、ブラスめっき、Cuめっき、Niめっ
きのいづれかを施し、真歪で(−1.23×logD+
3.00)以上、(−1.23×logD+4.00)
以下の加工を行い円相当直径が0.02〜0.15mmφ
のワイヤとすることを特徴とする伸線加工性および疲労
強度の優れた超極細鋼線の製造方法。但し、 D:円相当直径(mm)
3. C: 0.9 to 1.10% by weight C: Si: 0.4% or less Mn: 0.5% or less P: 0.020% or less S: 0.020% or less Al: 0. Cr: 0.10 to 0.30% Ni: 0.10 to 1.00% Steel containing the balance of iron and unavoidable impurities. When the inclusion composition of MnO + CaO, SiO 2, and Al 2 O 3 is viewed as a quaternary system, the inclusions a, b, c, d, e, and f in FIG.
80% of the inclusions are in the region I surrounded by
The billet adjusted as described above was hot-rolled to 4.0 to 4.0.
After making a wire rod of 7.0 mmφ, pearlite structure is formed by adjusting and cooling, and a wire of 0.3 to 1.2 mmφ is drawn by drawing while adding intermediate patenting, and then heated to a temperature range of 850 ° C or more and 1000 ° C or less. , 550-60
By performing the final patenting treatment in a temperature range of 0 ° C., the tensile strength is reduced to {(530 + 980 × Cwt%) ± 50}.
Adjusted to MPa, brass plating, Cu plating, Ni plating, and true strain (-1.23 × logD +
3.00) or more, (-1.23 × logD + 4.00)
The following processing is performed and the circle equivalent diameter is 0.02-0.15mmφ
A method for producing an ultra-fine steel wire having excellent drawability and fatigue strength, characterized in that it is used as a wire. However, D: circle equivalent diameter (mm)
【請求項4】 出発鋼成分が重量%で、更に、Cu:
0.10〜0.80%を含む鋼である請求項3記載の伸
線加工性および疲労強度の優れた超極細鋼線の製造方
法。
4. The composition according to claim 1, wherein the starting steel component is in wt.
The method for producing an ultra-fine steel wire having excellent drawability and fatigue strength according to claim 3, which is a steel containing 0.10 to 0.80%.
【請求項5】 伸線加工において、アプローチ角が10
°±2°である引き抜き用ダイスによって伸線加工する
請求項3または4記載の伸線加工性および疲労特性の優
れた超極細鋼線の製造方法。
5. An approach angle of 10 in wire drawing.
The method for producing an ultra-fine steel wire having excellent drawability and fatigue properties according to claim 3 or 4, wherein the wire is drawn by a drawing die having an angle of ± 2 °.
JP10264093A 1993-04-28 1993-04-28 Ultra-fine steel wire excellent in wire drawability and fatigue strength and method for producing the same Expired - Fee Related JP2888726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10264093A JP2888726B2 (en) 1993-04-28 1993-04-28 Ultra-fine steel wire excellent in wire drawability and fatigue strength and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10264093A JP2888726B2 (en) 1993-04-28 1993-04-28 Ultra-fine steel wire excellent in wire drawability and fatigue strength and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06312209A JPH06312209A (en) 1994-11-08
JP2888726B2 true JP2888726B2 (en) 1999-05-10

Family

ID=14332843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10264093A Expired - Fee Related JP2888726B2 (en) 1993-04-28 1993-04-28 Ultra-fine steel wire excellent in wire drawability and fatigue strength and method for producing the same

Country Status (1)

Country Link
JP (1) JP2888726B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011126073A1 (en) * 2010-04-08 2011-10-13 新日本製鐵株式会社 Wire material for saw wire and method for producing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4481379B2 (en) * 1999-03-18 2010-06-16 金井 宏彰 Steel cord material
JP2008069409A (en) 2006-09-14 2008-03-27 Bridgestone Corp High strength high carbon steel wire and producing method therefor
KR101353864B1 (en) * 2011-09-05 2014-01-20 주식회사 포스코 Wire rod, steel wire and manufacturing method of steel wire
KR101428174B1 (en) * 2012-07-13 2014-08-07 주식회사 포스코 Steel wire having excellent torsion property and method for manufacturing thereof
KR101461716B1 (en) * 2012-09-11 2014-11-14 주식회사 포스코 Ultra high strength wire rod with excellent drawability and manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011126073A1 (en) * 2010-04-08 2011-10-13 新日本製鐵株式会社 Wire material for saw wire and method for producing same
JP4943564B2 (en) * 2010-04-08 2012-05-30 新日本製鐵株式会社 Saw wire and manufacturing method thereof
CN102597291A (en) * 2010-04-08 2012-07-18 新日本制铁株式会社 Wire material for saw wire and method for producing same
CN102597291B (en) * 2010-04-08 2015-05-20 新日铁住金株式会社 Wire material for saw wire and method for producing same

Also Published As

Publication number Publication date
JPH06312209A (en) 1994-11-08

Similar Documents

Publication Publication Date Title
JP2735647B2 (en) High strength and high ductility steel wire and method for producing high strength and high ductility extra fine steel wire
KR100194431B1 (en) Excellent high strength steel wire and high strength steel wire with fatigue characteristics
EP1069199B1 (en) High-fatigue-strength steel wire and production method therefor
JP2609387B2 (en) High-strength high-toughness ultrafine steel wire wire, high-strength high-toughness ultrafine steel wire, twisted product using the ultrafine steel wire, and method for producing the ultrafine steel wire
JP2888726B2 (en) Ultra-fine steel wire excellent in wire drawability and fatigue strength and method for producing the same
JP2000219938A (en) Wire rod for high tensile strength steel wire and its production
JP2888727B2 (en) Steel wire for steel cord having excellent fatigue strength and method for producing the same
JPH07268787A (en) Highly strong steel wire excellent in fatigue characteristic and steel cord using the steel wire and rubber product using the steel wire or the steel cord
JP3388012B2 (en) Method of manufacturing steel wire for steel cord with reduced delamination
JP3400071B2 (en) High strength steel wire and high strength steel wire with excellent fatigue properties
JPH07179994A (en) Hyper-eutectoid steel wire having high strength and high toughness and ductility and its production
JP3984393B2 (en) High-strength steel wire without delamination and method for producing the same
JPH06145895A (en) High sterength and high toughness steel wire rod, extra fine steel wire using the same steel wire rod, production therefor and straded steel wire
JP3061918B2 (en) Method of manufacturing steel cord with excellent fatigue properties
JP4392093B2 (en) High-strength direct patenting wire and method for producing the same
JPH075992B2 (en) High-strength steel wire manufacturing method
US5647918A (en) Bainite wire rod and wire for drawing and methods of producing the same
JP3340233B2 (en) High strength steel wire excellent in twisting characteristics and method for producing the same
JP3036393B2 (en) High strength and high toughness hot-dip galvanized steel wire and method for producing the same
JP2713780B2 (en) High strength and high ductility ultrafine steel wire and method for producing the same
JPH08295932A (en) High strength steel wire excellent in fatigue characteristic
JP3340232B2 (en) Manufacturing method of high strength steel wire
JP2993748B2 (en) High strength and high ductility ultrafine steel wire and method for producing the same
KR100276298B1 (en) The manufacturing method of wire drawing used wire rod contained manganes
JP2000336458A (en) Wire rod superior in wire drawing workability for high approach angle die and manufacture of steel wire

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees