JP2887356B2 - Fiber fusion spliced quartz waveguide device - Google Patents

Fiber fusion spliced quartz waveguide device

Info

Publication number
JP2887356B2
JP2887356B2 JP3314898A JP31489891A JP2887356B2 JP 2887356 B2 JP2887356 B2 JP 2887356B2 JP 3314898 A JP3314898 A JP 3314898A JP 31489891 A JP31489891 A JP 31489891A JP 2887356 B2 JP2887356 B2 JP 2887356B2
Authority
JP
Japan
Prior art keywords
fusion
mount
waveguide device
optical fiber
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3314898A
Other languages
Japanese (ja)
Other versions
JPH05150133A (en
Inventor
健一 諸沢
哲 高杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP3314898A priority Critical patent/JP2887356B2/en
Publication of JPH05150133A publication Critical patent/JPH05150133A/en
Application granted granted Critical
Publication of JP2887356B2 publication Critical patent/JP2887356B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はCO2 レーザ光を用いて
石英系導波路等の光学部品と石英系光ファイバを融着接
続するファイバ融着接続型石英系導波路デバイスに関す
るものである。
The present invention relates to relates to a fiber fusion splicing type silica-based waveguide device for fusion splicing optical components and silica-based optical fiber, such as silica-based waveguides with CO 2 laser light.

【0002】[0002]

【従来の技術】石英系導波路デバイスは将来の光通信時
代のニーズに対応し得る量産化が可能で石英系光ファイ
バとの融着により、低損失な永久接続ができるため、光
波長合成分波器や光スターカプラ等のパッシブデバイス
開発が盛んに行われている。
2. Description of the Related Art Quartz-based waveguide devices can be mass-produced to meet the needs of the future optical communication era, and low-loss permanent connection can be achieved by fusion with quartz-based optical fibers. Passive devices such as wave devices and optical star couplers have been actively developed.

【0003】この石英系導波路デバイスと石英系光ファ
イバとの融着接続には、一般にCO2 レーザが用いられ
ている。このCO2 レーザ光は波長が10.6μmで、
石英系材料に効率良く吸収されるため、融着用熱源とし
ては最適である。しかも、レンズで集光することによ
り、微少なスポットで任意の部位に対し、選択的に溶融
させることも可能である。
[0003] A CO 2 laser is generally used for fusion splicing between the silica-based waveguide device and the silica-based optical fiber. This CO 2 laser beam has a wavelength of 10.6 μm,
Since it is efficiently absorbed by the quartz-based material, it is optimal as a heat source for fusing. In addition, by condensing the light with a lens, it is also possible to selectively melt an arbitrary portion with a minute spot.

【0004】図3は従来のCO2 レーザ融着接続方法の
一般的な例を示したものである。図示するように、金属
パッケージaの中に固定された略矩体状のマウントbの
上面には、同様に略矩体状に形成された石英系導波路c
がはんだ付けによって設けられており、この石英系導波
路cの端面dに、光ファイバeの端部を突き合わせ、そ
の上方よりレンズgで集光されたCO2 レーザ光fを照
射して、これらの突き合わせ部hを加熱することによっ
て、光ファイバeの端部を石英系導波路cの端面dに融
着するものである。
FIG. 3 shows a general example of a conventional CO 2 laser fusion splicing method. As shown in the figure, on the upper surface of a substantially rectangular mount b fixed in a metal package a, a quartz-based waveguide c similarly formed in a substantially rectangular shape is provided.
Is provided by soldering, an end of an optical fiber e is brought into contact with an end face d of the quartz-based waveguide c, and a CO 2 laser beam f condensed by a lens g is radiated from above the end thereof. By heating the abutting portion h, the end of the optical fiber e is fused to the end face d of the silica-based waveguide c.

【0005】[0005]

【発明が解決しようとする課題】ところで、これら光通
信用デバイスは光学的特性が優れていると当時に、十分
な機械強度を有し、長期信頼性が保証されなければなら
ない。しかしながら、上述した従来の方式では石英系導
波路cがパッケージa内にあるため、融着熱源であるC
2 レーザ光fを、両者の突き合わせ融着部hの上方、
あるいは斜め側方からしか照射できず、融着部hの下側
に直射することは困難であった。また、この石英系導波
路cはホトダイオードやホトディテクター等と高精度に
軸調整し、固定するために、はんだ固定が可能な金属製
のマウント上に固定されている場合、光ファイバeの融
着の際に、CO2 レーザ光fの熱が金属製のマウント側
に熱伝導して放散してしまい、融着部hのファイバ下部
の溶融効率が著しく低下してしまう。このため、融着時
の融着部hに温度分布が生じ、レーザ光fが直射できる
上側が十分に溶融して一体化するのに対し、下側ではレ
ーザ光fの熱が届きにくくなって、その上側よりも温度
上昇が少なく溶融が不十分となり、機械強度が劣るとい
った問題点があった。また、主に下側を十分に溶融させ
ると、反対に上側の溶融が過剰になってしまい、融着部
hでの損失が増大してしまうといった欠点があり、低損
失で、しかも十分な機械強度を有する融着接続部を得る
ことは困難であった。
However, these optical communication devices must have sufficient mechanical strength and long-term reliability at the time if they have excellent optical characteristics. However, in the above-described conventional method, since the silica-based waveguide c is located in the package a, the fusion heat source C
O 2 laser light f is applied above the butt fusion portion h
Alternatively, irradiation can be performed only from the oblique side, and it is difficult to directly irradiate the lower side of the fusion part h. In addition, in order to adjust the axis of the quartz-based waveguide c with a photodiode or a photodetector with high accuracy and to fix the same, the optical waveguide is fused with an optical fiber e when fixed on a solderable metal mount. In this case, the heat of the CO 2 laser beam f is conducted and dissipated to the metal mount side, and the melting efficiency of the lower portion of the fiber of the fusion portion h is significantly reduced. For this reason, a temperature distribution is generated in the fused portion h at the time of fusion, and the upper side where the laser beam f can be directly irradiated is sufficiently melted and integrated, whereas the heat of the laser beam f does not easily reach the lower side. However, there is a problem that the temperature rise is smaller than the upper side, the melting is insufficient, and the mechanical strength is inferior. In addition, if the lower side is sufficiently melted, the upper side is excessively melted. On the other hand, there is a disadvantage that the loss at the welded portion h is increased. It was difficult to obtain a fusion spliced part having strength.

【0006】そこで、本発明は上記の問題点を有効に解
決するために案出されたものであり、その目的は融着部
のファイバ下部からの金属マウントへの熱放散を抑制
し、その上側との温度差を低減して均一な溶融を達成す
ることにより、低損失で高機械強度の融着部を達成でき
るファイバ融着接続型石英系導波路デバイスを提供する
ものである。
Accordingly, the present invention has been devised in order to effectively solve the above-mentioned problems, and has as its object to suppress heat dissipation from the lower part of the fiber at the fusion splicing portion to the metal mount, and to suppress the heat radiation at the upper part. A fiber fusion-spliced quartz waveguide device capable of achieving a low-loss, high-mechanical-strength fused portion by reducing the temperature difference between the fused silica-based waveguide device and a uniform fused portion.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は金属製のマウント上に石英系材料で構成さ
れる光部品がはんだ固定され、当該光部品の端面に、C
2 レーザ光を用いて石英系光ファイバが融着接続され
てなるファイバ融着接続型石英系導波路デバイスにおい
て、上記石英系光ファイバと上記光部品(ただし、その
端面に光ファイバ接続用の突起が形成されているものは
除く)の融着部の下部に位置するマウントの表面に、切
欠溝を形成したものである。
According to the present invention, an optical component made of a quartz-based material is fixed on a metal mount by soldering.
In a fiber fusion spliced silica-based waveguide device in which a silica-based optical fiber is fusion-spliced using O 2 laser light, the silica-based optical fiber and the optical component (however,
If the projection for optical fiber connection is formed on the end face,
(Not shown) , a notch groove is formed in the surface of the mount located below the fusion portion .

【0008】[0008]

【作用】本発明は上述したような構成により、CO2
ーザ光によって上記光ファイバと光部品端面の融着部に
達した熱は、この融着部の下部のマウント表面に形成さ
れた切欠溝によって、マウント側へ放散しなくなって融
着部に集中するため、融着部における熱分布が均一化さ
れ、CO2 レーザ光が直射し難い融着部下側においても
溶融が充分に行われることなり、低損失で高機械強度の
接続融着部が得られる。
According to the present invention, with the above-described structure, the heat that has reached the fusion portion between the optical fiber and the end face of the optical component due to the CO 2 laser beam is transmitted to the notch groove formed on the mount surface below the fusion portion. As a result, heat is not diffused to the mount side and concentrates on the fusion zone, so the heat distribution in the fusion zone is uniformed, and melting is sufficiently performed even on the lower side of the fusion zone where CO 2 laser light is difficult to directly irradiate. Thus, a spliced portion having low loss and high mechanical strength can be obtained.

【0009】[0009]

【実施例】以下、本発明の好適実施例を添付図面に基づ
いて詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0010】図1に示すように、略矩体状に形成された
金属製のマウント1の上面には、このマウント1と同様
に略矩体状に形成された石英系導波路型波長分波器等の
光部品2がハンダ3によって固定されており、この光部
品2の端面2aには、光ファイバー4を突き合わせて融
着する融着部5が形成されている。また、図示するよう
に、この融着部5の下部に位置するマウント1上面に
は、深さ50μm、奥行き4mmの切欠溝6が一端部か
らその長さ方向に形成されており、その上部に位置する
光部品2とを離反するように所定の間隙が形成されてい
る。
As shown in FIG. 1, a substantially rectangular body is formed.
An optical component 2 such as a silica-based waveguide wavelength demultiplexer formed in a substantially rectangular shape like the mount 1 is fixed by solder 3 on the upper surface of the metal mount 1. A fusion portion 5 for abutting and fusing the optical fibers 4 to each other is formed on the end surface 2a. Further, as shown in the figure, a cutout groove 6 having a depth of 50 μm and a depth of 4 mm is formed in the longitudinal direction from one end on the upper surface of the mount 1 located at the lower part of the fusion part 5, A predetermined gap is formed so as to separate the optical component 2 located therefrom.

【0011】この融着部5は石英系材料で形成された光
ファイバ4の端部4aが突き合わされるようになってお
り、その上方からZnSeレンズ8で集光されたCO2
レーザ光7を照射して光部品2の端面2aに光ファイバ
4の端部4aを融着接続するようになっている。
The fused portion 5 has an end 4a of an optical fiber 4 made of a quartz-based material abutted thereon, and CO 2 collected by a ZnSe lens 8 from above.
The end 4a of the optical fiber 4 is fusion-spliced to the end face 2a of the optical component 2 by irradiating a laser beam 7.

【0012】次に、本発明の作用を説明する。Next, the operation of the present invention will be described.

【0013】図に示すように、先ず、マウント1の上
面に、はんだ付けされた光部品2の端面2aに光ファイ
バ4の端部4aを突き合わせる。次に、このままの状態
で、この突き合わせ部(溶着部5)にその上方からZn
Seレンズ8で集光された102 W/cm2 以上のパワ
ー密度を有するCO2 レーザ光7を連続的にあるいは断
続的に照射すると、これらの溶着部5はCO2 レーザ光
7を効率良く吸収し、瞬時にして融点(1400〜20
00℃)まで温度上昇して溶融し、光ファイバ4と光部
品2の端面2aが一体化して永久接続される。尚、この
溶着部5における機械強度はその溶融量が多いほど向上
することになる。
As shown in FIG. 1 , first, the end 4a of the optical fiber 4 is butted against the end surface 2a of the optical component 2 soldered to the upper surface of the mount 1. Next, in this state, Zn is applied to the butted portion (welded portion 5) from above.
When the CO 2 laser beam 7 having a power density of 10 2 W / cm 2 or more focused by the Se lens 8 is continuously or intermittently irradiated, these welded portions 5 efficiently emit the CO 2 laser beam 7. Absorb and instantaneously melt (1400-20
The optical fiber 4 and the end face 2a of the optical component 2 are integrated and permanently connected. It should be noted that the mechanical strength of the welded portion 5 increases as the amount of fusion increases.

【0014】この時、光ファイバ4と光部品端面2aの
融着部5に達したCO2 レーザ光7の熱は、この融着部
5の下部のマウント1表面に形成された切欠溝6によっ
て、マウント1側へ伝導放散しなくなって融着部5に集
中するため、融着部5における熱分布が均一化され、C
2 レーザ光7が直射し難い融着部5下側においてもそ
の溶融が充分に行われることなり、低損失で高機械強度
の融着が達成される。
At this time, the heat of the CO 2 laser beam 7 that has reached the fusion portion 5 between the optical fiber 4 and the optical component end face 2a is dissipated by the notch groove 6 formed on the surface of the mount 1 below the fusion portion 5. Since the heat does not radiate to the mount 1 and concentrates on the fusion portion 5, the heat distribution in the fusion portion 5 is uniform, and C
Even under the fusion portion 5 where the O 2 laser beam 7 is hard to directly radiate, the fusion is sufficiently performed, and fusion with low loss and high mechanical strength is achieved.

【0015】そして、この接続損失は0.6dBであ
り、また、この融着接続部5の引張強度を測定したとこ
ろ、引張荷重600〜900gとなり、従来のマウント
を用いた融着接続部よりも2〜3倍の強度が得られた。
The connection loss is 0.6 dB, and the tensile strength of the fusion spliced portion 5 is measured. As a result, the tensile load is 600 to 900 g, which is larger than that of the fusion spliced portion using the conventional mount. 2-3 times the strength was obtained.

【0016】尚、図は本発明の変形実施例を示したも
のである。
FIG. 2 shows a modified embodiment of the present invention.

【0017】図示するように、本実施例は切欠溝6aの
形状を、光部品端面2a側を底辺とする半径4mm程度
の半円形にしたものであり、上記実施例と同様に、融着
接続部5側からマウント1側への熱放散を抑制すること
ができ、高強度で低損失の融着接続部5が得られる。し
かも、本実施例は上記実施例に比較して、熱拡散抑制効
果は多少劣るものの、マウント1と光部品2との密着性
が向上するため、耐衝撃性が向上し、1500Gの衝撃
に耐えられる。また、本発明の切欠溝は、融着接続部側
からマウント側への熱の放散を防止するためのものであ
るため、切欠溝の形状及び大きさは、上記実施例に限定
されるものではなく、長溝形状や多角形状など必要に応
じて変化させても良い。
As shown in the drawing, in this embodiment, the shape of the cutout groove 6a is a semicircle having a radius of about 4 mm with the bottom side of the optical component end face 2a side. Heat dissipation from the part 5 side to the mount 1 side can be suppressed, and a high-strength, low-loss fusion spliced part 5 can be obtained. Moreover, in this embodiment, although the heat diffusion suppressing effect is somewhat inferior to the above embodiment, the adhesion between the mount 1 and the optical component 2 is improved, so that the shock resistance is improved and the shock resistance of 1500 G is endured. Can be In addition, since the notch groove of the present invention is for preventing heat from dissipating from the fusion splicing part side to the mount side, the shape and size of the notch groove are not limited to those in the above embodiment. Alternatively, the shape may be changed as needed, such as a long groove shape or a polygonal shape.

【0018】[0018]

【発明の効果】以上要するに本発明によれば、簡単な構
造により、光部品と光ファイバの融着部の溶融状態の均
一化が達成され、低損失で高強度な融着接続部を得るこ
とができるといった優れた効果を有する。
In summary, according to the present invention, with a simple structure, the fusion state of the fusion part between the optical component and the optical fiber can be made uniform, and a low-loss, high-strength fusion spliced part can be obtained. It has an excellent effect that it can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のファイバ融着接続型石英系導波路デバ
イスの一実施例を示す斜視図である。
FIG. 1 is a fiber fusion spliced quartz waveguide device of the present invention.
It is a perspective view showing one example of a chair .

【図2】本発明のファイバ融着接続型石英系導波路デバ
イスのマウント部分の変形実施例を示す斜視図である。
FIG. 2 is a fiber fusion spliced quartz waveguide device of the present invention.
It is a perspective view showing a modification of a mount part of a chair .

【図3】従来の光ファイバーと光部品の癒着接続状態を
示す概略図である。
FIG. 3 is a schematic view showing a conventional fused connection state between an optical fiber and an optical component.

【符号の説明】[Explanation of symbols]

1 マウント 2 光部品 2a 端面 4 光ファイバ 5 融着部 6 切欠溝 7 CO2 レーザ光1 mount 2 optical component 2a end face 4 optical fiber 5 fused portion 6 cutout groove 7 CO 2 laser beam

フロントページの続き (56)参考文献 特開 平2−251916(JP,A) 特開 昭63−163413(JP,A) 特開 昭63−85509(JP,A)Continuation of the front page (56) References JP-A-2-251916 (JP, A) JP-A-63-163413 (JP, A) JP-A-63-85509 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属製のマウント上に石英系材料で構成さ
れる光部品がはんだ固定され、当該光部品の端面に、C
2 レーザ光を用いて石英系光ファイバが融着接続され
てなるファイバ融着接続型石英系導波路デバイスにおい
て、上記石英系光ファイバと上記光部品(ただし、その
端面に光ファイバ接続用の突起が形成されているものは
除く)の融着部の下部に位置するマウントの表面に、切
欠溝を形成したことを特徴とするファイバ融着接続型石
英系導波路デバイス。
An optical component made of a quartz-based material is fixed on a metal mount by soldering, and C
In a fiber fusion spliced silica-based waveguide device in which a silica-based optical fiber is fusion-spliced using O 2 laser light, the silica-based optical fiber and the optical component (however,
If the projection for optical fiber connection is formed on the end face,
A fiber fusion spliced quartz-based waveguide device, wherein a cutout groove is formed in the surface of the mount located below the fusion spliced part .
JP3314898A 1991-11-28 1991-11-28 Fiber fusion spliced quartz waveguide device Expired - Lifetime JP2887356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3314898A JP2887356B2 (en) 1991-11-28 1991-11-28 Fiber fusion spliced quartz waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3314898A JP2887356B2 (en) 1991-11-28 1991-11-28 Fiber fusion spliced quartz waveguide device

Publications (2)

Publication Number Publication Date
JPH05150133A JPH05150133A (en) 1993-06-18
JP2887356B2 true JP2887356B2 (en) 1999-04-26

Family

ID=18058967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3314898A Expired - Lifetime JP2887356B2 (en) 1991-11-28 1991-11-28 Fiber fusion spliced quartz waveguide device

Country Status (1)

Country Link
JP (1) JP2887356B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233474A1 (en) * 2022-05-30 2023-12-07 日本電信電話株式会社 Optical fiber module and manufacturing method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251916A (en) * 1989-03-27 1990-10-09 Nippon Telegr & Teleph Corp <Ntt> Method for connecting quartz-based optical waveguide circuit and optical fiber

Also Published As

Publication number Publication date
JPH05150133A (en) 1993-06-18

Similar Documents

Publication Publication Date Title
JP6147341B2 (en) Semiconductor laser module
TW201929989A (en) Laser welding apparatus and method for welding a workpiece with a laser beam
EP1071973B1 (en) Methods for connecting optical fibers to integrated optical waveguides
TW201710009A (en) Laser processing apparatus and use thereof, method for processing workpiece by using laser beam and optical component for combining and aligning laser beam
EP1128960A4 (en) Use of a laser to fusion-splice optical components of substantially different cross-sectional areas
US20020195432A1 (en) Laser welding method and semiconductor laser module manufactured by this method
JP2005019820A (en) Semiconductor laser module and manufacturing method thereof
KR102129918B1 (en) Optical fiber support apparatus and laser appartus comprising the same
JP2887356B2 (en) Fiber fusion spliced quartz waveguide device
JP6730856B2 (en) Optical device and laser device
JPH05134137A (en) Structure of mount for mounting fiber fused connection type quartz waveguide device
JPH0526168B2 (en)
JP3252645B2 (en) Optical processing machine
JP3022132B2 (en) Fusion splicing method between silica glass waveguide element and optical fiber
WO2023233474A1 (en) Optical fiber module and manufacturing method therefor
JP2008286948A (en) Fusion splicing method
JP2009129940A (en) Optical fiber apparatus and method of manufacturing the same, and optical fiber laser apparatus
JPH02277010A (en) Method for optical coupling between photosemiconductor chip and optical fiber
JP3195539B2 (en) Method for manufacturing optical component module
JP2596317B2 (en) Fusion splicing method of optical waveguide and optical fiber
JP2001133664A (en) Semiconductor laser module
JPH0429387A (en) Optical coupler
JP4593022B2 (en) Optical device assembly method
JPS5857722B2 (en) fiber optic connector
JPS6347990A (en) Optical semiconductor element module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees