JP2882111B2 - Method for producing acicular metal magnetic particle powder containing iron as a main component - Google Patents

Method for producing acicular metal magnetic particle powder containing iron as a main component

Info

Publication number
JP2882111B2
JP2882111B2 JP21608691A JP21608691A JP2882111B2 JP 2882111 B2 JP2882111 B2 JP 2882111B2 JP 21608691 A JP21608691 A JP 21608691A JP 21608691 A JP21608691 A JP 21608691A JP 2882111 B2 JP2882111 B2 JP 2882111B2
Authority
JP
Japan
Prior art keywords
particles
acicular
goethite
compound
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21608691A
Other languages
Japanese (ja)
Other versions
JPH0533018A (en
Inventor
晴己 黒川
啓男 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP21608691A priority Critical patent/JP2882111B2/en
Publication of JPH0533018A publication Critical patent/JPH0533018A/en
Application granted granted Critical
Publication of JP2882111B2 publication Critical patent/JP2882111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、粒度が均斉であって樹
枝状粒子が混在しておらず、しかも、大きな軸比(長軸
径/短軸径)を有し、且つ、保磁力分布が優れている鉄
を主成分とする針状金属磁性粒子粉末を提供することを
目的とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a uniform particle size, no mixture of dendritic particles, a large axial ratio (major axis diameter / minor axis diameter), and a coercive force distribution. It is an object of the present invention to provide an acicular metal magnetic particle powder containing iron as a main component, which is excellent.

【0002】[0002]

【従来の技術】近年、ビデオ用、オーディオ用の磁気記
録再生用機器の長時間記録化、小型軽量化が激化してお
り、特に、昨今におけるVTR(ビデオ・テープ・レコ
ーダー)の普及は目覚ましく、長時間記録化並びに小型
軽量化を目指したVTRの開発が盛んに行われている。
一方においては、磁気記録媒体である磁気テープに対す
る高性能化、高密度記録化の要求が益々高まってきてい
る。即ち、磁気記録媒体の高画像画質、高出力特性、殊
に周波数特性の向上が要求され、その為には、残留磁束
密度Brの向上、高保磁力化並びに、分散性、充填性、
テープ表面の平滑性の向上が必要であり、益々S/N比
の向上が要求されてきている。
2. Description of the Related Art In recent years, long-time recording, miniaturization and lightening of magnetic recording / reproducing devices for video and audio have been intensified. In particular, VTR (video tape recorder) has been remarkably popularized in recent years. 2. Description of the Related Art VTRs aiming at long-term recording and reduction in size and weight have been actively developed.
On the other hand, demands for higher performance and higher density recording of magnetic tapes, which are magnetic recording media, are increasing. That is, high image quality and high output characteristics of the magnetic recording medium, especially improvement of the frequency characteristics are required. For that purpose, improvement of the residual magnetic flux density Br, high coercive force, and dispersibility, filling property,
It is necessary to improve the smoothness of the tape surface, and the S / N ratio is increasingly required to be improved.

【0003】磁気記録媒体のこれらの諸特性は磁気記録
媒体に使用される磁性粒子粉末と密接な関係を有するも
のであるが、近年においては、従来の酸化鉄磁性粒子粉
末に比較して高い保磁力と大きな飽和磁化を有する鉄を
主成分とする針状金属磁性粒子粉末が注目され、ディジ
タルオーディオテープ(DAT)、8mmビデオテー
プ、Hi−8テープ並びにビデオフロッピー等の磁気記
録媒体に使用され実用化されている。しかしながらこれ
らの鉄を主成分とする針状金属磁性粒子粉末についても
更に特性改善が強く望まれている。
[0003] These characteristics of a magnetic recording medium have a close relationship with the magnetic particle powder used in the magnetic recording medium, but in recent years, they have higher preservation than conventional iron oxide magnetic particle powder. Attention has been focused on needle-like metal magnetic particles mainly composed of iron having magnetic force and large saturation magnetization, and has been used in magnetic recording media such as digital audio tape (DAT), 8 mm video tape, Hi-8 tape, and video floppy. Has been However, it is strongly desired to further improve the characteristics of these needle-like metal magnetic particles containing iron as a main component.

【0004】今、磁気記録媒体の諸特性と使用される磁
性粒子粉末の特性との関係について詳述すれば次の通り
である。ビデオ用磁気記録媒体として高画像画質を得る
為には、日経エレクトロニクス(1976年)5月3日
号第82〜105頁の記載からも明らかな通り、ビデ
オS/N比、クロマS/N比、ビデオ周波数特性の
向上が要求される。
Now, the relationship between the characteristics of the magnetic recording medium and the characteristics of the magnetic particle powder used will be described in detail as follows. In order to obtain high image quality as a magnetic recording medium for video, as is clear from the description of Nikkei Electronics (1976), May 3, Issue No. 82-105, the video S / N ratio and the chroma S / N ratio Therefore, it is required to improve video frequency characteristics.

【0005】ビデオS/N比及びクロマS/N比の向上
をはかる為には、磁性粒子粉末のビークル中での分散
性、塗膜中での配向性及び充填性を向上させること、並
びに、磁気記録媒体の表面平滑性を改良することが重要
であり、そのような磁性粒子粉末としては、粒度が均斉
であって、樹枝状粒子が混在しておらず、しかも、軸比
(長軸径/短軸径)が大きいことが要求される。
[0005] In order to improve the video S / N ratio and the chroma S / N ratio, it is necessary to improve the dispersibility of the magnetic particle powder in a vehicle, the orientation and the filling property in a coating film, and It is important to improve the surface smoothness of a magnetic recording medium. Such magnetic particles have a uniform particle size, do not contain dendritic particles, and have an axial ratio (long axis diameter). / Short axis diameter) is required to be large.

【0006】次に、ビデオ周波数特性の向上を図る為に
は、磁気記録媒体の保磁力Hcが高く、且つ、残留磁束
密度Brが大きいことが必要である。磁気記録媒体の保
磁力Hcを高める為には、磁性粒子粉末の保磁力Hcが
できるだけ高いことが要求されており、現在、ビデオフ
ロッピー用、DAT用、8mmビデオ用、Hi−8用に
使用される磁性粒子粉末の保磁力は、1300 Oe〜
1800 Oe程度が要求されている。磁性粒子粉末の
保磁力は、一般にはその形状異方性に起因して生じる為
粒子の軸比(長軸径/短軸径)が大きくなる程保磁力は
増加する傾向にある。
Next, in order to improve video frequency characteristics, it is necessary that the coercive force Hc of the magnetic recording medium be high and the residual magnetic flux density Br be high. In order to increase the coercive force Hc of the magnetic recording medium, it is required that the coercive force Hc of the magnetic particle powder be as high as possible, and is currently used for video floppy, DAT, 8 mm video, and Hi-8. The coercive force of the magnetic particle powder is 1300 Oe or more.
About 1800 Oe is required. Since the coercive force of the magnetic particle powder generally occurs due to its shape anisotropy, the coercive force tends to increase as the axial ratio (major axis diameter / minor axis diameter) of the particles increases.

【0007】また、磁気記録媒体の高出力化の為には、
特開昭63−26821号公報の「第1図は、上記した
磁気ディスクについて測定されたS.F.D.と記録再
生出力との関係を示す図である。‥‥S.F.D.と記
録再生出力の関係は、第1図から明らかな様に直線にな
り、これにより、S.F.D.の小さい強磁性粉末を使
うことで、記録再生出力が上ることがわかる。即ち、記
録再生出力を高出力化するためには、S.F.D.は小
さい方が望ましく、通常以上の出力を得るには、0.6
以下のS.F.D.が必要である。」なる記載の通り、
磁気記録媒体のS.F.D.(Switching F
ield Distribution)が小さいことが
必要であり、その為には、磁性粒子粉末の保磁力の分布
幅が小さいことが要求される。
In order to increase the output of a magnetic recording medium,
FIG. 1 of JP-A-63-26821 shows the relationship between the SFD measured for the above magnetic disk and the recording / reproducing output. 1, the relationship between the recording and reproduction output becomes a straight line, which indicates that the recording and reproduction output can be increased by using a ferromagnetic powder having a small SFD. In order to increase the recording / reproducing output, it is desirable that the SFD is small.
The following S. F. D. is necessary. "
S. of magnetic recording medium F. D. (Switching F
It is necessary that the field distribution is small, and for that purpose, the distribution width of the coercive force of the magnetic particle powder needs to be small.

【0008】鉄を主成分とする針状金属磁性粒子粉末
は、一般に、出発原料であるゲータイト粒子、これを加
熱脱水して得られるヘマタイト粒子、又はこれらに鉄以
外の異種金属を含有する粒子を還元性ガス中、加熱還元
することにより得られている。
[0008] The acicular metal magnetic particles containing iron as a main component generally include goethite particles as a starting material, hematite particles obtained by heating and dehydrating the particles, or particles containing a dissimilar metal other than iron. It is obtained by heat reduction in a reducing gas.

【0009】上述した通り、粒度が均斉であって樹枝状
粒子が混在しておらず、しかも、大きな軸比(長軸径/
短軸径)を有し、且つ、保磁力分布が優れている鉄を主
成分とする針状磁性金属粒子粉末は、現在、最も要求さ
れているところであり、このような特性を備えた鉄を主
成分とする針状磁性金属粒子粉末を得るためには、出発
原料であるゲータイト粒子粉末が粒度が均斉であって樹
枝状粒子が混在しておらず、しかも、大きな軸比(長軸
径/短軸径)を有することが要求される。
As described above, the particle size is uniform, dendritic particles are not mixed, and the large axial ratio (long axis diameter /
Needle-like magnetic metal particles mainly composed of iron and having a short axis diameter) and excellent coercive force distribution are currently the most demanded. In order to obtain the acicular magnetic metal particle powder as the main component, the goethite particle powder, which is the starting material, has a uniform particle size, does not contain dendritic particles, and has a large axial ratio (long axis diameter / (Short axis diameter) is required.

【0010】従来、出発原料であるゲータイト粒子粉末
を製造する方法としては、第一鉄塩水溶液に当量以上
の水酸化アルカリ水溶液を加えて得られる水酸化第一鉄
コロイドを含む懸濁液をpH11以上にて80℃以下の
温度で酸素含有ガスを通気して酸化反応を行うことによ
り針状ゲータイト粒子を生成させる方法(特公昭39−
5610号公報)、第一鉄塩水溶液と炭酸アルカリ水
溶液とを反応させ得られたFeCO3 を含む懸濁液に酸
素含有ガスを通気して酸化反応を行うことにより紡錘状
を呈したゲータイト粒子を生成させる方法(特開昭50
−80999号公報)及び第一鉄塩水溶液に当量以下
の水酸化アルカリ水溶液や炭酸アルカリ水溶液を添加し
て得られる水酸化第一鉄コロイド又は炭酸鉄を含む第一
鉄塩水溶液に酸素含有ガスを通気して酸化反応を行うこ
とにより針状ゲータイト核粒子を生成させ、次いで、該
針状ゲータイト核粒子を含む第一鉄塩水溶液に、第一鉄
塩水溶液中のFe2+量に対し当量以上の水酸化アルカリ
水溶液を添加した後酸素含有ガスを通気して前記針状ゲ
ータイト核粒子を成長させる方法(特公昭59−487
66号公報、特開昭59−128293号公報、特開昭
59−128294号公報、特開昭59−128295
号公報、特開昭60−21818号公報)等が知られて
いる。
Conventionally, as a method for producing goethite particle powder as a starting material, a suspension containing ferrous hydroxide colloid obtained by adding an equivalent amount or more of an alkali hydroxide aqueous solution to a ferrous salt aqueous solution is used. A method of producing needle-like goethite particles by passing an oxygen-containing gas at a temperature of 80 ° C. or lower to carry out an oxidation reaction (Japanese Patent Publication No.
No. 5610), spindle-shaped goethite particles are formed by passing an oxygen-containing gas through a suspension containing FeCO 3 obtained by reacting an aqueous ferrous salt solution and an aqueous alkali carbonate solution to carry out an oxidation reaction. Generation method (Japanese Unexamined Patent Publication No.
No. -80999) and an aqueous solution of ferrous salt to which an aqueous solution of an alkali hydroxide or an alkali carbonate is added in an amount equivalent to or less than an equivalent amount of ferrous hydroxide colloid or an aqueous solution of ferrous salt containing iron carbonate. Aeration is performed to generate an acicular goethite nucleus particle by performing an oxidation reaction, and then, to an aqueous ferrous salt solution containing the acicular goethite nucleus particle, an equivalent amount or more with respect to the amount of Fe 2+ in the aqueous ferrous salt solution. After adding an aqueous alkali hydroxide solution of the formula (1) to grow the needle-like goethite core particles by passing an oxygen-containing gas (Japanese Patent Publication No. 59-487).
No. 66, JP-A-59-128293, JP-A-59-128294, JP-A-59-128295
And Japanese Patent Application Laid-Open No. Sho 60-21818).

【0011】[0011]

【発明が解決しようとする課題】粒度が均斉であって樹
枝状粒子が混在しておらず、しかも、大きな軸比(長軸
径/短軸径)を有し、且つ、保磁力分布が優れている鉄
を主成分とする針状金属磁性粒子粉末は、現在最も要求
されているところであるが、出発原料であるゲータイト
粒子粉末を製造する前出の方法による場合には、軸比
(長軸径/短軸径)の大きな殊に、10以上の針状ゲー
タイト粒子が生成するが、樹枝状粒子が混在しており、
また、粒度から言えば、均斉な粒度を有した粒子とは言
い難い。
The particle size is uniform, dendritic particles are not mixed, and a large axial ratio (long axis diameter / short axis diameter) is excellent, and the coercive force distribution is excellent. Needle-like metal magnetic particles containing iron as a main component are the most demanded at present, but in the case of the above-mentioned method for producing goethite particles as a starting material, the axial ratio (long axis) In particular, 10 or more needle-like goethite particles having a large diameter / short axis diameter) are generated, but dendritic particles are mixed.
Also, in terms of the particle size, it is difficult to say that the particles have a uniform particle size.

【0012】前出の方法による場合には、粒度が均斉
であり、また、樹枝状粒子が混在していない紡錘状を呈
した粒子が生成するが、一方、軸比(長軸径/短軸径)
は高々7程度であり、軸比(長軸径/短軸径)の大きな
粒子が生成し難いという欠点があり、殊に、この現象は
生成粒子の長軸径が小さくなる程顕著になるという傾向
にある。紡錘状を呈したゲータイト粒子の軸比(長軸径
/短軸径)を大きくする方法は種々試みられてはいるが
高々17〜18程度であり未だ十分とは言えない。
In the case of the above method, spindle-shaped particles having a uniform particle size and containing no dendritic particles are produced, while the axial ratio (major axis diameter / minor axis) Diameter)
Has a drawback that particles having a large axial ratio (major axis diameter / short axis diameter) are difficult to generate. In particular, this phenomenon becomes more pronounced as the major axis diameter of the formed particles decreases. There is a tendency. Various attempts have been made to increase the axial ratio (major axis diameter / minor axis diameter) of goethite particles having a spindle shape, but at most about 17-18, which is not yet satisfactory.

【0013】前出の方法は、前出及びのそれぞれ
の方法によって得られる針状ゲータイト粒子の諸特性、
即ち、粒度、軸比(長軸径/短軸径)及び樹枝状粒子の
有無等の改良を目的とするものではあるが、未だ十分満
足出来る諸特性を有するゲータイト粒子粉末は得られて
いない。
The above-mentioned method is characterized by various properties of the acicular goethite particles obtained by each of the above-mentioned methods and
That is, although it is intended to improve the particle size, the axial ratio (major axis diameter / minor axis diameter), and the presence or absence of dendritic particles, goethite particle powder having sufficiently satisfactory properties has not yet been obtained.

【0014】これら針状ゲータイト粒子粉末を出発原料
粒子として得られた鉄を主成分とする針状金属磁性粒子
粉末もまた粒度が均斉であって樹枝状粒子が混在してお
らず、しかも、大きな軸比(長軸径/短軸径)を有して
いるとは言い難いものである。
The acicular metallic magnetic particles containing iron as a main component and obtained from the acicular goethite particles as starting material particles are also uniform in particle size, do not contain dendritic particles, and have a large particle size. It is hard to say that it has an axial ratio (major axis diameter / short axis diameter).

【0015】そこで、本発明は、粒度が均斉であって樹
枝状粒子が混在しておらず、しかも、大きな軸比(長軸
径/短軸径)を有し、且つ、保磁力分布の優れている鉄
を主成分とする針状金属磁性粒子粉末を得ることを技術
的課題とする。
Therefore, the present invention provides a uniform particle size without dendritic particles, a large axial ratio (major axis diameter / minor axis diameter), and excellent coercive force distribution. It is a technical object to obtain acicular metal magnetic particle powder containing iron as a main component.

【0016】[0016]

【課題を解決するための手段】前記技術的課題は、次の
通りの本発明によって達成できる。即ち、本発明は、第
一鉄塩水溶液と該第一鉄塩水溶液中のFe2+に対し当量
未満の水酸化アルカリ水溶液又は炭酸アルカリ水溶液若
しくは水酸化アルカリ・炭酸アルカリ水溶液とを反応し
て得られた水酸化第一鉄コロイド又は鉄含有沈澱物コロ
イドを含む第一鉄塩反応溶液に、酸素含有ガスを通気す
ることにより上記水酸化第一鉄コロイド又は鉄含有沈澱
物コロイドを酸化して針状ゲータイト核粒子を生成させ
た後、該針状ゲータイト核粒子を含む第一鉄塩反応溶液
又は、該針状ゲータイト核粒子を含む第一鉄塩反応溶液
を必要により温度75℃以上に保持した後60℃以下に
降温した反応溶液、又は、必要により非酸化性雰囲気下
60℃以下に保持した反応溶液、又は必要により、温度
75℃以上に保持した後60℃以下に降温し、引き続
き、非酸化性雰囲気下に保持した反応溶液に、該反応溶
液中のFe2+に対し当量以上の炭酸アルカリ水溶液を添
加した後酸素含有ガスを通気して、前記針状ゲータイト
核粒子の成長反応を行うことにより軸比(長軸径/短軸
径)が20〜32の針状ゲータイト粒子を生成させ、次
いで、該針状ゲータイト粒子又は該粒子を加熱脱水して
得られた針状ヘマタイト粒子又は必要により、粒子表面
がNi化合物、Al化合物、Si化合物、P化合物、C
o化合物、Mg化合物、B化合物及びZn化合物から選
ばれた金属化合物の1種又は2種以上で被着処理された
前記ゲータイト粒子又は前記ヘマタイト粒子を還元性ガ
ス中で加熱還元して鉄を主成分とする針状金属磁性粒子
を得ることからなる鉄を主成分とする針状金属磁性粒子
粉末の製造法である。
The above technical objects can be achieved by the present invention as described below. That is, the present invention is obtained by reacting an aqueous solution of ferrous salt with an aqueous solution of an alkali hydroxide or an aqueous solution of an alkali carbonate or an aqueous solution of an alkali hydroxide / alkali carbonate which is less than the equivalent to Fe 2+ in the aqueous solution of a ferrous salt. The ferrous hydroxide colloid or the iron-containing precipitate colloid is oxidized by passing an oxygen-containing gas through the ferrous hydroxide reaction solution or the ferrous salt-containing reaction solution containing the iron-containing precipitate colloid. After forming the goethite core particles, the ferrous salt reaction solution containing the acicular goethite core particles or the ferrous salt reaction solution containing the acicular goethite core particles was maintained at a temperature of 75 ° C. or higher as necessary. After that, the reaction solution was cooled to 60 ° C or lower, or the reaction solution was maintained at 60 ° C or lower in a non-oxidizing atmosphere if necessary, or the temperature was lowered to 60 ° C or lower after maintaining the temperature at 75 ° C or higher as necessary. , The reaction solution was kept under a non-oxidizing atmosphere, and passing an oxygen-containing gas after the addition of more equivalents of aqueous alkali carbonate solution to Fe 2+ in the reaction solution, the growth reaction of the acicular goethite nucleus particles The axial ratio (major axis diameter / minor axis)
Diameter) to form acicular goethite particles of 20 to 32, and then the acicular goethite particles or acicular hematite particles obtained by heating and dehydrating the particles or, if necessary, the surface of the particles is a Ni compound, an Al compound, Si compound, P compound, C
o the goethite particles or the hematite particles coated with one or more metal compounds selected from the group consisting of an o compound, a Mg compound, a B compound, and a Zn compound are heat-reduced in a reducing gas to mainly reduce iron. This is a method for producing acicular metal magnetic particle powder containing iron as a main component, which comprises obtaining acicular metal magnetic particles as a component.

【0017】次に、本発明方法実施にあたっての諸条件
について述べる。本発明において使用される第一鉄塩水
溶液としては、硫酸第一鉄水溶液、塩化第一鉄水溶液等
を使用することができる。本発明の針状ゲータイト粒子
の生成反応において使用される水酸化アルカリ水溶液と
しては、水酸化ナトリウム水溶液、水酸化カリウム水溶
液等を、炭酸アルカリ水溶液としては、炭酸ナトリウム
水溶液、炭酸カリウム水溶液、炭酸アンモニウム等を使
用することができる。
Next, conditions for implementing the method of the present invention will be described. As the aqueous ferrous salt solution used in the present invention, an aqueous ferrous sulfate solution, an aqueous ferrous chloride solution, or the like can be used. The aqueous solution of alkali hydroxide used in the production reaction of the acicular goethite particles of the present invention includes an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide, and the like, and the aqueous solution of alkali carbonate includes an aqueous solution of sodium carbonate, an aqueous solution of potassium carbonate, ammonium carbonate, and the like. Can be used.

【0018】水酸化アルカリ水溶液又は炭酸アルカリ水
溶液若しくは水酸化アルカリ・炭酸アルカリ水溶液の使
用量は、第一鉄塩水溶液中のFe2+に対し当量未満であ
る。当量以上の場合には、粒度が不均斉であって樹枝状
粒子が混在しているゲータイト粒子が得られる。また、
粒状のマグネタイト粒子が混在してくる。
The amount of the aqueous alkali hydroxide solution or the aqueous alkali carbonate solution or the aqueous alkali hydroxide / alkali carbonate solution is less than the equivalent to Fe 2+ in the aqueous ferrous salt solution. In the case of the equivalent amount or more, goethite particles having an uneven particle size and mixed with dendritic particles are obtained. Also,
Granular magnetite particles are mixed.

【0019】本発明における針状ゲータイト核粒子の存
在量は、生成ゲータイト粒子に対し10〜90mol%
の範囲が好ましい。10mol%未満の場合には、本発
明の目的とする針状ゲータイト粒子を得ることができな
い。90mol%を越える場合には、針状ゲータイト核
粒子に対する炭酸鉄の割合が少なくなる為、反応が不均
一になり、得られるゲータイト粒子の粒度が不均斉とな
る。
The abundance of the acicular goethite core particles in the present invention is 10 to 90 mol% based on the produced goethite particles.
Is preferable. If the content is less than 10 mol%, the needle-like goethite particles intended for the present invention cannot be obtained. If the content exceeds 90 mol%, the ratio of iron carbonate to the acicular goethite core particles becomes small, so that the reaction becomes nonuniform and the particle size of the obtained goethite particles becomes uneven.

【0020】本発明においては、針状ゲータイト核粒子
を含む第一鉄塩反応溶液を必要により、温度75℃以上
に保持した後60℃以下に降温するか、又は、必要によ
り非酸化性雰囲気下60℃以下に保持するか、又は必要
により温度75℃以上に保持した後60℃以下に降温
し、引き続き、非酸化性雰囲気下に保持することによ
り、得られる鉄を主成分とする針状金属磁性粒子粉末の
諸特性をより向上させることができる。針状ゲータイト
核粒子を含む第一鉄塩反応溶液を保持する温度が75℃
未満である場合には、高温に保持する効果が十分ではな
く角型及び配向度がより優れた鉄を主成分とする針状金
属磁性粒子粉末を得ることができない。針状ゲータイト
核粒子を含む第一鉄塩反応溶液を非酸化性雰囲気下で保
持する温度が60℃を越える場合には、その後の酸素含
有ガスを通気して針状ゲータイト粒子を生成させる過程
において粒状マグネタイト粒子粉末が混在してくる。
In the present invention, if necessary, the ferrous salt reaction solution containing acicular goethite core particles is maintained at a temperature of 75 ° C. or higher and then cooled to 60 ° C. or lower, or optionally in a non-oxidizing atmosphere. A needle-like metal mainly composed of iron obtained by maintaining the temperature at 60 ° C. or lower, or, if necessary, maintaining the temperature at 75 ° C. or higher, and then lowering the temperature to 60 ° C. or lower, and subsequently maintaining the non-oxidizing atmosphere. Various properties of the magnetic particle powder can be further improved. The temperature at which the ferrous salt reaction solution containing acicular goethite core particles is held is 75 ° C.
If it is less than 1, the effect of maintaining the temperature at a high temperature is not sufficient, and it is not possible to obtain needle-like metal magnetic particles containing iron as a main component and having a more excellent squareness and orientation degree. If the temperature at which the ferrous salt reaction solution containing the acicular goethite nucleus particles is maintained in a non-oxidizing atmosphere exceeds 60 ° C., the oxygen-containing gas is then passed through to generate acicular goethite particles. Granular magnetite particles are mixed.

【0021】本発明の針状ゲータイト核粒子の成長反応
において使用される炭酸アルカリ水溶液の使用量は、残
存第一鉄塩水溶液中のFe2+に対し当量以上である。当
量未満の場合には、得られるゲータイト粒子の粒度が不
均斉となり、また、球状マグネタイト粒子が混在してく
る。
The amount of the aqueous alkali carbonate solution used in the growth reaction of the acicular goethite nucleus particles of the present invention is at least equivalent to Fe 2+ in the remaining aqueous ferrous salt solution. When the amount is less than the equivalent, the particle size of the obtained goethite particles becomes uneven, and spherical magnetite particles are mixed.

【0022】本発明における酸化手段は、酸素含有ガス
(例えば空気)を液中に通気することにより行い、必要
により機械的操作等により攪拌を伴ってもよい。
The oxidizing means in the present invention is carried out by passing an oxygen-containing gas (for example, air) through the liquid, and may be accompanied by stirring by mechanical operation or the like, if necessary.

【0023】本発明における反応温度は、通常、ゲータ
イト粒子が生成する60℃以下の温度で行えばよい。6
0℃を越える場合には、針状ゲータイト粒子中に粒状マ
グネタイト粒子粉末が混在してくる。尚、本発明におい
て、ゲータイト核粒子の生成反応と該ゲータイト核粒子
の成長反応とを同一の反応塔を用いて行うことができる
ことはもちろん、別々の反応塔を用いる場合でも目的と
するゲータイト粒子が得られる。
The reaction temperature in the present invention may be usually at a temperature of 60 ° C. or less at which goethite particles are formed. 6
When the temperature exceeds 0 ° C., granular magnetite particles are mixed in the acicular goethite particles. In the present invention, not only the formation reaction of goethite nucleus particles and the growth reaction of the goethite nucleus particles can be performed using the same reaction tower, but also when the target goethite particles are used even when separate reaction towers are used. can get.

【0024】本発明において、加熱還元時の粒子形状の
くずれ及び粒子間の焼結を防止する為に、あらかじめ出
発原料をNi化合物、Al化合物、Si化合物、P化合
物、Co化合物、Mg化合物、B化合物及びZn化合物
から選ばれる金属化合物の1種又は2種以上で被着処理
を施すことが好ましい。これらの金属化合物は焼結防止
効果を有するだけでなく、還元速度を制御する働きも有
するので、必要に応じて組み合わせて使用することが好
ましい。
In the present invention, in order to prevent the deformation of the particle shape and the sintering between the particles during the heat reduction, the starting materials are Ni compound, Al compound, Si compound, P compound, Co compound, Mg compound, It is preferable to perform the deposition treatment with one or more metal compounds selected from a compound and a Zn compound. Since these metal compounds not only have a sintering preventing effect but also have a function of controlling the reduction rate, they are preferably used in combination as needed.

【0025】上記金属化合物で被着処理を施した出発原
料は、そのまま還元しても目的とする鉄を主成分とする
金属磁性粒子粉末を得ることができるが、磁気特性、粉
体特性のコントロール及び形状のコントロールの為に
は、常法により、還元に先立って、あらかじめ、非還元
性ガス雰囲気中において加熱処理を施しておくことが好
ましい。
The starting material that has been subjected to the deposition treatment with the above-mentioned metal compound can be directly reduced to obtain the desired metal magnetic particle powder containing iron as a main component. In order to control the shape and shape, it is preferable to perform a heat treatment in a non-reducing gas atmosphere in advance by a conventional method before the reduction.

【0026】上記非還元性ガス雰囲気中における加熱処
理は、空気、酸素ガス、窒素ガス流下、300〜800
℃の温度範囲で行うことができ、該加熱処理温度は、出
発原料粒子の被着処理に用いた金属化合物の種類に応じ
て適宜選択することがより好ましい。800℃を越える
場合には、粒子の変形と粒子及び粒子相互間の焼結を引
き起こしてしまう。
The heat treatment in the non-reducing gas atmosphere is performed under a flow of air, oxygen gas, and nitrogen gas at 300 to 800.
It can be performed in a temperature range of ° C., and it is more preferable that the heat treatment temperature is appropriately selected according to the type of the metal compound used for the deposition treatment of the starting material particles. When the temperature exceeds 800 ° C., deformation of the particles and sintering between the particles and the particles are caused.

【0027】本発明における加熱還元の温度範囲は、3
00〜550℃が好ましい。300℃未満である場合に
は、還元反応の進行が遅く、長時間を要する。また、5
50℃を越える場合には、還元反応が急激に進行して粒
子の変形と、粒子及び粒子相互間の焼結を引き起こして
しまう。
The temperature range of the heat reduction in the present invention is 3
00-550 degreeC is preferable. When the temperature is lower than 300 ° C., the progress of the reduction reaction is slow and a long time is required. Also, 5
If the temperature exceeds 50 ° C., the reduction reaction proceeds rapidly, causing deformation of the particles and sintering between the particles.

【0028】本発明における加熱還元後の鉄を主成分と
する金属磁性粒子粉末は周知の方法、例えば、トルエン
等の有機溶剤中に浸漬する方法及び還元後の鉄を主成分
とする金属磁性粒子粉末の雰囲気を一旦不活性ガスに置
換した後、不活性ガス中の酸素含有量を徐々に増加させ
ながら最終的に空気とすることによって徐酸化する方法
等により空気中に取り出すことができる。
In the present invention, the metal magnetic particle powder containing iron as a main component after heat reduction can be obtained by a known method, for example, a method of immersing the powder in an organic solvent such as toluene, or a metal magnetic particle containing iron as a main component after reduction. After the atmosphere of the powder is once replaced with an inert gas, it can be taken out into the air by a method such as gradually oxidizing by gradually increasing the oxygen content in the inert gas into air while gradually increasing the oxygen content.

【0029】本発明においては、従来から鉄を主成分と
する金属磁性粒子粉末の各種特性の向上の為に、出発原
料であるゲータイト粒子の生成に際し、通常添加される
Co化合物、Ni化合物、Cr化合物、Zn化合物、A
l化合物、Mn化合物、P化合物、Si化合物、B化合
物から選ばれた1種又は2種以上を添加することがで
き、この場合にも、本発明の目的とする粒度が均斉であ
って、樹枝状粒子が混在しておらず、しかも、軸比(長
軸径/短軸径)が大きい針状を呈したゲータイト粒子粉
末を得ることができる。
In the present invention, a Co compound, a Ni compound, a Cr compound, which are usually added when producing goethite particles as a starting material, in order to improve various properties of the metal magnetic particles containing iron as a main component. Compound, Zn compound, A
One or two or more compounds selected from the group consisting of a compound 1, a Mn compound, a P compound, a Si compound and a B compound can be added. It is possible to obtain a goethite particle powder having no needle-like particles and having an acicular shape having a large axial ratio (major axis diameter / minor axis diameter).

【0030】[0030]

【作用】先ず、本発明において最も重要な点は、第一鉄
塩水溶液と該第一鉄塩水溶液中のFe2+に対し当量未満
の水酸化アルカリ水溶液又は炭酸アルカリ水溶液若しく
は水酸化アルカリ・炭酸アルカリ水溶液とを反応して得
られた水酸化第一鉄コロイド又は鉄含有沈澱物コロイド
を含む第一鉄塩反応溶液に、酸素含有ガスを通気するこ
とにより上記水酸化第一鉄コロイド又は鉄含有沈澱物コ
ロイドを酸化して針状ゲータイト核粒子を生成させた
後、該針状ゲータイト核粒子を含む第一鉄塩反応溶液に
該第一鉄塩反応溶液中のFe2+に対し当量以上の炭酸ア
ルカリ水溶液を添加した後酸素含有ガスを通気すること
により、前記針状ゲータイト核粒子の成長反応を行った
場合には、粒度が均斉であって樹枝状粒子が混在してお
らず、しかも、軸比(長軸径/短軸径)が大きい、殊
に、20〜32の針状ゲータイト粒子粉末が得られ、該
針状ゲータイト粒子又は該針状ゲータイト粒子を加熱脱
水した針状ヘマタイト粒子を出発原料粒子として得られ
た鉄を主成分とする針状金属磁性粒子もまた、粒度が均
斉であって樹枝状粒子が混在しておらず、しかも大きな
軸比(長軸径/短軸径)を有する粒子が得られる。そし
てこれら諸特性を有する針状磁性酸化鉄粒子粉末は、保
磁力分布が優れているという事実である。
First, the most important point in the present invention is that an aqueous solution of ferrous salt and an aqueous solution of alkali hydroxide or an aqueous solution of alkali carbonate or alkali hydroxide / carbonate which are less than equivalent to Fe 2+ in the aqueous solution of ferrous salt are used. An oxygen-containing gas is passed through the ferrous hydroxide colloid or iron-containing precipitate colloid containing a ferrous hydroxide colloid or an iron-containing precipitate colloid obtained by reacting with an alkaline aqueous solution. After the precipitate colloid is oxidized to form acicular goethite nucleus particles, the ferrous salt reaction solution containing the acicular goethite nucleus particles is added to the ferrous salt reaction solution in an amount equivalent to or more than Fe 2+ in the ferrous salt reaction solution. When the growth reaction of the acicular goethite nucleus particles is performed by passing the oxygen-containing gas after the addition of the aqueous alkali carbonate solution, the particle size is uniform and dendritic particles are not mixed, and Axle ratio Major axis diameter / minor axis diameter) is large, in particular, 20 acicular goethite particles of ~ 32 is obtained, starting material particles acicular hematite particles were heated dehydrated acicular goethite particles or acicular goethite particles The needle-like metal magnetic particles containing iron as a main component obtained as the above are also particles having a uniform particle size, no mixture of dendritic particles, and having a large axial ratio (major axis diameter / minor axis diameter). Is obtained. The fact is that acicular magnetic iron oxide particles having these various properties have excellent coercive force distribution.

【0031】ゲータイト核粒子の成長反応にあたり炭酸
アルカリ水溶液に代えて水酸化アルカリ水溶液を使用し
た場合は、後出比較例に示す通り、本発明の目的とする
粒度が均斉であって樹枝状粒子が混在しておらず、しか
も、軸比(長軸径/短軸径)の大きい針状ゲータイト粒
子粉末は得られない。
When an aqueous alkali hydroxide solution is used in place of the aqueous alkali carbonate solution in the growth reaction of the goethite core particles, as shown in the comparative examples described below, the target particle size of the present invention is uniform and dendritic particles are formed. Needle-like goethite particle powder that is not mixed and has a large axial ratio (major axis diameter / short axis diameter) cannot be obtained.

【0032】本発明において、針状ゲータイト核粒子を
含む第一鉄塩反応溶液を温度70℃以上に保持した後6
0℃以下に降温した場合には、配向度及び角型がより優
れた鉄を主成分とする針状金属磁性粒子粉末を得ること
ができる。針状ゲータイト核粒子を含む第一鉄塩反応溶
液を非酸化性雰囲気下60℃以下に保持した場合には、
保磁力分布がより優れた鉄を主成分とする針状金属磁性
粒子粉末を得ることができる。針状ゲータイト核粒子を
含む第一鉄塩反応溶液を温度75℃以上に保持した後6
0℃以下に降温し、引き続き非酸化性雰囲気下に保持し
た場合には、配向度、角型及び保磁力分布がより優れた
針状金属磁性粒子粉末を得ることができる。
In the present invention, after the ferrous salt reaction solution containing acicular goethite core particles is maintained at a temperature of 70 ° C. or more, 6
When the temperature is lowered to 0 ° C. or lower, needle-like metal magnetic particles containing iron as a main component and having a more excellent degree of orientation and squareness can be obtained. When the ferrous salt reaction solution containing acicular goethite core particles is kept at 60 ° C. or lower under a non-oxidizing atmosphere,
Needle-like metal magnetic particles having iron as a main component and having a better coercive force distribution can be obtained. After maintaining the ferrous salt reaction solution containing acicular goethite core particles at a temperature of 75 ° C. or higher, 6
When the temperature is lowered to 0 ° C. or lower and the sample is kept in a non-oxidizing atmosphere, needle-like metal magnetic particles having better orientation, squareness and coercive force distribution can be obtained.

【0033】[0033]

【実施例】次に、実施例並びに比較例により、本発明を
説明する。尚、以下の実施例並びに比較例における粒子
の長軸径、軸比(長軸径/短軸径)は、いずれも電子顕
微鏡写真から測定した数値の平均値で示した。
Next, the present invention will be described with reference to examples and comparative examples. In addition, the major axis diameter and the axial ratio (major axis diameter / minor axis diameter) of the particles in the following Examples and Comparative Examples are all shown as average values of the numerical values measured from electron micrographs.

【0034】粒子の粒度分布は、以下の方法により求め
た幾何標準偏差値(σg)で示した。即ち、12万倍の
電子顕微鏡写真に写っている粒子350個の長軸径を測
定し、その測定値から計算して求めた粒子の実際の長軸
径と個数から統計学的手法に従って対数正規確率紙上の
横軸に粒子の長軸径を、縦軸に等間隔にとった長軸径区
間のそれぞれに属する粒子の累積個数を百分率でプロッ
トする。そして、このグラフから粒子の個数が50%及
び84.13%のそれぞれに相当する長軸径の値を読み
とり、個数50%の時の長軸径(μm)を個数84.1
3%の時の長軸径(μm)で除した値で示した。
The particle size distribution of the particles was represented by a geometric standard deviation (σg) obtained by the following method. That is, the major axis diameter of 350 particles shown in a 120,000-fold electron micrograph was measured, and the logarithmic normal was calculated from the actual major axis diameter and the number of particles calculated from the measured value according to a statistical method. The horizontal axis on the probability paper plots the major axis diameter of the particles, and the vertical axis plots the cumulative number of particles belonging to each of the major axis diameter sections at equal intervals in percentage. Then, the value of the major axis diameter corresponding to 50% and 84.13% of the number of particles was read from this graph, and the major axis diameter (μm) when the number of particles was 50% was counted to 84.1%.
It was shown by the value divided by the major axis diameter (μm) at 3%.

【0035】鉄を主成分とする針状金属磁性粒子粉末の
磁気特性及び塗膜特性は、「振動試料磁力計VSM−3
S−15」(東英工業(株)製)を使用し、外部磁場1
0KOeまでかけて測定した。塗膜の角型及びS.F.
D.の測定は、後出実施例43の方法により得られたシ
ート試料片を用いて行った。また、S.F.D.は、前
記磁気測定器の微分回路を使用して、磁気履歴曲線の減
磁カーブの微分曲線を得、この曲線の半値巾を測定し、
この値を保磁力で除することにより求めた。
The magnetic properties and coating properties of the acicular metal magnetic particles containing iron as a main component are described in "Vibration sample magnetometer VSM-3".
S-15 "(manufactured by Toei Industry Co., Ltd.)
The measurement was performed over 0KOe. Squareness of coating film and S.I. F.
D. Was measured using a sheet sample obtained by the method of Example 43 described later. Also, S.I. F. D. Using the differentiating circuit of the magnetometer, obtain the differential curve of the demagnetization curve of the magnetic hysteresis curve, measure the half width of this curve,
It was determined by dividing this value by the coercive force.

【0036】<針状ゲータイト粒子粉末の製造法> 実施例1〜14、比較例1〜2; 実施例1 Fe2+ 1.50mol/lを含む硫酸第一鉄水溶液1
2.8 lと0.44−NのNaOH水溶液30.2
l(硫酸第一鉄水溶液中のFe2+に対し0.35当量に
該当する。)とを混合し、pH6.7、温度38℃にお
いてFe(OH)2 を含む硫酸第一鉄水溶液の生成を行
なった。
<Method for Producing Acicular Goethite Particle Powder> Examples 1 to 14, Comparative Examples 1 and 2 Example 1 Ferrous sulfate aqueous solution 1 containing 1.50 mol / l of Fe 2+
2.8 l and 0.44-N NaOH aqueous solution 30.2
1 (corresponding to 0.35 equivalents to Fe 2+ in the aqueous ferrous sulfate solution) to form an aqueous ferrous sulfate solution containing Fe (OH) 2 at a pH of 6.7 and a temperature of 38 ° C. Was performed.

【0037】上記Fe(OH)2 を含む硫酸第一鉄水溶
液に温度40℃において毎分130 lの空気を3.0
時間通気してゲータイト核粒子を生成させた。上記ゲー
タイト核粒子を含む硫酸第一鉄水溶液(ゲータイト核粒
子の存在量は生成ゲータイト粒子に対し35mol%に
該当する。)に、5.4−NのNa2 CO3 水溶液7.
0 l(残存硫酸第一鉄水溶液中のFe2+に対し1.5
当量に該当する。)を加え、pH9.4、温度42℃に
おいて毎分130 lの空気を4時間通気してゲータイ
ト粒子粉末を生成した。生成ゲータイト粒子を常法によ
り、濾別、水洗、乾燥した。
At a temperature of 40 ° C., 130 l of air per minute was added to the aqueous ferrous sulfate solution containing Fe (OH) 2 at a rate of 3.0 l / min.
Vent for a period of time to produce goethite core particles. To a ferrous sulfate aqueous solution containing the above goethite core particles (the abundance of goethite core particles corresponds to 35 mol% based on the produced goethite particles), a 5.4-N aqueous solution of Na 2 CO 3 7.
0 l (1.5 % for Fe 2+ in the residual aqueous ferrous sulfate solution)
It corresponds to the equivalent. ) Was added, and 130 l / min of air was passed through at pH 9.4 and a temperature of 42 ° C. for 4 hours to produce goethite particle powder. The produced goethite particles were separated by filtration, washed with water and dried by a conventional method.

【0038】生成ゲータイト粒子粉末は、電子顕微鏡観
察の結果、σgが0.801と粒度が均斉であり樹枝状
粒子が混在しておらず、しかも、長軸0.33μm、軸
比(長軸径/短軸径)25の針状粒子であった。
Observation by an electron microscope revealed that the resulting goethite particle powder had a uniform σg of 0.801, a uniform particle size, no dendritic particles mixed, a long axis of 0.33 μm, and an axial ratio (long axis diameter). (Short axis diameter) was 25.

【0039】実施例2〜14 ゲータイト核粒子の生成における第一鉄塩水溶液の種
類、Fe2+濃度及び使用量、アルカリ性水溶液の種類、
濃度及び使用量、異種元素の種類及び量、反応温度並び
に、ゲータイト核粒子の成長におけるアルカリ性水溶液
の濃度及び使用量、異種元素の種類及び量、反応温度を
種々変化させた以外は実施例1と同様にしてゲータイト
粒子粉末を得た。この時の主要製造条件及びゲータイト
粒子粉末の諸特性を表1及び表2に示す。実施例2〜1
4で得られた針状ゲータイト粒子粉末は、電子顕微鏡観
察の結果、いずれも粒度が均斉であって樹枝状粒子が混
在しないものであった。実施例2、10及び14で得ら
れた針状ゲータイト粒子粉末の電子顕微鏡写真(×30
000)をそれぞれ図1乃至3に示す。
Examples 2 to 14 In the production of goethite core particles, the type of ferrous salt aqueous solution, the concentration and amount of Fe 2+ used, the type of alkaline aqueous solution,
Example 1 except that the concentration and amount used, the type and amount of the different element, the reaction temperature, and the concentration and amount of the alkaline aqueous solution in growing the goethite core particles, the type and amount of the different element, and the reaction temperature were variously changed. In the same manner, goethite particle powder was obtained. Tables 1 and 2 show the main production conditions and various properties of the goethite particle powder at this time. Examples 2-1
As a result of observation with an electron microscope, the acicular goethite particle powder obtained in 4 was uniform in particle size and did not contain dendritic particles. Electron micrographs (× 30) of the acicular goethite particles obtained in Examples 2, 10 and 14
000) is shown in FIGS.

【0040】比較例1 5.4−NのNa2 CO3 水溶液7.0 lに代えて
6.2−NのNaOH水溶液7.0 l(残存硫酸第一
鉄水溶液中のFe2+に対し2.25当量に該当する。)
を使用し、P化合物を添加しなかった以外は、実施例2
と同様にしてゲータイト粒子粉末を得た。得られたゲー
タイト粒子粉末は、図4の電子顕微鏡写真(×3000
0)に示す通り、σgが0.635と粒度が不均斉であ
り、樹枝状粒子が混在したものであった。
COMPARATIVE EXAMPLE 1 7.0 l of a 6.2-N NaOH aqueous solution (based on Fe 2+ in the residual ferrous sulfate aqueous solution) instead of 7.0 l of a 5.4-N aqueous Na 2 CO 3 solution This corresponds to 2.25 equivalents.)
Example 2 was repeated except that no P compound was added.
In the same manner as in Example 1, goethite particle powder was obtained. The obtained goethite particle powder was obtained by an electron microscope photograph (× 3000) shown in FIG.
As shown in (0), the σg was 0.635 and the particle size was uneven, and dendritic particles were mixed.

【0041】比較例2 5.4−NのNa2 CO3 水溶液7.0 lに代えて
2.74−NのNaOH水溶液7.0 l(硫酸第一鉄
水溶液中のFe2+に対し1.0当量に該当する。)を使
用し、pHを4.2に調整しながら80℃で成長反応さ
せ、P化合物を添加しなかった以外は、実施例2と同様
にしてゲータイト粒子粉末を得た。得られたゲータイト
粒子粉末は、図5の電子顕微鏡写真(×30000)に
示す通り、σgが0.612と粒度が不均斉であり、樹
枝状粒子が混在したものであった。
COMPARATIVE EXAMPLE 2 7.0 l of a 2.74-N NaOH aqueous solution (1 liter of Fe 2+ in an aqueous ferrous sulfate solution) was used in place of 7.0 l of a 5.4-N aqueous Na 2 CO 3 solution. 2.0 equivalents) and a growth reaction was performed at 80 ° C. while adjusting the pH to 4.2, and goethite particle powder was obtained in the same manner as in Example 2 except that the P compound was not added. Was. As shown in the electron micrograph (× 30000) of FIG. 5, the obtained goethite particle powder had an uneven particle size of σg of 0.612 and a mixture of dendritic particles.

【0042】<針状ヘマタイト粒子粉末の製造> 実施例15 実施例5で得られた針状ゲータイト粒子を空気中300
℃で加熱脱水して針状ヘマタイト粒子を得た。得られた
針状ヘマタイト粒子は、電子顕微鏡観察の結果、長軸径
0.20μm、軸比(長軸径/短軸径)20であった。
<Production of Acicular Hematite Particle Powder> Example 15 The acicular goethite particles obtained in Example 5 were placed in air for 300 hours.
The resultant was dehydrated by heating at ℃ to obtain acicular hematite particles. As a result of observation with an electron microscope, the obtained acicular hematite particles had a major axis diameter of 0.20 μm and an axial ratio (major axis diameter / minor axis diameter) of 20.

【0043】<針状ゲータイト粒子粉末の金属化合物に
よる被着処理> 実施例16〜28、比較例3〜4; 実施例16 実施例1で得られた濾別、水洗した針状ゲータイト粒子
1000gに相当する量のプレスケーキを30 lの水
中に懸濁させた。この時の懸濁液のpHは9.3であっ
た。次いで、上記懸濁液にヘキサメタリン酸ナトリウム
5gを溶解した水溶液300mlを添加して15分間攪
拌分散した。次いで、上記ゲータイト分散懸濁液にケイ
酸ソーダ(3号水ガラス)120gを添加し、30分間
攪拌した。更に、上記ゲータイト分散懸濁液にアルミン
酸ソーダ溶液40gを含有した水溶液を添加し20分攪
拌した。
<Attachment Treatment of Acicular Goethite Particle Powder with Metal Compound> Examples 16 to 28, Comparative Examples 3 to 4; Example 16 1000 g of the filtered and water-washed acicular goethite particles obtained in Example 1 was added to 1000 g of the particles. The corresponding amount of presscake was suspended in 30 l of water. At this time, the pH of the suspension was 9.3. Next, 300 ml of an aqueous solution in which 5 g of sodium hexametaphosphate was dissolved was added to the above suspension, and the mixture was stirred and dispersed for 15 minutes. Then, 120 g of sodium silicate (No. 3 water glass) was added to the goethite dispersion suspension, followed by stirring for 30 minutes. Further, an aqueous solution containing 40 g of a sodium aluminate solution was added to the goethite dispersion suspension, followed by stirring for 20 minutes.

【0044】次いで、該懸濁液のpHが6.0となるよ
うに10%濃度の酢酸を添加した後、濾別、水洗して不
要な塩を除去した。該濾別、水洗したゲータイトプレス
ケーキを乾燥し、P化合物、Si化合物、Al化合物で
被覆されたゲータイト粒子を得た。得られたゲータイト
中のP、Si、Al含有量はそれぞれPとして0.29
wt%、SiはSiO2 として3.43wt%、Alは
0.36wt%であった。
Next, acetic acid having a concentration of 10% was added so that the pH of the suspension became 6.0, followed by filtration and washing with water to remove unnecessary salts. The goethite press cake washed by filtration and washed with water was dried to obtain goethite particles coated with a P compound, a Si compound and an Al compound. The content of P, Si, and Al in the obtained goethite was 0.29 as P, respectively.
wt%, Si was 3.43 wt% as SiO 2 , and Al was 0.36 wt%.

【0045】実施例17、21、26、比較例3〜4 被処理粒子の種類、被着処理物の種類及び添加量を種々
変化させて、実施例16と同様の方法で金属化合物が被
着された針状ゲータイト粒子を得た。この時の主要製造
条件を表3に示す。
Examples 17, 21, and 26, Comparative Examples 3 and 4 The metal compound was deposited in the same manner as in Example 16 by changing the type of particles to be processed, the type of the material to be processed, and the amount of addition. Needle-like goethite particles were obtained. Table 3 shows the main manufacturing conditions at this time.

【0046】実施例18 実施例4で得られた濾別、水洗した針状ゲータイト粒子
1000gに相当する量のプレスケーキを30 lの水
中に懸濁させた。この時の懸濁液のpHは9.4であっ
た。次いで、上記懸濁液にゲータイトに対し18.0重
量%となるようにAl(NO3 3 ・9H2 Oを180
g添加し、更に、ゲータイトに対し12.7重量%とな
るようにCo(CH3 COO)2 ・4H2 O 127g
を、ゲータイトに対し5.0重量%となるようにZn
(CH3 COO)2 ・4H2 O 50gを添加して20
分間攪拌した。この時の懸濁液のpHは4.15であっ
た。
Example 18 An amount of press cake equivalent to 1000 g of filtered and washed needle-like goethite particles obtained in Example 4 was suspended in 30 l of water. At this time, the pH of the suspension was 9.4. Next, 180 parts by weight of Al (NO 3 ) 3 .9H 2 O was added to the above suspension so as to be 18.0% by weight of goethite.
g of Co (CH 3 COO) 2 .4H 2 O in an amount of 12.7% by weight based on goethite.
With Zn so as to be 5.0% by weight based on goethite.
(CH 3 COO) was added to 2 · 4H 2 O 50g 20
Stirred for minutes. At this time, the pH of the suspension was 4.15.

【0047】次いで、上記懸濁液にゲータイトに対し1
3.0重量%となるようにH3 BO3 130gを溶解
した溶液をゆっくりと添加して、15分間攪拌した。更
に、アンモニア水を添加してpHを9.5に調整した
後、フィルタープレスで濾別し、乾燥してAl、Co、
Zn、B化合物が被着されたゲータイトを得た。得られ
たゲータイト中のAl、Co、Zn、Bの含有量は、そ
れぞれAlとして1.12wt%、Coは2.75wt
%、Znは1.15wt%、Bとして0.56wt%で
あった。
Next, 1 g of goethite was added to the above suspension.
A solution in which 130 g of H 3 BO 3 was dissolved was slowly added so as to be 3.0% by weight, and the mixture was stirred for 15 minutes. Further, the pH was adjusted to 9.5 by adding aqueous ammonia, followed by filtration with a filter press, drying and drying of Al, Co,
Goethite to which Zn and B compounds were applied was obtained. The contents of Al, Co, Zn, and B in the obtained goethite were 1.12 wt% as Al and 2.75 wt% of Co, respectively.
%, Zn was 1.15 wt%, and B was 0.56 wt%.

【0048】実施例19、20、22〜25、27、2
8 被処理粒子の種類、被着処理物の種類及び添加量を種々
変化させて、実施例18と同様の方法で金属化合物が被
着された針状ゲータイト粒子を得た。この時の主要製造
条件を表3に示す。
Examples 19, 20, 22 to 25, 27, 2
8 The needle-like goethite particles to which the metal compound was adhered were obtained in the same manner as in Example 18 by variously changing the type of the particles to be treated, the type of the object to be treated, and the amount of addition. Table 3 shows the main manufacturing conditions at this time.

【0049】<鉄を主成分とする針状金属磁性粒子粉末
の製造> 実施例29〜42、比較例5〜6; 実施例29 実施例16で得られたP、Si、Al化合物が被着され
た針状ゲータイト粒子粉末800gを空気中750℃で
加熱処理してP、Si、Al化合物が被着されている針
状ヘマタイト粒子粉末を得た。上記P、Si、Al化合
物が被着された針状ヘマタイト粒子粉末100gを約1
0 lの容積の回転レトルト還元容器に投入し、駆動回
転させながらH2 ガスを毎分50 lの割合で通気し、
還元温度420℃で還元した。
<Production of Acicular Metal Magnetic Particle Powder Containing Iron as Main Component> Examples 29 to 42, Comparative Examples 5 to 6; Example 29 The P, Si, and Al compounds obtained in Example 16 were adhered. 800 g of the obtained needle-like goethite particle powder was heated at 750 ° C. in the air to obtain a needle-like hematite particle powder on which P, Si, and Al compounds were adhered. About 100 g of the acicular hematite particle powder on which the P, Si,
Into a rotary retort reduction container having a volume of 0 l, and while driving and rotating, aeration of H 2 gas was performed at a rate of 50 l / min.
The reduction was performed at a reduction temperature of 420 ° C.

【0050】還元して得られたP、Si、Alを含有す
る鉄を主成分とする金属磁性粒子粉末は、空気中に取り
出した時急激な酸化を起こさないように、トルエン液中
に浸漬して取り出した。一部を取り出し、トルエンを蒸
発させながら表面に安定な酸化被膜を形成した。
The metal magnetic particle powder mainly containing iron containing P, Si, and Al obtained by reduction is immersed in a toluene solution so as not to cause rapid oxidation when taken out into the air. I took it out. A part was taken out and a stable oxide film was formed on the surface while evaporating toluene.

【0051】このP、Si及びAlを含有する鉄を主成
分とする金属磁性粒子粉末は、電子顕微鏡観察の結果、
平均長軸0.27μm、軸比(長軸径/短軸径)21で
あり、粒度が均斉で樹枝状粒子の少ないものであった。
また、磁気特性は、保磁力Hc 1560 Oe、飽和
磁化σs 159.6emu/gであった。
As a result of observation with an electron microscope, the metal magnetic particle powder containing iron as a main component containing P, Si and Al has the following properties:
The average major axis was 0.27 μm, the axial ratio (major axis diameter / minor axis diameter) was 21, the particle size was uniform, and there were few dendritic particles.
The magnetic properties were a coercive force Hc 1560 Oe and a saturation magnetization s 159.6 emu / g.

【0052】実施例30〜42、比較例5〜6 出発原料の種類、加熱処理温度及び非還元性雰囲気の種
類並びに還元温度及びH2 流量を種々変化させた以外は
実施例29と同様にして鉄を主成分とする針状金属磁性
粒子粉末を得た。この時の主要製造条件及び諸特性を表
4に示す。実施例30乃至42で得られた鉄を主成分と
する針状金属磁性粒子粉末は、いずれも、粒度が均斉で
樹枝状粒子が混在しないものであった。実施例30、3
8及び42並びに比較例5及び6で得られた鉄を主成分
とする針状金属磁性粒子粉末の電子顕微鏡写真(×30
000)をそれぞれ図6乃至図10に示す。
Examples 30 to 42, Comparative Examples 5 to 6 The same procedures as in Example 29 were carried out except that the types of the starting materials, the heat treatment temperature, the type of the non-reducing atmosphere, the reduction temperature and the H 2 flow rate were variously changed. Acicular metal magnetic particle powder containing iron as a main component was obtained. Table 4 shows the main manufacturing conditions and various characteristics at this time. The acicular metal magnetic particles containing iron as a main component and obtained in Examples 30 to 42 were all uniform in particle size and free of dendritic particles. Examples 30 and 3
8 and 42, and electron micrographs (× 30) of the acicular metallic magnetic particles containing iron as a main component and obtained in Comparative Examples 5 and 6.
000) are shown in FIGS. 6 to 10, respectively.

【0053】<塗膜の製造> 実施例43〜56、比較例7〜8; 実施例43 実施例29で得られたP、Si、Alを含有する鉄を主
成分とする針状金属磁性粒子粉末を用いて、適量の分散
剤、塩ビ酢ビ共重合体、熱可塑性ポリウレタン樹脂及び
トルエン、メチルエチルケトン、メチルイソブチルケト
ンからなる混合溶剤を一定の組成に配合した後、ペイン
トコンディショナーで9時間混合分散して磁気塗料とし
た。得られた磁気塗料に上記混合溶剤を加え適性な塗料
粘度になるように調整し、ポリエステルフィルム上に通
常の方法で塗布、磁場配向、乾燥させて塗布膜を製造し
た。この塗布膜はVSMにより外部磁場10KOeの下
で測定した結果、保磁力Hcは1580 Oe、残留磁
束密度Brは3440Gauss、角型Br/Bmは
0.86、S.F.D.は0.496であった。
<Production of Coating Film> Examples 43 to 56, Comparative Examples 7 to 8; Example 43 Acicular metal magnetic particles containing P, Si, and Al obtained in Example 29 and containing iron as a main component. Using a powder, an appropriate amount of a dispersant, a vinyl chloride-vinyl acetate copolymer, a thermoplastic polyurethane resin and a mixed solvent composed of toluene, methyl ethyl ketone, and methyl isobutyl ketone are blended into a fixed composition, and then mixed and dispersed with a paint conditioner for 9 hours. Magnetic paint. The mixed solvent was added to the obtained magnetic paint to adjust the paint viscosity to an appropriate value, and applied on a polyester film by a conventional method, magnetically oriented, and dried to produce a coated film. The coating film was measured by a VSM under an external magnetic field of 10 KOe. As a result, the coercive force Hc was 1580 Oe, the residual magnetic flux density Br was 3440 Gauss, the square Br / Bm was 0.86, and the S.V. F. D. Was 0.496.

【0054】実施例44〜56、比較例7〜8 鉄を主成分とする針状金属磁性粒子粉末の種類を種々変
化させた以外は、実施例43と全く同様にして塗布膜を
製造した。この塗布膜の諸特性を表5に示す。
Examples 44 to 56 and Comparative Examples 7 to 8 Coated films were produced in exactly the same manner as in Example 43 except that the type of the acicular metal magnetic particles containing iron as a main component was variously changed. Table 5 shows the properties of this coating film.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】[0057]

【表3】 [Table 3]

【0058】[0058]

【表4】 [Table 4]

【0059】[0059]

【表5】 [Table 5]

【0060】[0060]

【発明の効果】本発明に係る鉄を主成分とする針状金属
磁性粒子粉末の製造法によれば、前出実施例に示した通
り、粒度が均斉であって樹枝状粒子が混在しておらず、
しかも、大きな軸比(長軸径/短軸径)を有し、且つ、
保磁力分布が優れている鉄を主成分とする針状金属磁性
粒子粉末を得ることが出来るので、高記録密度、高感
度、高出力用磁性粒子粉末として好適である。
According to the method for producing acicular metal magnetic particles containing iron as a main component according to the present invention, as shown in the preceding embodiment, the particle size is uniform and dendritic particles are mixed. No
Moreover, it has a large axis ratio (long axis diameter / short axis diameter), and
Since needle-like metal magnetic particles having iron as a main component and having excellent coercive force distribution can be obtained, they are suitable as magnetic particles for high recording density, high sensitivity and high output.

【0061】[0061]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例2で得られた針状ゲータイト粒子粉末の
粒子構造を示す電子顕微鏡写真(×30000)であ
る。
FIG. 1 is an electron micrograph (× 30000) showing the particle structure of the acicular goethite particle powder obtained in Example 2.

【図2】実施例10で得られた針状ゲータイト粒子粉末
の粒子構造を示す電子顕微鏡写真(×30000)であ
る。
FIG. 2 is an electron micrograph (× 30000) showing the particle structure of the acicular goethite particle powder obtained in Example 10.

【図3】実施例14で得られた針状ゲータイト粒子粉末
の粒子構造を示す電子顕微鏡写真(×30000)であ
る。
FIG. 3 is an electron micrograph (× 30000) showing the particle structure of the acicular goethite particle powder obtained in Example 14.

【図4】比較例1で得られたゲータイト粒子粉末の粒子
構造を示す電子顕微鏡写真(×30000)である。
FIG. 4 is an electron micrograph (× 30000) showing the particle structure of the goethite particle powder obtained in Comparative Example 1.

【図5】比較例2で得られたゲータイト粒子粉末の粒子
構造を示す電子顕微鏡写真(×30000)である。
FIG. 5 is an electron micrograph (× 30000) showing the particle structure of the goethite particle powder obtained in Comparative Example 2.

【図6】実施例30で得られた鉄を主成分とする針状金
属磁性粒子粉末の粒子構造を示す電子顕微鏡写真(×3
0000)である。
FIG. 6 is an electron micrograph (× 3) showing the particle structure of the acicular metal magnetic particle powder containing iron as a main component obtained in Example 30.
0000).

【図7】実施例38で得られた鉄を主成分とする針状金
属磁性粒子粉末の粒子構造を示す電子顕微鏡写真(×3
0000)である。
FIG. 7 is an electron micrograph (× 3) showing the particle structure of the acicular metal magnetic particle powder containing iron as a main component obtained in Example 38.
0000).

【図8】実施例42で得られた鉄を主成分とする針状金
属磁性粒子粉末の粒子構造を示す電子顕微鏡写真(×3
0000)である。
FIG. 8 is an electron micrograph (× 3) showing the particle structure of the acicular metal magnetic particle powder containing iron as a main component obtained in Example 42.
0000).

【図9】比較例5で得られた鉄を主成分とする針状金属
磁性粒子粉末の粒子構造を示す電子顕微鏡写真(×30
000)である。
FIG. 9 is an electron micrograph (× 30) showing the particle structure of the acicular metal magnetic particle powder containing iron as a main component obtained in Comparative Example 5.
000).

【図10】比較例6で得られた鉄を主成分とする針状金
属磁性粒子粉末の粒子構造を示す電子顕微鏡写真(×3
0000)である。
FIG. 10 is an electron micrograph (× 3) showing the particle structure of the acicular metal magnetic particles containing iron as a main component and obtained in Comparative Example 6.
0000).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−128295(JP,A) 特開 昭50−80999(JP,A) 特開 昭60−21307(JP,A) 特公 昭52−42438(JP,B2) 特公 昭58−53688(JP,B2) 特公 昭59−32523(JP,B2) (58)調査した分野(Int.Cl.6,DB名) B22F 9/22 C22C 38/00 303 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-128295 (JP, A) JP-A-50-80999 (JP, A) JP-A-60-21307 (JP, A) 42438 (JP, B2) JP-B-58-53688 (JP, B2) JP-B-59-32523 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) B22F 9/22 C22C 38 / 00 303

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第一鉄塩水溶液と該第一鉄塩水溶液中の
Fe2+に対し当量未満の水酸化アルカリ水溶液又は炭酸
アルカリ水溶液若しくは水酸化アルカリ・炭酸アルカリ
水溶液とを反応して得られた水酸化第一鉄コロイド又は
鉄含有沈澱物コロイドを含む第一鉄塩反応溶液に、酸素
含有ガスを通気することにより上記水酸化第一鉄コロイ
ド又は鉄含有沈澱物コロイドを酸化して針状ゲータイト
核粒子を生成させた後、該針状ゲータイト核粒子を含む
第一鉄塩反応溶液に該第一鉄塩反応溶液中のFe2+に対
し当量以上の炭酸アルカリ水溶液を添加した後酸素含有
ガスを通気して、前記針状ゲータイト核粒子の成長反応
を行うことにより軸比(長軸径/短軸径)が20〜32
針状ゲータイト粒子を生成させ、次いで、該針状ゲー
タイト粒子又は該粒子を加熱脱水して得られた針状ヘマ
タイト粒子を還元性ガス中で加熱還元して鉄を主成分と
する針状金属磁性粒子を得ることを特徴とする鉄を主成
分とする針状金属磁性粒子粉末の製造法。
1. An aqueous solution of a ferrous salt obtained by reacting an aqueous solution of a ferrous salt with an aqueous solution of an alkali hydroxide, an aqueous solution of an alkali carbonate or an aqueous solution of an alkali hydroxide / alkali carbonate, which is less than the equivalent of Fe 2+ in the aqueous solution of a ferrous salt. The ferrous hydroxide colloid or the iron-containing precipitate colloid is oxidized by passing oxygen-containing gas through the ferrous hydroxide reaction solution containing the ferrous hydroxide colloid or the iron-containing precipitate colloid. After the formation of goethite core particles, an aqueous solution of alkali carbonate equivalent to or more than Fe 2+ in the ferrous salt reaction solution is added to the ferrous salt reaction solution containing the acicular goethite core particles, and then oxygen-containing. A gas is passed to allow a growth reaction of the acicular goethite nucleus particles to be performed, so that the axial ratio (major axis diameter / short axis diameter) is 20 to 32.
Then, the acicular goethite particles or the acicular hematite particles obtained by heating and dehydrating the acicular goethite particles are heated and reduced in a reducing gas to obtain an acicular metal having iron as a main component. A method for producing acicular metal magnetic particle powder containing iron as a main component, characterized by obtaining magnetic particles.
【請求項2】 針状ゲータイト粒子又は該粒子を加熱脱
水して得られた針状ヘマタイト粒子をNi化合物、Al
化合物、Si化合物、P化合物、Co化合物、Mg化合
物、B化合物及びZn化合物から選ばれた金属化合物の
1種又は2種以上で被着処理する請求項1記載の鉄を主
成分とする針状金属磁性粒子粉末の製造法。
2. An acicular goethite particle or an acicular hematite particle obtained by heating and dehydrating the particle, a Ni compound, an Al
2. The needle-like iron-based component according to claim 1, wherein the at least one metal compound is selected from the group consisting of a compound, a Si compound, a P compound, a Co compound, a Mg compound, a B compound, and a Zn compound. Manufacturing method of metal magnetic particle powder.
【請求項3】 炭酸アルカリ水溶液を添加する前の針状
ゲータイト核粒子を含む第一鉄塩反応溶液を温度75℃
以上に保持した後60℃以下に降温する請求項1又は請
求項2記載の鉄を主成分とする針状金属磁性粒子粉末の
製造法。
3. A ferrous salt reaction solution containing needle-like goethite core particles before adding an aqueous alkali carbonate solution is heated to a temperature of 75 ° C.
The method for producing needle-like magnetic metal particles containing iron as a main component according to claim 1 or 2, wherein the temperature is lowered to 60 ° C or less after the temperature is maintained as described above.
【請求項4】 炭酸アルカリ水溶液を添加する前の針状
ゲータイト核粒子を含む第一鉄塩反応溶液を非酸化性雰
囲気下60℃以下に保持する請求項1又は請求項2記載
の鉄を主成分とする針状金属磁性粒子粉末の製造法。
4. The method according to claim 1, wherein the ferrous salt reaction solution containing the acicular goethite core particles before the addition of the aqueous alkali carbonate solution is maintained at a temperature of 60 ° C. or lower in a non-oxidizing atmosphere. A method for producing acicular metal magnetic particle powder as a component.
【請求項5】 炭酸アルカリ水溶液を添加する前の針状
ゲータイト核粒子を含む第一鉄塩反応溶液を温度75℃
以上に保持した後60℃以下に降温し、引き続き、非酸
化性雰囲気下に保持する請求項1又は請求項2記載の鉄
を主成分とする針状金属磁性粒子粉末の製造法。
5. A ferrous salt reaction solution containing needle-like goethite core particles before adding an aqueous alkali carbonate solution is heated to a temperature of 75 ° C.
The method for producing needle-like magnetic metal particles containing iron as a main component according to claim 1 or 2, wherein the temperature is lowered to 60 ° C or lower after the above-mentioned holding, and the temperature is subsequently kept in a non-oxidizing atmosphere.
JP21608691A 1991-07-31 1991-07-31 Method for producing acicular metal magnetic particle powder containing iron as a main component Expired - Fee Related JP2882111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21608691A JP2882111B2 (en) 1991-07-31 1991-07-31 Method for producing acicular metal magnetic particle powder containing iron as a main component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21608691A JP2882111B2 (en) 1991-07-31 1991-07-31 Method for producing acicular metal magnetic particle powder containing iron as a main component

Publications (2)

Publication Number Publication Date
JPH0533018A JPH0533018A (en) 1993-02-09
JP2882111B2 true JP2882111B2 (en) 1999-04-12

Family

ID=16683032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21608691A Expired - Fee Related JP2882111B2 (en) 1991-07-31 1991-07-31 Method for producing acicular metal magnetic particle powder containing iron as a main component

Country Status (1)

Country Link
JP (1) JP2882111B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6607751B2 (en) * 2015-09-25 2019-11-20 Dowaエレクトロニクス株式会社 Fe-Co alloy powder, manufacturing method thereof, antenna, inductor, and EMI filter

Also Published As

Publication number Publication date
JPH0533018A (en) 1993-02-09

Similar Documents

Publication Publication Date Title
US5645652A (en) Spindle-shaped magnetic iron-based alloy particles containing cobalt and iron as the main ingredients and process for producing the same
EP0466338A1 (en) Spindle-shaped magnetic iron based alloy particles and process for producing the same
JP3087825B2 (en) Spindle-shaped goethite particle powder, method for producing the same, spindle-shaped metal magnetic particle powder containing iron as a main component obtained using the goethite particle powder as a starting material, and method for producing the same
JP3925640B2 (en) Spindle-like alloy magnetic particle powder for magnetic recording and production method thereof
JP2882111B2 (en) Method for producing acicular metal magnetic particle powder containing iron as a main component
JP2937211B2 (en) Method for producing acicular magnetic iron oxide particles
US4495164A (en) Process for producing acicular magnetite or acicular maghemite
EP0100669A1 (en) Acicular ferromagnetic alloy particles for use in magnetic recording media
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JP2852460B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP3264374B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP4378763B2 (en) Method for producing compound particle powder containing iron as its main component
US5989516A (en) Spindle-shaped geothite particles
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JP3095041B2 (en) Method for producing acicular metal magnetic particle powder containing iron as a main component
JP2970706B2 (en) Method for producing acicular magnetic iron oxide particles
JP2852459B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP3095042B2 (en) Method for producing acicular metal magnetic particle powder containing iron as a main component
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP2970705B2 (en) Method for producing acicular magnetic iron oxide particles
US5238483A (en) Acicular magnetic iron based alloy particles for magnetic recording and method of producing the same
JP2925561B2 (en) Spindle-shaped magnetic iron oxide particles
JP2965606B2 (en) Method for producing metal magnetic powder
JP2935292B2 (en) Method for producing acicular magnetic iron oxide particles
JP3171223B2 (en) Method for producing acicular magnetic particle powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees