JP2869656B2 - 下水の浄化方法 - Google Patents

下水の浄化方法

Info

Publication number
JP2869656B2
JP2869656B2 JP1237696A JP23769689A JP2869656B2 JP 2869656 B2 JP2869656 B2 JP 2869656B2 JP 1237696 A JP1237696 A JP 1237696A JP 23769689 A JP23769689 A JP 23769689A JP 2869656 B2 JP2869656 B2 JP 2869656B2
Authority
JP
Japan
Prior art keywords
tank
treatment
water
treated water
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1237696A
Other languages
English (en)
Other versions
JPH0398699A (ja
Inventor
信夫 貫井
ジェローム・パルトス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deitsuku Deguremon Kk
Original Assignee
Deitsuku Deguremon Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17019158&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2869656(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Deitsuku Deguremon Kk filed Critical Deitsuku Deguremon Kk
Priority to JP1237696A priority Critical patent/JP2869656B2/ja
Publication of JPH0398699A publication Critical patent/JPH0398699A/ja
Application granted granted Critical
Publication of JP2869656B2 publication Critical patent/JP2869656B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【発明の詳細な説明】 〔産業状の利用分野〕 本発明は、下水の浄化方法、詳しくは下水を、好気性
上向流固定床生物処理により浄化するようにした下水の
浄化方法に関する。
〔従来の技術〕
好気性上向流固定床生物処理は、被処理水と空気を共
に固定床の下に導入し、気液混合で固定床の空隙を通過
させることにより被処理水中のBODを着床微生物により
除去するようにした方法である。固定床には、通常、微
生物が付着し易いように多孔質の粒状物質が用いられて
いる。
そして、この処理法には、次のような特長がある。
すなわち、 1)空気が、固定床を通過している間に、微細気泡にな
るので酸素吸収効率が高い。
2)導入空気が最初にBOD濃度の高い被処理水に接触す
ることになるので、除去率が極めて高い。
3)一般にセルロース系のSSは溶解性有機物と違って、
生物処理による酸化分解が困難であるが、固定床の濾過
機能によってSSが捕捉されるので、沈澱分離処理を必要
としない程度の処理水が得られる。
4)従来の活性汚泥法と比べると、処理時間が短く、し
たがって同じ処理能力の場合には、容積、すなわち占有
面積が遥かに小さくて済む。
5)また、濾過機能によって目詰まりが生じたときは、
水と空気により洗浄ができる。
等の特長がある。
しかし、下水処理においては、一般に好気性上向流固
定床生物処理が用いられず、専ら活性汚泥法が用いられ
ている。
〔発明が解決しようとする課題〕
最近の処理状況をみると、都市部の過密化が一層酷く
なりこれに伴って処理すべき下水量も急激に増え、現在
の処理施設では、増大する都市下水に追いつけない状態
に陥っている。仮に、今までの活性汚泥法でこの問題を
解決するとなると、将来的に増大する下水量に見合った
広大な敷地が必要となる。しかし、過密化ではその確保
が難しいため、既存の敷地内で充分間に合うと同時に施
設費やランニングコストが安くつく処理法が求められて
いる。
この問題を解決するには、前記好気性上向流固定床生
物処理が、有望である。しかし、都市下水には、セルロ
ースを主体とする浮遊性固形物(SS)が全BOD(平均約2
00mg/l)の60〜85%占めているので、仮に好気性上向流
固定床生物処理を行うと、固体床へのSS付着が早く、数
分で目詰まりを行こすので事実上運転ができない。した
がって、長所がありながら、下水処理には一般に採用さ
れていないのが現状である。
そこで、本発明の課題は、好気性上向流固定床生物処
理の長所を生かした下水の浄化方法を提供することにあ
る。
〔課題を解決するための手段〕
上記課題を解決するため、本発明は、下水を浄化処理
するに際し、第1段目で凝集沈澱処理を施し、予め下水
中の不溶性固形物(SS)を75%以上低減させた後、続い
て好気性上向流固定床生物処理を施すことを特徴とす
る。
好気性上向流固定床の洗浄時間は通常15〜30分程度で
あるが、被処理水に含まれる不溶性固形物(SS)が多く
なるにしたがって目詰まりのペースが早まり洗浄回数も
増える。この回数が多い程運転に支障を来すことになる
が、2〜3日の割合で洗浄を行うならば、運転にはあま
り影響がない。この程度の洗浄回数を保つには、1段目
の凝集沈澱処理で目詰まりの原因となる不溶性固形物
(SS)をできるだけ除去し、処理水の全BODを80mg/l以
下に保つことが望ましい。これを達成するためには、第
1段目の凝集沈澱処理で少なくとも下水中に含まれる不
溶性固形物(SS)を75%以上除去することが必要にな
る。すなわち、全BODが200mg/lである標準的な下水を基
準にすると、、この中にはSS分が150mg/l、溶解性BODが
50mg/l含まれている。そこで、SSの除去率を75%(この
除去で溶解性BODも30%除去される。)にすると、一次
処理水に残留するSS分が150×0.25=38mg/l、溶解性BOD
が50×0.7=35mg/lとなり、一次処理水の全BODが38+35
=78mg/lとなって80mg/l以下を達成できる。
一般に凝集沈澱処理には、化学薬品を使用する化学凝
集法と、微生物を利用する生物凝集法があるが、本発明
は、いずれも使用できる。化学凝集においては、凝集剤
の組合せと添加量によってSSの除去量も大きく変わり、
添加量を充分にとると95%程度の除去率が見込めるが、
あまり大きくすることは好ましくない。まず、化学凝集
剤の使用量が増え、ランニングコストに影響がでると同
時に使用した凝集剤も余剰汚泥として処理する必要もあ
るので処理被が嵩む。したがって、好ましい除去範囲は
75〜85%程度である。
化学凝集剤には、石灰、塩化鉄、ポリ塩化アルミ、水
溶性高分子等を用いることができる。また、化学凝集剤
の使用料を減らすため、沈澱槽に堆積した余剰汚泥を再
利用することも可能である。この場合、余剰汚泥の一部
を凝集槽に返送して汚泥濃度(MLSS)を0.5〜1g/lに保
つと化学凝集剤の使用量を最小にすることができる。ま
た、沈澱槽の上部に傾斜板を設置すれば、凝集剤の使用
量を少なくしてSSの除去率を向上させることができる。
一方、生物凝集により不溶性固形物を除去する場合に
は、凝集槽の底部より空気を吹き込んで槽内の酸化還元
電位(ORP)を−50mV〜0mV程度に保つと同時に沈澱槽よ
り排出される余剰汚泥の一部を凝集槽に返送して槽内の
汚泥濃度(MLSS)を1.5g/l程度に保ち、BOD容積負荷を
3〜6Kg/m3・日、少なくとも下水の滞留時間を40分以上
にして処理することが望ましい。このようにすることに
より、75%の除去率が確保され、生物凝集法でも化学凝
集法と同様、一次処理水の全BODを80mg/l以下にするこ
とができる。
次工程の好気性上向流固定床生物処理においては、1.
5〜4mm径の多孔質粒を2〜3m積層した固定床の下から空
気と共に固定床の空隙を通過させることが望ましい。多
孔質粒には、ある程度強度があって微生物が付着し易い
ものであればどのようなものでもよく、例えば焼結粘土
粒を用いることができる。この場合、粒径が1.5mmより
小さいと、水頭圧が高くなるので被処理水を供給する送
入ポンプの負荷が大きくなり過ぎて都合が悪く、また4m
mを越えると、SSの捕捉が不十分になるので好ましくな
い。
一次処理水と共に吹き込むプロセス空気の量は、処理
すべきBODとアンモニア性窒素濃度、及び液体への酸素
溶解効率によって定まる。本発明の場合はBODが80mg/l
程度、アンモニア性窒素が15mg/l程度であり、酸素溶解
効率も水温等に依存するが、本発明の場合、水と空気が
共に気液混合となるので、20%〜40%の高効率が望め、
導入する空気量も一次処理水1m3当たり1〜2Nm3で充分
である。空気の量が水1m3当たり2Nm3を越えても処理効
果に影響がないがエネルギーの浪費となるので好ましく
ない。
また、接触時間は、流量を調整して少なくとも12分程
度とることが望ましい。仮に接触時間を12分、固定床の
厚さを2.7mとして空塔速を計算すると、固定床の空隙率
が約50%、空気が占める容積が約3%、生物膜が占める
容積が約2%なので、 2.7×0.45×60/12=6m/hr となる。
そして、このような条件で数日間運転すると、焼結粘
土粒から成る固定床の表面に生物膜が形成される。十分
な生物膜が形成された後は、流入被処理水の全BODが80m
g/l以下なので、処理水のBODも20mg/l以下に処理され
る。その後3日くらいすると生物膜が成長して厚くな
り、固定床による水頭圧損が増加して水の流量が低下し
てくると同時に、空気流量も低下して固定床に目詰まり
が生じてくるので、以後2〜3日に1度の頻度で固定床
の洗浄を行う。洗浄は処理水を一時蓄えた水と洗浄用空
気を固定床の下部に導入して行うが、多孔質粒が僅かに
流動する程度の10〜15m/hrの流速で洗浄水と適量の空気
で約15〜30分間洗浄すれば復旧する。洗浄水はそのまま
放流するわけにいかないので凝集沈澱槽の前の原水槽に
戻す。
〔作用〕
本発明で用いられる第1段目の凝集沈澱槽とその付帯
設備は、一般の下水処理に用いられる最初沈澱池に替わ
るもので、占有面積を比較すると、それ程大きな違いは
ない。しかしながら、第2段目の生物処理の段階ではそ
の違いは極めて大きい。例えば3,600m3/日の下水を処
理する場合は、空塔速を5m/hr、接触時間を16分とする
と、固定床の厚さ3m、断面積35m2の生物処理槽が必要と
なるが、通常法の活性汚泥曝気処理装置では500〜700m2
程度の面積が必要となる上、更に最終沈澱池として曝気
槽のおおよそ1/2程度の面積が必要となる。仮に原水調
整槽その他の付帯設備を勘案しても、本発明の方が、遥
かに敷地面積が少なくて済む。
また、空気量を比較しても、通常の活性汚泥曝気処理
装置の場合は、酸素溶解効率が5〜10%と低いので同じ
原水の場合1m3当たり4〜8m3の空気量が必要となる
が、本発明の場合は、処理水1m3当たり1〜2Nm3で済む
ので生物処理に必要な電力消費量をほぼ1/4に減少させ
ることができる。また化学凝集剤等の必要経費を含めて
もランニングコストは従来の1/2〜1/3程度で済む。
尚、凝集沈澱処理により発生した濃縮汚泥は、消化、
脱水され、最終的に焼却、或いは埋め立て等の処分が成
されるが、これは通常の活性汚泥法における余剰汚泥の
処理と替わるところがない。化学凝集剤を使用した浄化
法では、余剰汚泥が増加する欠点があるが、汚泥自体の
脱水が容易である長所もありそれなりに実用的である。
一方、生物凝集を利用した浄化法の場合は、余剰汚泥の
発生量が従来法と同程度であるが、脱水性が良好なので
処分がし易い。
〔実施例〕 以下、処理能力100m3/日をもつ好気性上向流固定床
生物処理プラントを設計して実験を行ったので、その例
を図面にもとづいて具体的に説明する。なお、実験で
は、上記能力よりも凝集沈澱能力の方が上回ったので、
一次処理水の一部を処理するようにした。
まず最初に、第1図を参照して化学凝集沈澱処理に用
いた装置について説明する。図示の原水槽1は4m3の容
量で、ここで受水した原水は原水ポンプ2によりほぼ定
量的に化学凝集槽3の底部に送られる。化学凝集槽3は
断面積が1m2、有効高さが4.5mの槽で、内部には化学凝
集剤との接触を良好にするため30cm径の整流筒4が非接
触状態で配置されている。その円筒4の上部には上向流
を生じさせる攪拌機5が設置されている。
また、隣接する沈澱槽6は断面積が1.6m2、有効高さ
が4.5mの槽で、下から2mの位置で化学凝集槽3と連通し
ている。沈澱槽6の底部には汚泥が集積し易いように逆
円錐形の濃縮部が形成され、その内部に汚泥掻取機7が
配置されている。また、底部には余剰汚泥を排出する排
出管8が配置されている。排出管8には余剰汚泥を系外
に排出する余剰汚泥ポンプ9と汚泥の一部を化学凝集槽
3の底部に戻す返送ポンプ10が接続され、運転時には余
剰汚泥ポンプ9により槽6内の汚泥が一定量となるよう
に引き抜かれ、その一部が返送ポンプ10により返送され
る。返送量は原水流量の0.5%内外である。一方、上部
には微粒粒子の沈澱を早める傾斜板11,…が配置されて
いる。更に、化学凝集槽3の上部には化学凝集剤を投入
するための配管12a,12bが配され、その始点には化学凝
集剤を貯蔵する槽13a,13bが配置されている。そして、
ここに貯蔵された化学凝集剤は、図示されていないが定
量ポンプにより一定の比率で化学凝集槽3の上部に投入
されるようになっている。また、沈澱槽6の溢流壁14を
越えた一次処理水は後述する好気性上向流固定床生物処
理に廻される。
この装置で凝集剤の組合せとその量を種々変えて、実
験を行ったところ第1表に示すような結果が得られた。
なお、使用した凝集剤は塩化鉄、ポリ塩化アルミ、アニ
オン系の高分子凝集剤である。また、各実験データは4
週間連続して採ったデータの平均値である。
運転条件 原水流量 15〜20m3/hr (350〜700m3/日 攪拌機の回転数 150rpm 化学凝集剤の組合せとその量 第1表に記載 汚泥掻取機の回転数 2rpm 化学凝集槽3の汚泥濃度(MLSS)の範囲 0.5〜1g/l この結果から判断すると、望ましいデータ例は余剰汚
泥の量や凝集剤のコストを考えて実験番号3である。
その結果、SS除去率75%以上、処理水全BOD80mg/l以
下を達成できる条件は、原水流量15〜20m3/hrで高分子
凝集剤0.5mg/l以上、ポリ塩化アルミの場合は10mg/l程
度、塩化鉄の場合60mg/l以上であった。
次いで、第2図を参照して生物凝集処理に用いた装置
について説明する。装置自体は化学凝集に用いたものと
あまり変わらないので、同一部分は同じ符号で示し、異
なる部分についてのみ説明する。なお、原水槽1、沈澱
槽6、及び生物凝集槽23の容量は、化学凝集処理に用い
たものと同じであり、また生物凝集槽23と隣接する沈澱
槽6は、生物凝集槽23の底部と沈澱槽6の中部との間で
連通されている。一方、生物凝集槽23の底部には整流筒
4に替えて空気吹き出しノズル24が配置されている。こ
のノズル24の始端は図示されていないがコンプレッサー
に接続されており、空気吹き込み量を変えることによっ
て生物凝集槽23の酸化還元電位が変えられるようになっ
ている。また、沈澱槽6の底部に堆積された汚泥の一部
と原水槽2に受水された下水は、それぞれ汚泥返送ポン
プ10と原水ポンプ2により生物凝集槽23の上部に返送な
いし供給されるようになっている。
この実施例においても次に示すような条件で実験を行
ったところ第2表に示すような結果が得られた。各実験
データは4週間連続して採ったデータの平均値である。
運転条件 原水流量 3〜6m3/hr (70〜140m3/日) 生物凝集槽内の酸化還元電位(ORP)の範囲 −100〜+100mV 生物凝集槽内の汚泥濃度(MLSS) 0.6〜4g/l 生物凝集槽内の滞留時間 50分 汚泥掻取機の回転数 2rpm その結果、SS除去率75%以上、処理水全BOD80mg/l以
下を達成させる望ましい条件は ORP −50mV〜0mV MLSS濃度 1〜2.5g/l 滞留時間 40〜60分 であることが判った。
次いで、第3図を参照して好気性上向流固定床生物処
理に用いた装置について説明する。一次処理水槽31は前
段で処理された一次処理水を一時蓄える槽で、容量は3
m3である。そして、ここに蓄えられた一次処理水は一次
処理水ポンプ32を用いて槽の底部より好気性上向流固定
床生物処理槽33の底部に供給される。
好気性上向流固定床生物処理槽33は深さが約5mの槽
で、底部からおよそ1m上の位置に濾過床34が設置され、
その上部に接してプロセス用空気吹き込みノズル35が、
また濾過床34の下部に処理すべき水と洗浄用水、および
洗浄用空気をそれぞれ供給ないし噴射するノズル36,37,
38が配置されている。プロセス用空気吹き込みノズル35
と洗浄用空気ノズル38はそれぞれ図示されていないがコ
ンプレッサーに接続されている。濾過床34はその下から
水と空気が通過するが上からは砂または多孔質粒が通過
しないようにした仕切りである。濾過床34の上部には20
cmの厚みに4〜6mm径の砂利が敷かれ、その上に固定床3
9が設けられている。
固定床39は断面積が0.5m2、高さが2.7mで、内部には
2〜3mm径の焼結粘土粒が詰められている。固定床39の
上から1mの位置に溢流壁40が設けられており、その部分
の断面積は1m2にされている。この溢流壁40を越えた二
次処理水は切換弁41を介して処理水受槽42に送られる。
切換弁41は通常処理水受槽側に向けられているが、固定
床に目詰まりが生じたときは前述した原水槽1側に切り
換えられる。処理水受槽42は固定床39の洗浄水を貯留す
る槽として機能するので、好気性上向流固定床生物処理
槽33の2倍程度の容量が必要である。したがって、処理
水受槽42は5m3の容量が持たせられている。その上部に
は溢流壁43が設置され、オーバーフローした二次処理水
が放流される。一方、前述した洗浄用水ノズル37は洗浄
用ポンプ44を介して処理水受槽42の底部に接続されてい
る。
この装置において一次処理水を処理する場合には、ま
ず切換弁41を処理水受槽42側に切り換え、次いで一次処
理水ポンプ32とプロセス用空気ノズル35を稼働させて行
う。また、目詰まりが生じたときは、一次処理水ポンプ
32とプロセス用空気ノズル35を止め、切換弁41を原水槽
1側に切り換え、次いで洗浄用ポンプ44と洗浄用空気ノ
ズル38を稼働させて行う。洗浄は15〜30分間行えば充分
である。
前段の条件で処理した一次処理水を、この装置を用い
て、次に示すような条件で浄化したところ、第3表に示
すような結果が得られた。表中、Cの記号は化学凝集処
理、Bは生物凝集処理を示す。
運転条件 処理水 前段でSSを75%以上除去した一次処理水 処理水空塔速 3〜7m/hr 接触時間 10〜25分 空気空塔速 3〜15Nm/hr その結果、全BOD20mg/l以下で、しかも稼働期間が長
く、ランニングコストが安くつく条件は、 空気吹込量 処理水1m3あたり1〜2Nm3 接触時間 12〜15分 であることが判った。
〔発明の効果〕 以上説明したように、本発明によれば従来用いられる
ことがなかった好気性上向流固定床生物処理を用いて増
大する下水を効果的に処理することができる。また、ラ
ンニングコストも同じ処理能力ならば従来の活性汚泥法
に比べて1/2〜1/3に低減させることができる。
また、公知例として被処理水が下降する形の下降流型
を用いた例もあるが、これと比べても本発明の方が有利
である。すなわち、下降流型ではSSが固定床の表面に捕
捉され、生物膜も上部に多く形成されるため目詰まりも
早く稼働時間が短いが、上向流では固定床の全体にSSの
捕捉と生物膜の形成がなされるので稼働時間が長い。ま
た、下降流型の場合は処理前に曝気を充分行う必要もあ
るが、上向流型では気液混合となって固定床を通過する
ので酸素吸収率が高く、曝気に要する費用を節減でき
る。
【図面の簡単な説明】
第1図〜第3図は本発明の実施に用いられる装置を示し
たもので、第1図は化学凝集処理に用いられる装置の概
略図、第2図は生物凝集処理に用いられる装置の概略
図、第2図は好気性上向流固定床生物処理に用いられる
装置の概略図である。 1…原水槽、2,9,10,32,44…ポンプ、3…化学凝集槽、
4…整流筒、5…攪拌機、6…沈澱槽、7…汚泥掻取
機、8…排出管、11…傾斜板、12a,12b…配管、13a,13b
…化学凝集剤槽、14,40,43…溢流壁、23…生物凝集槽、
24…空気吹き出しノズル、31…一次処理水槽、33…好気
性上向流固定床生物処理槽、34…濾過床、35…プロセス
用空気ノズル、36…処理水用ノズル、37…洗浄用ノズ
ル、38…洗浄用空気ノズル、39…固定床、41…切換弁、
42…処理水受槽。
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C02F 3/06 C02F 1/52 C02F 9/00

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】下水を浄化処理するに際し、第1段目で凝
    集沈澱処理を施し、予め下水中の不溶性固形物(SS)を
    75%以上低減させた後、続いて好気性上向流固定床生物
    処理を施すことを特徴とする下水の浄化方法。
JP1237696A 1989-09-13 1989-09-13 下水の浄化方法 Expired - Lifetime JP2869656B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1237696A JP2869656B2 (ja) 1989-09-13 1989-09-13 下水の浄化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1237696A JP2869656B2 (ja) 1989-09-13 1989-09-13 下水の浄化方法

Publications (2)

Publication Number Publication Date
JPH0398699A JPH0398699A (ja) 1991-04-24
JP2869656B2 true JP2869656B2 (ja) 1999-03-10

Family

ID=17019158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1237696A Expired - Lifetime JP2869656B2 (ja) 1989-09-13 1989-09-13 下水の浄化方法

Country Status (1)

Country Link
JP (1) JP2869656B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4851103B2 (ja) * 2005-03-01 2012-01-11 学校法人常翔学園 酸化亜鉛系トランジスタ

Also Published As

Publication number Publication date
JPH0398699A (ja) 1991-04-24

Similar Documents

Publication Publication Date Title
Zabel Flotation in water treatment
JP2004522576A (ja) 安定化されたフロックを用いるフロキュレーション−デカンテーションによる水処理から得られたスラッジを濃縮する方法及びプラント
US4159945A (en) Method for denitrification of treated sewage
KR100707975B1 (ko) 고농도 유기물 함유 축산폐수의 처리방법
KR100956120B1 (ko) 축산폐수 액비화 및 정화 설비
US6428698B1 (en) Coagulation precipitator
CN111392964B (zh) 一种雨污合流泵站污水的处理方法及其装置
CN103193360A (zh) 一种一体化脱氮除磷曝气生物滤池净水***及净水方法
CN106966554A (zh) 污水处理装置
JP2869656B2 (ja) 下水の浄化方法
JP3456022B2 (ja) 汚水処理設備
KR100385417B1 (ko) 하수 및 오수내 비오디의 고도처리장치
KR20050092154A (ko) 폐수 처리 장치
KR100879788B1 (ko) 초기우수에 의한 오염물질을 효율적으로 제거할 수 있는오폐수 처리장치, 그 방법, 및 시스템
CN113493274A (zh) 一种水体的深度高效净化方法
CN219929837U (zh) 一种工业园废水处理***
JP3270155B2 (ja) 下水処理方法及び処理装置
CN209412042U (zh) 微污染水高效脱氮除磷装置
JPH0231895A (ja) 汚水の処理方法及びその装置
JPH02122891A (ja) 好気性廃水処理装置
KR19990000593A (ko) 슬러지역류형 수처리시스템
KR102085280B1 (ko) 연속 배치식 액상부식법에 의한 고농도 유기오수 처리 방법 및 처리 시스템
KR102008686B1 (ko) 하수처리시스템
JP2912960B2 (ja) 下水の前処理法
Robbins Jr et al. Operation and maintenance of the UOSA water reclamation plant

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20070815

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080815

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees