JP2866474B2 - Solar cell and method of manufacturing the same - Google Patents

Solar cell and method of manufacturing the same

Info

Publication number
JP2866474B2
JP2866474B2 JP2335917A JP33591790A JP2866474B2 JP 2866474 B2 JP2866474 B2 JP 2866474B2 JP 2335917 A JP2335917 A JP 2335917A JP 33591790 A JP33591790 A JP 33591790A JP 2866474 B2 JP2866474 B2 JP 2866474B2
Authority
JP
Japan
Prior art keywords
layer
type semiconductor
group
solar cell
light absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2335917A
Other languages
Japanese (ja)
Other versions
JPH04199881A (en
Inventor
裕子 和田
光佑 池田
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2335917A priority Critical patent/JP2866474B2/en
Publication of JPH04199881A publication Critical patent/JPH04199881A/en
Application granted granted Critical
Publication of JP2866474B2 publication Critical patent/JP2866474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、化合物半導体を用いた太陽電池及びその製
造方法に関し、さらに詳細しくは、II−VI族半導体薄膜
を光透過窓層とする太陽電池及びその製造方法に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a solar cell using a compound semiconductor and a method for manufacturing the same, and more particularly, to a solar cell using a II-VI group semiconductor thin film as a light transmitting window layer. The present invention relates to a battery and a method for manufacturing the battery.

[従来の技術] 近い将来、エネルギー供給が次第に困難になることが
予想され、太陽電池の高効率化、低コスト化と共に安定
性の向上が大きな課題になってきた。なかでも、大面積
化が容易な薄膜系太陽電池は大きな幅な低コスト化が可
能なのでそのエネルギー変換効率の向上と安定性の向上
が強く望まれている。
[Prior Art] In the near future, it is expected that energy supply will gradually become more difficult, and high efficiency and low cost of solar cells and improvement of stability have become major issues. Above all, thin-film solar cells, which can be easily increased in area, can achieve a wide range of cost reductions. Therefore, improvement in energy conversion efficiency and stability is strongly desired.

この薄膜系太陽電池には化合物半導体(II−VI族やI
−III−VI2族)薄膜を用いたものが広く開発されつつあ
る。化合物半導体薄膜を用いた太陽電池の構成は、バン
ドギャップが広くて光を透過する窓層としてのn型のII
−VI族化合物半導体層と、バンドギャップが狭くて光を
吸収する吸収層としてのp型のII−VI族あるいはI−II
I−VI2化合物半導体層を積層したヘテロ接合などが用い
られる。
Compound semiconductors (II-VI and I-VI groups)
-III-VI Group 2 ) Thin films using thin films are being widely developed. The structure of a solar cell using a compound semiconductor thin film has an n-type II as a window layer that has a wide band gap and transmits light.
A group VI compound semiconductor layer and a p-type group II-VI or I-II as an absorption layer having a narrow band gap and absorbing light.
Such heterojunction formed by laminating a I-VI 2 compound semiconductor layer is used.

構成としては、例えばガラス基板上に順次Mo金属層、
p型CuInSe2層、n型CdS層、透明導電層であるITO(Ind
ium Tin Oxide)層を積層したものがある。あるいは、
例えばガラス基板上に順次スクリーン印刷と焼成による
n型CdS層、p型CdTe層、金属電極層を積層した構成も
ある。何れにしてもp型半導体層はCu、Agなどを主成分
とするか(CuInSe2など)、これらを不純物アクセプタ
ーとして含有する(CdTe:Cuなど)。
As a configuration, for example, a Mo metal layer sequentially on a glass substrate,
p-type CuInSe 2 layer, n-type CdS layer, ITO (Ind
(TiN Oxide) layer. Or,
For example, there is a configuration in which an n-type CdS layer, a p-type CdTe layer, and a metal electrode layer are sequentially laminated on a glass substrate by screen printing and firing. In any case, the p-type semiconductor layer contains Cu, Ag, or the like as a main component (such as CuInSe 2 ), or contains these as impurity acceptors (such as CdTe: Cu).

[発明が解決しようとする課題] しかしながら前記した従来技術では、Cu、Agなどの金
属元素はCdS、CdSeはじめn型II−VI族半導体との親和
性に優れるため、この中に拡散移動し易く、pn接合特性
を損ねると共に半導体層を電気的に高抵抗にし、結局太
陽電池の安定性を損なう主原因となる。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional technology, metal elements such as Cu and Ag have excellent affinity with n-type II-VI group semiconductors such as CdS and CdSe, so that they are easily diffused and moved therein. In addition, the pn junction characteristics are impaired and the semiconductor layer is made to have a high electrical resistance, which eventually becomes a main cause of impairing the stability of the solar cell.

この様に、p型半導体の主成分あるいはアクセプター
不純物としてCu、Agなどの金属元素を含有する太陽電池
では、相接するII−VI族化合物で成るn型半導体層中に
これら金属元素が拡散し特性を劣化させる主原因となっ
ている。
As described above, in a solar cell containing a metal element such as Cu or Ag as a main component of a p-type semiconductor or an acceptor impurity, these metal elements diffuse into an n-type semiconductor layer made of an adjacent II-VI group compound. It is the main cause of deteriorating characteristics.

本発明は、前記従来技術の課題を解決するため、前記
金属元素のn型半導体層への拡散を防ぎ、安定性を向上
した太陽電池及びその製造方法を提供することを目的と
する。
An object of the present invention is to provide a solar cell with improved stability and a method for manufacturing the same, in which the metal element is prevented from diffusing into the n-type semiconductor layer, in order to solve the problems of the conventional technology.

[課題を解決するための手段] 前記目的を達成するため、本発明の太陽電池は、基板
上に少なくとも金属電極層、p型半導体の光吸収層、n
型半導体の窓層および透明導電層が順次形成された太陽
電池であって、前記n型半導体の窓層がII−VI族半導体
を主成分とする薄膜で形成され、かつ前記窓層の少なく
とも前記p型半導体の光吸収層との界面近傍にIV族元素
が分散して存在することを特徴とする。
[Means for Solving the Problems] To achieve the above object, the solar cell of the present invention comprises at least a metal electrode layer, a light absorbing layer of a p-type semiconductor, n
A solar cell in which a window layer of a type semiconductor and a transparent conductive layer are sequentially formed, wherein the window layer of the n-type semiconductor is formed of a thin film containing a II-VI group semiconductor as a main component, and at least the window layer It is characterized in that the group IV element is dispersed near the interface between the p-type semiconductor and the light absorbing layer.

前記本発明の構成においては、IV族元素がC、Siおよ
びGeから選ばれる少なくとも一つの元素であることが好
ましい。
In the configuration of the present invention, the group IV element is preferably at least one element selected from C, Si and Ge.

また前記本発明の構成においては、n型半導体中のVI
族元素の存在する濃度が、ピーク濃度の位置で0.01〜10
モル%であることが好ましい。
Further, in the configuration of the present invention, VI in the n-type semiconductor
The concentration of the group element is 0.01 to 10 at the peak concentration.
Preferably it is mol%.

次に前記本発明の太陽電池の製造方法は、基板上に少
なくとも金属電極層、p型半導体の光吸収層、n型半導
体の窓層および透明導電層が形成された太陽電池の製造
方法であって、前記金属電極層を設けた基板上に、p型
半導体の光吸収層を形成し、その上に前記光吸収層に接
する少なくとも界面近傍にIV族元素を添加分散したn型
II−VI族半導体を主成分とする窓層を形成し、さらにそ
の上に透明導電層を形成することを特徴とする。
Next, the method for manufacturing a solar cell of the present invention is a method for manufacturing a solar cell in which at least a metal electrode layer, a light absorbing layer of a p-type semiconductor, a window layer of an n-type semiconductor, and a transparent conductive layer are formed on a substrate. Forming a light absorbing layer of a p-type semiconductor on the substrate provided with the metal electrode layer, and further adding and dispersing a group IV element at least in the vicinity of the interface in contact with the light absorbing layer;
A window layer containing a II-VI group semiconductor as a main component is formed, and a transparent conductive layer is further formed thereon.

前記本発明方法の構成においては、IV族元素の添加方
法として、イオン注入法またはプラズマCVD法を用いる
ことが好ましい。
In the structure of the method of the present invention, it is preferable to use an ion implantation method or a plasma CVD method as a method for adding a group IV element.

[作用] 前記した本発明の構成によれば、n型半導体の窓層が
II−VI族半導体を主成分とする薄膜で形成され、かつ前
記窓層の少なくとも前記p型半導体の光吸収層との界面
近傍にIV族元素が分散して存在するので、p型半導体層
に接するn型半導体層中に配置されたIV族元素によりp
型半導体層中の金属元素のn型半導体層中への拡散が妨
げられ、しかもIV族元素であるから電気的特性に対する
障害もなく、高効率化を妨げずして著しく安定性を高め
ることができる。
[Operation] According to the configuration of the present invention described above, the window layer of the n-type semiconductor is
Since a group IV element is dispersed and present at least in the vicinity of the interface between the window layer and the light absorbing layer of the p-type semiconductor, the p-type semiconductor layer The group IV element disposed in the n-type semiconductor layer in contact with
Diffusion of the metal element in the n-type semiconductor layer in the n-type semiconductor layer is hindered, and since it is a group IV element, there is no hindrance to the electrical characteristics, and it is possible to significantly increase the stability without hindering high efficiency. it can.

また、前記IV族元素がC、SiおよびGeから選ばれる少
なくとも一つの元素であるという本発明の好ましい構成
によれば、p型半導体層中の金属元素のn型半導体層中
への拡散をさらに効果的に防ぐことができる。
According to the preferred configuration of the present invention in which the group IV element is at least one element selected from C, Si and Ge, the diffusion of the metal element in the p-type semiconductor layer into the n-type semiconductor layer is further increased. Can be effectively prevented.

また前記n型半導体中のVI族元素の存在する濃度が、
ピーク濃度の位置で0.01〜10モル%であるいう本発明の
好ましい構成によれば、p型半導体層中の金属元素のn
型半導体層中への拡散をさらに効果的に防ぐことができ
る。
The concentration of the group VI element in the n-type semiconductor is:
According to the preferred configuration of the present invention in which the concentration is 0.01 to 10 mol% at the position of the peak concentration, n of the metal element in the p-type semiconductor layer
Diffusion into the type semiconductor layer can be more effectively prevented.

次に前記本発明方法によれば、金属電極層を設けた基
板上に、p型半導体の光吸収層を形成し、その上に前記
光吸収層に接する少なくとも界面近傍にIV族元素を添加
分散したn型II−VI族半導体を主成分とする窓層を形成
し、さらにその上に透明導電層を形成するので、本発明
の太陽電池を効率良く合理的に製造することができる。
Next, according to the method of the present invention, a p-type semiconductor light absorbing layer is formed on a substrate provided with a metal electrode layer, and a group IV element is added and dispersed at least in the vicinity of the interface in contact with the light absorbing layer. Since the window layer mainly composed of the n-type II-VI group semiconductor is formed and the transparent conductive layer is further formed thereon, the solar cell of the present invention can be efficiently and rationally manufactured.

前記、IV族元素の添加方法としてイオン注入法または
プラズマCVD法を用いるという本発明方法の好ましい構
成によれば、前記光吸収層に接する少なくとも界面近傍
にIV族元素を効率良く添加分散することができる。
According to the preferred configuration of the method of the present invention in which the ion implantation method or the plasma CVD method is used as the method for adding the group IV element, the group IV element can be efficiently added and dispersed at least in the vicinity of the interface in contact with the light absorption layer. it can.

[実施例] 以下、本発明の一実施例を用いてさらに具体的に説明
する。なお本発明は下記の実施例に限定されるものでは
ない。
Example Hereinafter, a more specific description will be given using an example of the present invention. The present invention is not limited to the following examples.

本実施例の太陽電池の構成は、第1図に示す様に、金
属電極層2を設けた基板1上に順次積層した、たとえば
CuやAgなどの不純物を含有するCdTeなどのII−VI族化合
物、あるいはCuやAgなどを主成分とするCuInSe2などの
I−III−VI2族化合物で成るp型半導体の光吸収層3、
CdあるいはZnのカルコゲナイドを主成分とするn型II−
VI化合物半導体の窓層5、透明導電層6という構成から
なる。そして、n型半導体の少なくとも表面層4、すな
わちp型半導体との界面近傍の層中にIV族元素、例えば
C、Si、Geなどを添加分散されている。IV族元素のn型
半導体中での添加濃度は厚さ方向で違っていても良く、
界面近傍で高くした構成が実現容易であり、最高濃度の
部分で0.01〜10モル%であることが効果的である。n型
層の膜厚は0.1〜10μm、p型層の膜厚は0.5〜10μmが
普通である。
The configuration of the solar cell of this embodiment is, as shown in FIG. 1, sequentially laminated on a substrate 1 provided with a metal electrode layer 2, for example,
Light absorption layer 3 of a p-type semiconductor made of a II-VI group compound such as CdTe containing impurities such as Cu or Ag, or an I-III-VI group 2 compound such as CuInSe 2 containing Cu or Ag as a main component. ,
N-type II- containing Cd or Zn chalcogenide as the main component
It consists of a window layer 5 of a VI compound semiconductor and a transparent conductive layer 6. A group IV element, for example, C, Si, Ge, or the like is added and dispersed in at least the surface layer 4 of the n-type semiconductor, that is, a layer near the interface with the p-type semiconductor. The addition concentration of the group IV element in the n-type semiconductor may be different in the thickness direction,
It is easy to realize a configuration in which the height is high in the vicinity of the interface, and it is effective that the concentration is 0.01 to 10 mol% at the highest concentration portion. The thickness of the n-type layer is usually 0.1 to 10 μm, and the thickness of the p-type layer is usually 0.5 to 10 μm.

この構成の太陽電池では太陽光照射の下、100℃近い
温度でもp型半導体層の構成要素である金属元素がn型
半導体層へ拡散しないので劣化が極めて小さい。
In the solar cell having this configuration, even under a temperature close to 100 ° C. under the irradiation of sunlight, the metal element which is a component of the p-type semiconductor layer does not diffuse into the n-type semiconductor layer, so that the deterioration is extremely small.

次に本発明の製造方法の一実施例を示す。Mo層を設け
たガラス基板上に、5μm厚のCuInSe2層、1μm厚の
n型CdS層、この膜のCuInSe2層との界面層にCを母体Cd
Sに対してピーク濃度約1%、ピーク位置が界面からの
距離約10nmであるようにイオン注入法によって添加分散
しておき、さらにITO(Indium Tin Oxide)層を積層す
る。IV族元素の添加はプラズマCVD法などによっても良
い。
Next, an embodiment of the production method of the present invention will be described. On a glass substrate provided with a Mo layer, a CuInSe 2 layer having a thickness of 5 μm, an n-type CdS layer having a thickness of 1 μm, and C as a base Cd in an interface layer between the film and the CuInSe 2 layer.
Addition and dispersion are performed by ion implantation so that the peak concentration of S is about 1% and the peak position is about 10 nm from the interface, and an ITO (Indium Tin Oxide) layer is further laminated. The group IV element may be added by a plasma CVD method or the like.

このようにして得られた太陽電池は、AM1.5の太陽光
照射下12%の変換効率を有し、1年後でも11%以上の効
率を有する。
The solar cell thus obtained has a conversion efficiency of 12% under sunlight irradiation of AM1.5, and has an efficiency of 11% or more even after one year.

これに対して、Cを添加してない従来の太陽電池の構
成では、1年後の効率は10%以下に減ずる。
On the other hand, in the configuration of the conventional solar cell to which C is not added, the efficiency after one year is reduced to 10% or less.

以上説明した通り、本実施例によれば、安定性の非常
に高い太陽電池を実現することが可能となる。この太陽
電池は薄膜形成であるから安価であり、大幅な実用化促
進もはかれる。
As described above, according to the present embodiment, it is possible to realize a solar cell with extremely high stability. This solar cell is inexpensive because it is formed as a thin film, and the practical application is greatly promoted.

[発明の効果] 以上説明した通り本発明によれば、n型半導体の窓層
がII−VI族半導体を主成分とする薄膜で形成され、かつ
前記窓層の少なくとも前記p型半導体の光吸収層との界
面近傍にIV族元素が分散して存在するので、p型半導体
層に接するn型半導体層中に配置されたIV族元素により
p型半導体層中の金属元素のn型半導体層中への拡散が
妨げられ、しかもIV族元素であるから電気的特性に対す
る障害もなく、高効率化を妨げずして著しく安定性を高
めることができる。
[Effects of the Invention] As described above, according to the present invention, the window layer of an n-type semiconductor is formed of a thin film containing a II-VI group semiconductor as a main component, and the window layer absorbs at least the light of the p-type semiconductor. Since the group IV element is dispersed near the interface with the layer, the metal element in the p-type semiconductor layer is dispersed in the n-type semiconductor layer by the group IV element disposed in the n-type semiconductor layer in contact with the p-type semiconductor layer. In addition, since it is a group IV element, there is no hindrance to electrical characteristics, and the stability can be significantly improved without hindering high efficiency.

次に前記本発明方法によれば、金属電極層を設けた基
板上に、p型半導体の光吸収層を形成し、その上に前記
光吸収層に接する少なくとも界面近傍にIV族元素を添加
分散したn型II−VI族半導体を主成分とする窓層を形成
し、さらにその上に透明導電層を形成するので、本発明
の太陽電池を効率良く合理的に製造することができる。
Next, according to the method of the present invention, a p-type semiconductor light absorbing layer is formed on a substrate provided with a metal electrode layer, and a group IV element is added and dispersed at least in the vicinity of the interface in contact with the light absorbing layer. Since the window layer mainly composed of the n-type II-VI group semiconductor is formed and the transparent conductive layer is further formed thereon, the solar cell of the present invention can be efficiently and rationally manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例の太陽電池の概略断面図を
示す。 1……基板、2……金属電極層、3……p型半導体光吸
収層、4……IV族元素添加層、5……n型半導体窓層、
6……透明導電層。
FIG. 1 is a schematic sectional view of a solar cell according to one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... board | substrate, 2 ... metal electrode layer, 3 ... p-type semiconductor light absorption layer, 4 ... group IV element addition layer, 5 ... n-type semiconductor window layer,
6 ... Transparent conductive layer.

フロントページの続き (56)参考文献 特開 昭64−28967(JP,A) 特開 平1−111380(JP,A) 特開 平2−3992(JP,A) 特開 平2−181976(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 31/04Continuation of front page (56) References JP-A-64-28967 (JP, A) JP-A-1-111380 (JP, A) JP-A-2-3992 (JP, A) JP-A-2-181976 (JP) , A) (58) Fields surveyed (Int. Cl. 6 , DB name) H01L 31/04

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に少なくとも金属電極層、p型半導
体の光吸収層、n型半導体の窓層および透明導電層が順
次形成された太陽電池であって、前記n型半導体の窓層
がII−VI族半導体を主成分とする薄膜で形成され、かつ
前記窓層の少なくとも前記p型半導体の光吸収層との界
面近傍にIV族元素が分散して存在することを特徴とする
太陽電池。
1. A solar cell comprising a substrate on which at least a metal electrode layer, a light absorbing layer of a p-type semiconductor, a window layer of an n-type semiconductor and a transparent conductive layer are sequentially formed, wherein the window layer of the n-type semiconductor is A solar cell formed of a thin film containing a II-VI semiconductor as a main component, wherein a group IV element is dispersed at least in the vicinity of an interface between the window layer and a light absorbing layer of the p-type semiconductor. .
【請求項2】IV族元素がC、SiおよびGeから選ばれる少
なくとも一つの元素である請求項1記載の太陽電池。
2. The solar cell according to claim 1, wherein the group IV element is at least one element selected from C, Si and Ge.
【請求項3】n型半導体中のVI族元素の存在する濃度
が、ピーク濃度の位置で0.01〜10モル%である請求項1
または2記載の太陽電池。
3. The method according to claim 1, wherein the concentration of the group VI element in the n-type semiconductor is 0.01 to 10 mol% at the position of the peak concentration.
Or the solar cell according to 2.
【請求項4】基板上に少なくとも金属電極層、p型半導
体の光吸収層、n型半導体の窓層および透明導電層が形
成された太陽電池の製造方法であって、前記金属電極層
を設けた基板上に、p型半導体の光吸収層を形成し、そ
の上に前記光吸収層に接する少なくとも界面近傍にIV族
元素を添加分散したn型II−VI族半導体を主成分とする
窓層を形成し、さらにその上に透明導電層を形成するこ
とを特徴とする太陽電池の製造方法。
4. A method for manufacturing a solar cell comprising a substrate and at least a metal electrode layer, a light absorbing layer of a p-type semiconductor, a window layer of an n-type semiconductor, and a transparent conductive layer formed on the substrate, wherein the metal electrode layer is provided. A light absorbing layer of a p-type semiconductor formed on a substrate, and a window layer mainly composed of an n-type II-VI semiconductor in which a group IV element is added and dispersed at least in the vicinity of an interface in contact with the light absorbing layer. And a transparent conductive layer is further formed thereon.
【請求項5】IV族元素の添加方法がイオン注入法または
プラズマCVD法である請求項4記載の太陽電池の製造方
法。
5. The method for manufacturing a solar cell according to claim 4, wherein the method of adding the group IV element is an ion implantation method or a plasma CVD method.
JP2335917A 1990-11-29 1990-11-29 Solar cell and method of manufacturing the same Expired - Fee Related JP2866474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2335917A JP2866474B2 (en) 1990-11-29 1990-11-29 Solar cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2335917A JP2866474B2 (en) 1990-11-29 1990-11-29 Solar cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04199881A JPH04199881A (en) 1992-07-21
JP2866474B2 true JP2866474B2 (en) 1999-03-08

Family

ID=18293811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2335917A Expired - Fee Related JP2866474B2 (en) 1990-11-29 1990-11-29 Solar cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2866474B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437372B1 (en) * 2000-01-07 2002-08-20 Agere Systems Guardian Corp. Diffusion barrier spikes for III-V structures

Also Published As

Publication number Publication date
JPH04199881A (en) 1992-07-21

Similar Documents

Publication Publication Date Title
RU2435250C2 (en) Front contact with high-work function tco for use in photovoltaic device and method of making said contact
US5990415A (en) Multilayer solar cells with bypass diode protection
US20170352772A1 (en) Photovoltaic Devices Including an Interfacial Layer
US4122214A (en) Solar cell collector and method for producing same
US20100180935A1 (en) Multiple band gapped cadmium telluride photovoltaic devices and process for making the same
US20050151131A1 (en) Polycrystalline thin-film solar cells
KR20120063324A (en) Bifacial solar cell
JPS6262073B2 (en)
KR20170143074A (en) Bifacial silicon solar cell and method for manufacturing the same
CN219917178U (en) Lattice passivation contact structure, solar cell, assembly and system
CA1216919A (en) Inverted, optically enhanced solar cell
JP2866474B2 (en) Solar cell and method of manufacturing the same
JP3606886B2 (en) Solar cell and manufacturing method thereof
JP2866475B2 (en) Solar cell and method of manufacturing the same
JP2896793B2 (en) Method for manufacturing photovoltaic device
JPH0463550B2 (en)
JP2968404B2 (en) Method for manufacturing photovoltaic device
JPS6074685A (en) Photovoltaic device
JPH11163376A (en) Thin-film solar cell
TW201414001A (en) Intentionally-doped cadmium oxide layer for solar cells
JP3049889B2 (en) Solar cell and manufacturing method thereof
JPH04336472A (en) Solar cell and its manufacture
JP3133449B2 (en) Solar cell
JP3069158B2 (en) Solar cell and method of manufacturing the same
EP3704745B1 (en) Layer structures for photovoltaic devices and photovoltaic devices including the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees