JPH11163376A - Thin-film solar cell - Google Patents

Thin-film solar cell

Info

Publication number
JPH11163376A
JPH11163376A JP9325801A JP32580197A JPH11163376A JP H11163376 A JPH11163376 A JP H11163376A JP 9325801 A JP9325801 A JP 9325801A JP 32580197 A JP32580197 A JP 32580197A JP H11163376 A JPH11163376 A JP H11163376A
Authority
JP
Japan
Prior art keywords
film
group
solar cell
semiconductor thin
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9325801A
Other languages
Japanese (ja)
Inventor
Takayuki Negami
卓之 根上
Shigeo Hayashi
茂生 林
Takahiro Wada
隆博 和田
Naoki Obara
直樹 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9325801A priority Critical patent/JPH11163376A/en
Publication of JPH11163376A publication Critical patent/JPH11163376A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin-film solar cell which has high conversion efficiency, even when a light-absorbing layer is made thin by providing constitution of a solar battery which suppresses extinction of carriers and reduction of a light absorption quantity due to recoupling at a reverse electrode accompanying the thickness reduction of the light-absorbing layer. SOLUTION: As a semiconductor thin film 3 of <=1 μm in film thickness which consists of group-I, group-III, and group-VI elements for forming a light- absorbing layer using In and Ga as group-III elements, a semiconductor thin film is used which has a distribution, varying in the relative value of the composition ratio of In and Ga along the film thickness. In particular, a constitution using a semiconductor thin film having a distribution decreasing in the composition ratio of Ga occupying the group-III elements from the side of an electrode film 2 to the side of window layers 4 and 5 is effective. Consequently, extinction of carriers due to recoupling on the reverse surface is suppressed and decrease in the efficiency of a solar battery due to thickness reduction of the light- absorbing layer 3 can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はエネルギー変換効率
が高く、消費資源の少ない太陽電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell having high energy conversion efficiency and consuming less resources.

【0002】[0002]

【従来の技術】I族、III族とVI族元素からなる化合物半
導体薄膜(カルコパイライト構造半導体薄膜)であるC
uInSe2(CIS)あるいはGaを固溶したCu(I
n,Ga)Se2(CIGS)は光吸収係数(α>105
-1)が大きいことから、約1μmの膜厚で太陽光を十
分に吸収することが可能である。従って、半導体を構成
する原材料を少なくできるという利点を有しており、大
面積を必要とするエネルギー用太陽電池の光吸収層に適
している。しかし、現状では、CISあるいはCIGS
太陽電池においてのCISあるいはCIGS膜の膜厚は
約2μmとなっている。この理由としては、膜厚を厚く
することによりCIGS膜の結晶粒を成長させ、結晶粒
界の密度を減少させるためである。結晶粒界は一般に光
励起されたキャリアを捕獲し再結合させる中心となると
考えられる。しかし、CIGS膜に関しては結晶粒界の
機能は明らかではない。
2. Description of the Related Art A compound semiconductor thin film (chalcopyrite structure semiconductor thin film) composed of group I, group III and group VI elements is used.
uInSe 2 (CIS) or Cu (I)
n, Ga) Se 2 (CIGS) has a light absorption coefficient (α> 10 5 c)
Since m −1 ) is large, it is possible to sufficiently absorb sunlight with a film thickness of about 1 μm. Therefore, it has the advantage of being able to reduce the amount of raw materials constituting a semiconductor, and is suitable for a light absorption layer of an energy solar cell requiring a large area. However, at present, CIS or CIGS
The thickness of the CIS or CIGS film in the solar cell is about 2 μm. This is because the crystal grains of the CIGS film are grown by increasing the film thickness, and the density of the crystal grain boundaries is reduced. Grain boundaries are generally considered to be centers for capturing and recombining photoexcited carriers. However, regarding the CIGS film, the function of the crystal grain boundary is not clear.

【0003】[0003]

【発明が解決しようとする課題】太陽電池の光吸収層の
膜厚を薄くすると、原材料を少なくできるだけでなく、
太陽電池製造のために要するプロセス時間を短くでき
る。従って、原材料の消費量の減少とプロセス時間の短
縮による製造に要するエネルギーの減少により太陽電池
の低コスト化を図ることができる。さらに、プロセス時
間の短縮による量産性の向上による低コスト化を図るこ
とができる。以上から、光吸収層の薄膜化は工業的に大
きな利点がある。しかし、CIGS膜の厚さを1μm以
下にすると、以下の点が変換効率の低下に寄与してく
る。
When the thickness of the light absorbing layer of the solar cell is reduced, not only can the raw materials be reduced,
The process time required for manufacturing a solar cell can be reduced. Therefore, the cost of the solar cell can be reduced by reducing the consumption of raw materials and the energy required for manufacturing by shortening the process time. Furthermore, cost reduction can be achieved by improving mass productivity by shortening the process time. From the above, thinning the light absorption layer has a great industrial advantage. However, when the thickness of the CIGS film is set to 1 μm or less, the following points contribute to a decrease in conversion efficiency.

【0004】(1) 結晶粒界の密度の増加 (2) 裏面電極での再結合 (3) 光吸収量の低下 この中で、(1)の結晶粒界はその機能が明らかではない
こととCIGSの結晶粒が柱状であり、キャリアは結晶
粒に沿って移動することから結晶粒界の影響を受けにく
いことを考慮すると、結晶粒界の密度の増加は効率の低
下にあまり影響を与えないと考えられる。薄膜化による
問題は主に(2)裏面電極の再結合と(3)光吸収量の低下で
ある。(2)裏面電極の再結合の問題は以下の通りであ
る。CIGS膜の拡散長はほぼ1.5μm以上であるこ
とが報告されている。拡散長が膜厚以上になると裏面電
極での再結合により消滅する光励起キャリアが増加す
る。CIGS膜と窓層で形成されるpn接合による拡散
電位を介して外部に取り出される光励起キャリアが光電
流となるため、裏面電極で再結合した光励起キャリアは
光電流に寄与しない。従って、光電流が減少する。次に
(3)光吸収量の低下では、薄膜化により十分に太陽光が
吸収されなくなるため、光電流が減少する。また、光起
電圧は光電流と逆方向飽和電流の比の対数に比例するた
め、光電流が大幅に減少すると起電圧も低下することに
なる。
(1) Increasing the density of the grain boundaries (2) Recombination at the back electrode (3) Decreasing the amount of light absorption Among them, the function of the grain boundaries in (1) is not clear. Taking into account that the crystal grains of CIGS are columnar and carriers are less likely to be affected by the grain boundaries because the carriers move along the crystal grains, an increase in the density of the grain boundaries does not significantly affect the decrease in efficiency. it is conceivable that. The problems caused by thinning are mainly (2) recombination of the back electrode and (3) reduction of the light absorption. (2) The problem of recombination of the back electrode is as follows. It has been reported that the CIGS film has a diffusion length of about 1.5 μm or more. When the diffusion length exceeds the film thickness, the number of photoexcited carriers that disappear by recombination at the back electrode increases. Since the photoexcited carriers extracted outside via the diffusion potential due to the pn junction formed by the CIGS film and the window layer become photocurrent, the photoexcited carriers recombined at the back electrode do not contribute to the photocurrent. Therefore, the photocurrent decreases. next
(3) When the amount of light absorption is reduced, the solar light is not sufficiently absorbed by the thinning, so that the photocurrent is reduced. Also, the photovoltaic voltage is proportional to the logarithm of the ratio of the photocurrent to the reverse saturation current, so that if the photocurrent decreases significantly, the electromotive voltage also decreases.

【0005】太陽電池の光吸収層となるCIGS膜を1
μm以下の膜厚に薄膜化して工業的利点を得るには、以
上の2つの問題点を解決する必要がある。
A CIGS film serving as a light absorbing layer of a solar cell is
In order to obtain an industrial advantage by reducing the thickness to a thickness of less than μm, it is necessary to solve the above two problems.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するた
め、本発明は膜厚が1μm以下のI族とIII族とVI族元素
からなる半導体薄膜を光吸収層に用いる薄膜太陽電池を
提供している。さらに、本発明では、光吸収層となる半
導体薄膜の薄膜化による変換効率の低下を防ぐ構成を提
供している。
In order to solve the above-mentioned problems, the present invention provides a thin-film solar cell using a semiconductor thin film having a film thickness of 1 μm or less and comprising a group I, group III or group VI element as a light absorbing layer. ing. Further, the present invention provides a configuration for preventing a decrease in conversion efficiency due to a reduction in the thickness of a semiconductor thin film serving as a light absorption layer.

【0007】はじめに、光吸収層となる半導体薄膜の薄
膜化による裏面電極での再結合の増加を防ぐ太陽電池の
構成として以下の発明を提供している。
First, the following invention is provided as a configuration of a solar cell which prevents an increase in recombination at a back electrode due to a thinning of a semiconductor thin film serving as a light absorbing layer.

【0008】第1の発明は、III族元素としてIn及び
Gaを用いる光吸収層となるI族とIII族とVI族元素から
なる半導体薄膜において、GaのIII族元素に占める割
合が40%以上である、すなわちGa/(In+Ga)
≧0.4である半導体薄膜を用いる薄膜太陽電池の構成
である。
According to a first aspect of the present invention, in a semiconductor thin film comprising a group I, a group III, and a group VI element serving as a light absorption layer using In and Ga as a group III element, the ratio of Ga to the group III element is 40% or more. That is, Ga / (In + Ga)
This is a configuration of a thin film solar cell using a semiconductor thin film satisfying ≧ 0.4.

【0009】また、VI族元素としてSe及びSを用いる
光吸収層となるI族とIII族とVI族元素からなる半導体薄
膜において、SのVI族元素に占める割合が40%以上で
ある、すなわちS/(Se+S)≧0.4である半導体薄
膜を用いる薄膜太陽電池の構成も有効である。
Further, in a semiconductor thin film made of a group I, group III and group VI element which is a light absorbing layer using Se and S as group VI elements, the ratio of S to the group VI element is 40% or more. A configuration of a thin-film solar cell using a semiconductor thin film satisfying S / (Se + S) ≧ 0.4 is also effective.

【0010】第2の発明は、III族元素としてIn及び
Gaを用いる光吸収層となるI族とIII族とVI族元素から
なる半導体薄膜において、膜の厚さ方向に対しInとG
aの組成比の相対値が変化する分布を有する半導体薄膜
を用いる薄膜太陽電池の構成である。特に、電極膜と光
吸収層となる半導体薄膜と窓層となる半導体薄膜を積層
してなる構成を含む薄膜太陽電池において、III族元素
としてIn及びGaを用いる光吸収層となるI族とIII族
とVI族元素からなる半導体薄膜の膜の厚さ方向に対し、
III族元素中に占めるGaの組成比が電極膜側から窓層
側へと減少する分布を有する半導体薄膜を用いる薄膜太
陽電池の構成が好ましい。
According to a second aspect of the present invention, there is provided a semiconductor thin film comprising a group I, a group III, and a group VI element serving as a light absorption layer using In and Ga as a group III element.
This is a configuration of a thin-film solar cell using a semiconductor thin film having a distribution in which the relative value of the composition ratio a changes. In particular, in a thin-film solar cell including a configuration in which an electrode film, a semiconductor thin film serving as a light absorbing layer, and a semiconductor thin film serving as a window layer are stacked, the light absorbing layers using In and Ga as Group III elements are used. In the thickness direction of the semiconductor thin film composed of group VI and group VI elements,
A configuration of a thin-film solar cell using a semiconductor thin film having a distribution in which the composition ratio of Ga in the group III element decreases from the electrode film side to the window layer side is preferable.

【0011】また、VI族元素としてSe及びSを用いる
光吸収層となるI族とIII族とVI族元素からなる半導体薄
膜において、膜の厚さ方向に対しSeとSの組成比の相
対値が変化する分布を有する半導体薄膜を用いる薄膜太
陽電池の構成も有効であり、特に、電極膜と光吸収層と
なる半導体薄膜と窓層となる半導体薄膜を積層してなる
薄膜太陽電池において、VI族元素としてSe及びSを用
いる光吸収層となるI族とIII族とVI族元素からなる半導
体薄膜の膜の厚さ方向に対し、VI族元素中に占めるSの
組成比が電極膜側から窓層側へと増加する分布を有する
半導体薄膜を用いる薄膜太陽電池の構成が好ましい。
Also, in a semiconductor thin film comprising a group I, group III and group VI element which is a light absorbing layer using Se and S as group VI elements, the relative value of the composition ratio of Se and S in the thickness direction of the film. The configuration of a thin-film solar cell using a semiconductor thin film having a distribution in which is changed is also effective, particularly, in a thin-film solar cell in which a semiconductor thin film serving as an electrode film, a light absorbing layer, and a semiconductor thin film serving as a window layer are laminated. The composition ratio of S occupying in the group VI element from the electrode film side to the film thickness direction of the semiconductor thin film composed of the group I, group III, and group VI elements that becomes the light absorption layer using Se and S as the group element. The configuration of a thin-film solar cell using a semiconductor thin film having a distribution increasing toward the window layer is preferable.

【0012】第3の発明は、電極となるMo膜、Moと
VI族元素の化合物層、光吸収層となる膜厚が1μm以下
のI族とIII族とVI族元素からなる半導体薄膜を積層して
なる構成を含む薄膜太陽電池である。また、前記Moと
VI族元素の化合物層の厚みが1μm以下であることが好
ましい。
A third aspect of the present invention relates to a Mo film serving as an electrode,
A thin-film solar cell including a structure in which semiconductor thin films made of Group I, Group III, and Group VI elements each having a thickness of 1 μm or less as a compound layer of a Group VI element and a light absorbing layer are stacked. Also, the Mo and
The thickness of the compound layer of the group VI element is preferably 1 μm or less.

【0013】次に、光吸収層の薄膜化による光吸収量の
低下を防ぐ太陽電池の構成として以下の発明を提供して
いる。
Next, the following invention is provided as a configuration of a solar cell for preventing a reduction in the amount of light absorption due to a reduction in the thickness of the light absorption layer.

【0014】膜厚が1μm以下のI族とIII族とVI族元素
からなる半導体薄膜を光吸収層に用いる薄膜太陽電池に
おいて、表面が凹凸形態である基体を用いる薄膜太陽電
池の構成である。
This is a thin-film solar cell using a semiconductor thin film having a film thickness of 1 μm or less made of Group I, Group III and Group VI elements as a light absorbing layer, and using a substrate having an uneven surface.

【0015】また、本薄膜太陽電池の構成における基体
の材質として、ガラスあるいは焼結体あるいは金属体の
いずれかを用いることが好ましい。また、平坦な基体上
に凹凸形態を有する薄膜を堆積してなる基体を用いるこ
とも有効である。さらに、凹凸の山部と谷部の高低差が
0.1μm以上で10μm以下である基体を用いること
が好ましい。
It is preferable to use glass, a sintered body, or a metal body as the material of the base in the structure of the thin-film solar cell. It is also effective to use a substrate obtained by depositing a thin film having an uneven shape on a flat substrate. Further, it is preferable to use a substrate having a height difference between the peak and the valley of the unevenness of not less than 0.1 μm and not more than 10 μm.

【0016】本発明の薄膜太陽電池の構成により、低コ
ストで量産性に富んだ工業的に有利な薄膜太陽電池を提
供することができる。さらに、膜厚1μm以下のI族とI
II族元素とVI族元素からなる半導体薄膜を光吸収層に用
いても高い変換効率が得られる太陽電池を提供できる。
With the configuration of the thin-film solar cell of the present invention, it is possible to provide a low-cost, mass-productive and industrially advantageous thin-film solar cell. Further, the group I having a thickness of 1 μm or less
A solar cell with high conversion efficiency can be provided even when a semiconductor thin film including a group II element and a group VI element is used for a light absorption layer.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら説明するが、本発明はここで記述
する実施の形態のみに限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the embodiments described here.

【0018】(実施の形態1)図1は本発明の一実施の
形態を示す薄膜太陽電池の断面模式図を示している。ガ
ラス基板1上に裏面電極となるMo膜2を形成し、その
上にI族とIII族とVI族元素からなる半導体薄膜であるC
u(In,Ga)Se2(CIGS)膜3を形成している。
このCIGS膜の上に窓層となる半導体薄膜CdS膜4
とZnO膜5及び表面電極となる透明導電膜ITO膜6
と反射防止膜MgF2膜7を順次形成した構成である。
CIGS膜以外の各層の膜厚は、Mo膜が約1μmであ
り、CdS膜、ZnO膜、ITO膜とMgF2膜は全て
約0.1μmである。
(Embodiment 1) FIG. 1 is a schematic sectional view of a thin-film solar cell showing an embodiment of the present invention. A Mo film 2 serving as a back electrode is formed on a glass substrate 1, and a semiconductor thin film C comprising a group I, group III and group VI element is formed thereon.
A u (In, Ga) Se 2 (CIGS) film 3 is formed.
A semiconductor thin film CdS film 4 serving as a window layer is formed on the CIGS film.
And a ZnO film 5 and a transparent conductive ITO film 6 serving as a surface electrode
And an antireflection film MgF 2 film 7 are sequentially formed.
The thickness of each layer other than the CIGS film is approximately 1 μm for the Mo film, and approximately 0.1 μm for the CdS film, the ZnO film, the ITO film, and the MgF 2 film.

【0019】CIGS膜の膜厚が異なる素子をいくつか
作製し、その太陽電池特性を測定した。太陽電池特性
は、AM1.5で100mW/cm2の疑似太陽光を照射
した時の電流−電圧曲線から評価した。
Several devices having different CIGS film thicknesses were manufactured, and their solar cell characteristics were measured. The solar cell characteristics were evaluated from a current-voltage curve when simulated sunlight of 100 mW / cm 2 was applied at AM 1.5.

【0020】まず、GaのIII族元素に対する含有率が
20%のCIGS膜(Cu(In0.8Ga0.2)Se2、G
a/(In+Ga)=0.2)の膜厚に対する太陽電池特
性の変化を図2の○印に示す。ここでは、従来のCIG
S太陽電池に用いられている膜厚1.8μmのCIGS
膜を用いた太陽電池の特性を基準として、それぞれの特
性を規格化した値で示している。膜厚0.8〜1.8μm
の範囲では開放端電圧(Voc)、曲線因子(FF)はほ
ぼ変わらないことがわかる。これに対し、短絡光電流J
scは膜厚の減少に比例して減少していることがわか
る。従って、膜厚0.8〜1.8μmの範囲の薄膜化によ
る変換効率の減少はほぼ光電流の減少によることがわか
る。しかし、薄膜化による効率の減少率は小さく、膜厚
0.8μmのCIGS膜を用いた太陽電池でもエネルギ
ー用太陽電池に適用できる。さらに薄膜化した膜厚0.
5μmのCIGS膜を用いた太陽電池ではVoc、Jsc、
FF全ての特性が大幅に減少している。得られる変換効
率は、従来のCIGS太陽電池の1/5に低下してい
る。
First, a CIGS film (Cu (In 0.8 Ga 0.2 ) Se 2 , G
The change in the solar cell characteristics with respect to the film thickness of a / (In + Ga) = 0.2) is shown by a circle in FIG. Here, the conventional CIG
1.8 μm thick CIGS used for S solar cell
Based on the characteristics of the solar cell using the film, each characteristic is shown as a normalized value. 0.8-1.8 μm thick
It can be seen that the open-circuit voltage (Voc) and the fill factor (FF) hardly change in the range of. In contrast, the short-circuit photocurrent J
It can be seen that sc decreases in proportion to the decrease in the film thickness. Therefore, it can be understood that the decrease in the conversion efficiency due to the thinning in the thickness range of 0.8 to 1.8 μm is almost due to the decrease in the photocurrent. However, the rate of decrease in efficiency due to thinning is small, and a solar cell using a 0.8 μm-thick CIGS film can be applied to a solar cell for energy. Further reduced film thickness
For a solar cell using a 5 μm CIGS film, Voc, Jsc,
The characteristics of all FFs are greatly reduced. The conversion efficiency obtained is reduced to one fifth of the conventional CIGS solar cell.

【0021】次に、各膜厚のCIGS太陽電池の量子効
率を図3に示す。CIGSの膜厚1.2μmと膜厚1.8
μmの太陽電池の量子効率がほぼ一致しているため、こ
こでは、膜厚1.8μmの素子の量子効率のみ示してい
る。膜厚0.8μmと1.8μmの太陽電池の量子効率を
比較すると、CIGS膜を薄膜化することにより波長
0.8μm以上の長波長感度が大きく低下していること
がわかる。これは以下の理由による。長波長光は入射面
となるCdS膜とCIGS膜の界面から深い部分のCI
GS膜内部まで透過する。従って、Mo膜近傍で励起さ
れるキャリアが多くなる。Mo膜での裏面再結合速度が
速いと多くの光励起キャリアが再結合により消滅するた
め、長波長光感度が劣ることになる。この場合、CIG
S膜の膜厚が拡散長より薄くなると、裏面再結合の影響
が大きくなる。次に、膜厚0.5μmのCIGS膜を用
いた太陽電池では、全波長域で量子効率が大幅に低下し
ている。これは、光を十分に吸収するために必要となる
膜厚より薄くなり、光吸収量が減少したためと考えられ
る。従って、図2のJscの大幅な低下は光吸収量の減少
によると考えられる。また、Vocの低下も光吸収量の減
少と関連することを以下に示す。
Next, FIG. 3 shows the quantum efficiency of the CIGS solar cell of each film thickness. CIGS film thickness of 1.2 μm and film thickness of 1.8
Since the quantum efficiencies of μm solar cells are almost the same, only the quantum efficiency of a 1.8 μm-thick element is shown here. Comparing the quantum efficiencies of the 0.8 μm-thick and 1.8 μm-thick solar cells, it can be seen that the long wavelength sensitivity of 0.8 μm or more is greatly reduced by thinning the CIGS film. This is for the following reason. The long-wavelength light has a CI at a deep portion from the interface between the CdS film and the CIGS film serving as an incident surface.
It penetrates into the GS film. Therefore, the number of carriers excited near the Mo film increases. When the back surface recombination speed in the Mo film is high, many photoexcited carriers disappear due to recombination, so that the long-wavelength light sensitivity is deteriorated. In this case, CIG
When the thickness of the S film is smaller than the diffusion length, the influence of the back surface recombination increases. Next, in a solar cell using a CIGS film having a thickness of 0.5 μm, the quantum efficiency is significantly reduced in all wavelength regions. This is presumably because the film thickness became thinner than necessary to sufficiently absorb light, and the amount of light absorption was reduced. Therefore, it is considered that the large decrease in Jsc in FIG. 2 is due to the decrease in the amount of light absorption. It is shown below that the decrease in Voc is also related to the decrease in light absorption.

【0022】開放端電圧Vocは近似的に、 Voc=kT/q・ln(Jsc/J0) (1) で与えられる。ここで、kはボルツマン定数、Tは絶対
温度、qは電荷、J0は逆方向飽和電流である。式
(1)から、Jscが大幅に減少すると、Vocも減少する
ことがわかる。従って、膜厚0.5μmまで薄膜化した
場合の全ての太陽電池特性の大幅な低下は、光吸収量の
減少によると考えられる。
The open-circuit voltage Voc is approximately given by: Voc = kT / q · ln (Jsc / J0) (1) Here, k is Boltzmann's constant, T is absolute temperature, q is electric charge, and J0 is reverse saturation current. From equation (1), it can be seen that when Jsc is greatly reduced, Voc is also reduced. Therefore, it is considered that a significant decrease in all solar cell characteristics when the film thickness is reduced to 0.5 μm is due to a decrease in light absorption.

【0023】以上の結果から、GaのIII族元素に対す
る含有率が20%程度の場合は、CIGS膜の膜厚が
0.8μm程度まで薄膜化してもエネルギー用太陽電池
に適用できる十分な変換効率が得られることがわかる。
また、GaのIII族元素に占める含有率30%程度まで
は同様な結果を示した。
From the above results, when the content of Ga with respect to the group III element is about 20%, even if the thickness of the CIGS film is reduced to about 0.8 μm, sufficient conversion efficiency applicable to the solar cell for energy is obtained. Is obtained.
Similar results were obtained up to a content of about 30% of Ga in the group III element.

【0024】次に、GaのIII族元素に占める含有率が
60%(Ga/(In+Ga)=0.6)のCIGS膜
(Cu(In0.4Ga0.6)Se2)を用いた太陽電池の膜
厚に対する太陽電池特性の変化を図2の黒の三角形で示
す。膜厚0.8〜1.8μmの範囲で、Voc、Jsc、FF
ともにほぼ変わらないことがわかる。従って、CIGS
膜の膜厚を0.8μmまで薄膜化しても、従来の膜厚を
用いたCIGS太陽電池と変わらない変換効率が得られ
ることがわかる。前記実施例に比較すると、Ga含有率
が高いCIGS太陽電池では、膜厚を0.8μmまで薄
膜化してもJscが減少しない。これは、Gaの含有率が
40%以上のCIGS膜では拡散長が短く、裏面再結合
の影響をほとんど受けないためと考えられる。膜厚0.
5μmまで薄膜化するとCu(In0.4Ga0.6)Se2
を用いた太陽電池の場合も、全ての太陽電池特性が大幅
に低下する。これは、光吸収量の減少によるためであ
り、Gaの含有率による拡散長の違いに依らない。
Next, a solar cell film using a CIGS film (Cu (In 0.4 Ga 0.6 ) Se 2 ) in which the content of Ga in the group III element is 60% (Ga / (In + Ga) = 0.6). The change of the solar cell characteristic with respect to the thickness is shown by a black triangle in FIG. Voc, Jsc, FF in the thickness range of 0.8 to 1.8 μm
It turns out that both are almost the same. Therefore, CIGS
It can be seen that even when the thickness of the film is reduced to 0.8 μm, conversion efficiency that is the same as that of a CIGS solar cell using a conventional film thickness can be obtained. Compared with the above example, in a CIGS solar cell having a high Ga content, Jsc does not decrease even if the film thickness is reduced to 0.8 μm. This is considered to be because the CIGS film having a Ga content of 40% or more has a short diffusion length and is hardly affected by back surface recombination. Thickness 0.
When the thickness is reduced to 5 μm, all solar cell characteristics are significantly reduced even in the case of a solar cell using a Cu (In 0.4 Ga 0.6 ) Se 2 film. This is due to a decrease in light absorption, and does not depend on a difference in diffusion length depending on the Ga content.

【0025】本実施の形態から、CIGS膜の膜厚を1
μm以下の約0.8μmに薄膜化しても、エネルギー用
太陽電池として有効な変換効率が得られることがわか
る。さらに、GaのIII族元素に占める含有率が40%
以上のCIGS膜では、薄膜化に対してより有効である
ことがわかる。
According to this embodiment, the thickness of the CIGS film is set to 1
It can be seen that even when the thickness is reduced to about 0.8 μm or less, effective conversion efficiency as an energy solar cell can be obtained. Further, the content of Ga in the group III element is 40%.
It can be seen that the above CIGS film is more effective for thinning.

【0026】なお、ここでは、CIGS膜のGaのIII
族元素に占める含有率に対する薄膜化による変換効率の
有効性について述べたが、VI族元素に占めるSの含有率
に対しても同様な有効性が得られる。つまり、SのVI族
元素に占める含有率が40%以上のCuIn(Se,S)2
膜においても拡散長は、SのVI族元素に占める含有率が
40%以下のCuIn(Se,S)2膜のそれより短い。従
って、薄膜化による裏面再結合の影響を受けにくい。ま
た、5元化合物Cu(In,Ga)(Se,S)2の場合も、
GaのIII族元素に占める含有率が40%以上かSのVI
族元素に占める含有率が40%以上のどちらかの条件を
満足した膜においては同様な有効性が得られる。
Here, the III of Ga of the CIGS film is used.
Although the effectiveness of the conversion efficiency by the thinning with respect to the content in the group VI element has been described, the same effectiveness can be obtained for the content of S in the group VI element. That is, CuIn (Se, S) 2 in which the content of S in the group VI element is 40% or more.
Also in the film, the diffusion length is shorter than that of the CuIn (Se, S) 2 film in which the content of S in the group VI element is 40% or less. Therefore, it is less susceptible to back surface recombination due to thinning. In the case of the quinary compound Cu (In, Ga) (Se, S) 2 ,
The content of Ga in the group III element is 40% or more or the content of S VI
The same effectiveness can be obtained in a film satisfying any one of the conditions in which the content in the group element is 40% or more.

【0027】(実施の形態2)図1の薄膜太陽電池の構
成において、InとGaの膜の深さ方向の組成比が変化
しているCIGS膜を用いた太陽電池の特性について述
べる。ここでは、CIGS膜が異なる2種類の太陽電池
を評価している。CIGS膜以外の各膜の構成及び膜厚
は実施の形態1と同様である。
(Embodiment 2) Characteristics of a solar cell using a CIGS film in which the composition ratio of the In and Ga films in the depth direction is changed in the configuration of the thin film solar cell of FIG. Here, two types of solar cells having different CIGS films are evaluated. The configuration and thickness of each film other than the CIGS film are the same as in the first embodiment.

【0028】第1の構成は、Mo膜上にInを含まない
CuGaSe2層を形成し、その上にCu(In0.8Ga
0.2)Se2層を形成したCIGS膜を用いた太陽電池で
ある。
In the first configuration, a CuGaSe 2 layer containing no In is formed on a Mo film, and Cu (In 0.8 Ga
0.2 ) A solar cell using a CIGS film having a Se 2 layer formed thereon.

【0029】ここで用いたCIGS膜の膜厚は、CuG
aSe2層が0.1μmであり、Cu(In0.8Ga0.2)S
2層が0.7μmである。
The thickness of the CIGS film used here is CuG
aSe 2 layer is 0.1 μm and Cu (In 0.8 Ga 0.2 ) S
e 2 layer is 0.7 μm.

【0030】第2の構成は、GaのIII族元素に占める
含有率が膜の深さ方向で徐々に変化しているCIGS膜
を用いた太陽電池である。具体的には、CdS膜との界
面近傍のGaの含有率が20%であり、膜の深さ方向に
徐々にGaの含有率が増加し、Mo膜近傍ではGaの含
有率が60%となっているCIGS膜を用いた。CIG
S膜の膜厚は約0.8μmである。
The second configuration is a solar cell using a CIGS film in which the content of Ga in the group III element gradually changes in the depth direction of the film. Specifically, the Ga content near the interface with the CdS film is 20%, the Ga content gradually increases in the depth direction of the film, and the Ga content near the Mo film is 60%. Used CIGS film. CIG
The thickness of the S film is about 0.8 μm.

【0031】図4に各々の太陽電池の特性を示す。ここ
では、比較のため実施の形態1で示した膜厚0.8μm
のCu(In0.8Ga0.2)Se2膜を用いた太陽電池の特
性も示しあり、この太陽電池の特性を基準として、他の
2つの太陽電池の特性を規格化してある。CuGaSe
2層を設けた第1の構成の太陽電池とGaの含有率が徐
々に変化している第2の構成の太陽電池ともに前記実施
例の太陽電池より全ての特性が向上していることがわか
る。従って、InとGaの膜の深さ方向の組成比が変化
しているCIGS膜は、薄膜化に対して有効である。
FIG. 4 shows the characteristics of each solar cell. Here, the film thickness of 0.8 μm shown in the first embodiment for comparison.
The characteristics of a solar cell using a Cu (In 0.8 Ga 0.2 ) Se 2 film are also shown. Based on the characteristics of this solar cell, the characteristics of the other two solar cells are standardized. CuGaSe
It can be seen that all the characteristics of the solar cell having the first configuration having two layers and the solar cell having the second configuration in which the content of Ga is gradually changed are higher than those of the solar cell of the above embodiment. . Therefore, a CIGS film in which the composition ratio of the In and Ga films in the depth direction changes is effective for thinning.

【0032】ここで、CuInSe2とCuGaSe2
比較すると、CuGaSe2膜の方が禁制帯幅が広く、
伝導帯が真空準位に近い。混晶体であるCu(In,G
a)Se2膜では、Ga濃度が高いほど禁制帯幅が広く、
伝導帯が真空準位に近い。従って、Mo膜付近のCuG
aSe2層を形成すると、伝導帯に不連続が生じ、エネ
ルギー障壁が形成される。光励起されたキャリア(ここ
では電子)のうちMo側に移動するものは障壁で反射さ
れるため、pn接合(CdSとCIGS膜の界面付近)
側へと移動する。つまり、Mo膜での裏面再結合を抑制
することができる。また、Ga含有率が徐々にMo膜側
に増加する分布を有するCIGS膜では、伝導帯のレベ
ルが徐々に高くなる。この場合、内部電界が生じる。キ
ャリアは内部電界によりpn接合側へと移動することに
なり、Mo膜での裏面再結合が抑制される。以上からC
IGS膜内でInとGaの膜の深さ方向の組成比を変化
させることにより、エネルギー障壁や内部電界を生じさ
せ、裏面でのキャリア再結合を抑制することが可能であ
る。
Here, comparing CuInSe 2 and CuGaSe 2 , the CuGaSe 2 film has a wider forbidden band,
The conduction band is close to the vacuum level. Cu (In, G)
a) In the Se 2 film, the higher the Ga concentration, the wider the forbidden band width,
The conduction band is close to the vacuum level. Therefore, CuG near the Mo film
When the aSe 2 layer is formed, a discontinuity occurs in the conduction band, and an energy barrier is formed. Of the photoexcited carriers (electrons in this case) that move to the Mo side are reflected by the barrier, so that the pn junction (near the interface between the CdS and the CIGS film)
Move to the side. That is, the back surface recombination in the Mo film can be suppressed. In a CIGS film having a distribution in which the Ga content gradually increases toward the Mo film, the level of the conduction band gradually increases. In this case, an internal electric field is generated. The carriers move to the pn junction side due to the internal electric field, and the back surface recombination in the Mo film is suppressed. From above, C
By changing the composition ratio of the In and Ga films in the depth direction in the IGS film, an energy barrier and an internal electric field can be generated, and carrier recombination on the back surface can be suppressed.

【0033】なお、ここでは、III族元素であるInと
Gaの膜の深さ方向の組成比が変化しているCIGS膜
に対する薄膜化による変換効率の有効性について述べた
が、VI族元素であるSeとSの膜の深さ方向の組成比は
変化しているCuIn(Se,S)2膜でも同様な有効性が
得られる。CuInS2とCuInSe2を比較した場
合、CuInS2膜の方が禁制帯幅が広い。また、伝導
帯のエネルギーはCuInS2の方がCuInSe2よ
りわずかに大きい。従って、裏面電極付近のS含有率を
高くすると電子に対するエネルギー障壁が形成できる。
また、S含有率を裏面電極に近づくにつれ高くなるよう
な分布を与えると内部電界が生じる。従って、SとSe
の膜の深さ方向の組成比が変化した分布のCuIn(S
e,S)2膜でも裏面電極の再結合を防止でき、薄膜化し
ても変換効率の低下を抑制できる。さらに、5元化合物
Cu(In,Ga)(Se,S)2の場合も、III族元素である
GaとInの組成比が変化した分布あるいはVI族元素で
あるSとSeの組成比が変化した分布のどちらかを与え
ることにより同様な有効性が得られる。
Here, the effectiveness of the conversion efficiency by thinning the CIGS film in which the composition ratio in the depth direction of the film of In and Ga, which is a group III element, is changed has been described. Similar effectiveness can be obtained even with a CuIn (Se, S) 2 film in which the composition ratio of certain Se and S films in the depth direction is changed. If you compare the CuInS2 and CuInSe 2, the forbidden band width towards the CuInS 2 film is wide. Further, the energy of the conduction band is slightly larger in CuInS2 than in CuInSe2. Therefore, when the S content near the back electrode is increased, an energy barrier for electrons can be formed.
Further, when a distribution is made such that the S content increases as approaching the back surface electrode, an internal electric field is generated. Therefore, S and Se
CuIn (S) having a distribution in which the composition ratio in the depth direction of the
The recombination of the back electrode can be prevented even with the e, S) 2 film, and a decrease in the conversion efficiency can be suppressed even when the film is made thin. Further, also in the case of the quinary compound Cu (In, Ga) (Se, S) 2 , the distribution in which the composition ratio of Ga and In which is a group III element is changed or the composition ratio of S and Se which is a group VI element is changed. Similar effectiveness can be obtained by giving either of the distributions given.

【0034】(実施の形態3)図5は本発明の一実施の
形態を示す薄膜太陽電池の断面模式図を示している。ガ
ラス基板8上に裏面電極となるMo膜9を形成し、その
上かあるいは表面にMoとVI族元素の化合物であるMo
Se2層10を形成する。このMoSe2層の上にI族とI
II族とVI族元素からなる半導体薄膜であるCu(In,G
a)Se2(CIGS)膜11を形成している。このCI
GS膜の上に窓層となる半導体薄膜CdS膜12とZn
O膜13及び表面電極となる透明導電膜ITO膜14と
反射防止膜MgF2膜15を順次形成した構成である。
ここでは、CIGS膜としてCu(In0.8Ga0.2)Se
2を用い、その膜厚は0.8μmである。MoSe2以外
の他の各層の膜厚は、Mo膜が約1μmであり、CdS
膜、ZnO膜、ITO膜とMgF2膜は全て約0.1μm
である。
(Embodiment 3) FIG. 5 is a schematic sectional view of a thin-film solar cell showing an embodiment of the present invention. A Mo film 9 serving as a back electrode is formed on a glass substrate 8, and Mo or a compound of a group VI element Mo is formed on or on the Mo film 9.
The Se 2 layer 10 is formed. On this MoSe 2 layer, I and I
Cu (In, G) is a semiconductor thin film composed of Group II and Group VI elements.
a) The Se 2 (CIGS) film 11 is formed. This CI
On the GS film, a semiconductor thin film CdS film 12 serving as a window layer and Zn
In this configuration, an O film 13, a transparent conductive film ITO film 14 serving as a surface electrode, and an antireflection film MgF 2 film 15 are sequentially formed.
Here, Cu (In 0.8 Ga 0.2 ) Se is used as the CIGS film.
2 , and the film thickness is 0.8 μm. The thickness of each layer other than MoSe 2 is about 1 μm for the Mo film, and CdS
The film, ZnO film, ITO film and MgF 2 film are all about 0.1 μm
It is.

【0035】図6にMoSe2の厚みが異なる太陽電池
の特性を示す。MoSe2層がない太陽電池(MoSe
2の膜厚0)の特性を基準として、各太陽電池の特性を
規格化してある。MoSe2層が存在することによりJs
cが向上することがわかる。また、MoSe2膜の膜厚が
0.5μmとなると曲線因子が少し低下している。
FIG. 6 shows the characteristics of solar cells having different MoSe 2 thicknesses. Solar cell without MoSe2 layer (MoSe
The characteristics of each solar cell are standardized based on the characteristics of the film thickness 0) of No. 2 . The presence of the MoSe 2 layer allows Js
It can be seen that c is improved. When the thickness of the MoSe 2 film is 0.5 μm, the fill factor is slightly reduced.

【0036】MoSe2は半導体であり、p形低抵抗膜
(p+膜)を形成できる。CIGS膜がp形半導体であ
ることから、裏面電極Mo膜上にp+p層が形成されて
いることになる。p+p層間にはフェルミ準位の差によ
る電界が生じるため、この電界による障壁によってp形
CIGS膜内で生成されたキャリアのうち裏面(Mo)
に向かうものが反射され、裏面電極部分で再結合しなく
なり、pn接合部(CdS/CIGS界面近傍)に到達
するキャリアが増加する。従って、Jscが向上すること
になる。また、MoSe2層の膜厚が増加すると太陽電
池の直列抵抗成分が増大するためFFが減少することに
なる。図6からはMoSe2層の膜厚0.5μmからFF
の低下が観測されているが、その低下率は少なく、変換
効率はMoSe2層がない場合よりも大きい。MoSe2
層が1μmまではFFの低下よりもMoSe2層の存在
によるJscの向上の影響の方が優っている。従って、M
oSe2膜の膜厚は1μm以下が適当である。
MoSe 2 is a semiconductor and can form a p-type low resistance film (p + film). Since the CIGS film is a p-type semiconductor, a p + p layer is formed on the back electrode Mo film. Since an electric field is generated between the p + p layers due to the difference in Fermi level, the back surface (Mo) of the carriers generated in the p-type CIGS film by the barrier due to the electric field is generated.
Are reflected, are not recombined at the back electrode portion, and the number of carriers reaching the pn junction (near the CdS / CIGS interface) increases. Therefore, Jsc is improved. Further, when the thickness of the MoSe 2 layer increases, the series resistance component of the solar cell increases, so that the FF decreases. FIG. 6 shows that the MoSe 2 layer has a thickness of 0.5 μm
Is observed, but the rate of decrease is small, and the conversion efficiency is larger than that without the MoSe 2 layer. MoSe 2
Up to a layer thickness of 1 μm, the effect of the improvement of Jsc due to the presence of the MoSe2 layer is superior to the decrease of the FF. Therefore, M
The thickness of the oSe 2 film is suitably 1 μm or less.

【0037】以上から、MoSe2層とCIGS膜で形
成される内部電界は、CIGS膜を薄膜化した場合に問
題となる裏面の再結合を防止するためには有効であるこ
とがわかる。
From the above, it can be seen that the internal electric field formed by the MoSe 2 layer and the CIGS film is effective in preventing the back surface recombination which becomes a problem when the CIGS film is thinned.

【0038】また、MoSe2の他にMo(Se,S)2
Mo(Se,O)2等のMoとVI族元素の化合物層を裏面電
極とCIGS膜の間に挿入した構成の太陽電池でも同様
な結果が得られ、CIGS膜の薄膜化による効率低下を
防ぐのに有効である。
A solar cell having a structure in which a compound layer of Mo and a Group VI element such as Mo (Se, S) 2 or Mo (Se, O) 2 is inserted between the back electrode and the CIGS film in addition to MoSe 2. However, a similar result is obtained, which is effective for preventing a decrease in efficiency due to thinning of the CIGS film.

【0039】(実施の形態4)図7は本発明の一実施の
形態を示す薄膜太陽電池の断面模式図を示している。表
面に微少な凹凸を有するガラス基板16上に裏面電極と
なるMo膜17を形成し、その上にI族とIII族とVI族元
素からなる半導体薄膜であるCu(In,Ga)Se2(C
IGS)膜18を形成している。このCIGS膜の上に
窓層となる半導体薄膜CdS膜19とZnO膜20及び
表面電極となる透明導電膜ITO膜21を順次形成した
構成である。ここでは、CIGS膜としてCu(In0.8
Ga0. 2)Se2を用い、その膜厚は0.5μmである。他
の各層の膜厚は、実施の形態1と同じである。
(Embodiment 4) FIG. 7 is a schematic sectional view of a thin-film solar cell showing an embodiment of the present invention. A Mo film 17 serving as a back electrode is formed on a glass substrate 16 having minute irregularities on the surface, and Cu (In, Ga) Se 2 (a semiconductor thin film comprising Group I, Group III, and Group VI elements) is formed thereon. C
IGS) film 18 is formed. On the CIGS film, a semiconductor thin film CdS film 19 serving as a window layer and a ZnO film 20 and a transparent conductive film ITO film 21 serving as a surface electrode are sequentially formed. Here, Cu (In 0.8
Using Ga 0. 2) Se 2, has a thickness of 0.5 [mu] m. The thicknesses of the other layers are the same as in the first embodiment.

【0040】図8に本構成の太陽電池の量子効率を示
す。比較のため、実施の形態1で述べたCIGS膜の膜
厚0.5μmの太陽電池の量子効率を破線で示してあ
る。基板のガラス表面に凹凸を設けることにより、各波
長での量子効率が改善されていることがわかる。この理
由は以下の通りである。CIGS膜で吸収されず透過し
た光はMo膜に到達し反射される。この時、基板に凹凸
があるため、光は乱反射する。乱反射の場合は、鏡面反
射よりもCIGS膜内で光が進む光路長が長くなり、光
が吸収される実質的な膜厚が増加することになる。従っ
て、CIGS膜を薄膜化しても十分に光が吸収されるこ
とになり、光電流が増加する。光電流の増加にともな
い、光起電圧(開放端電圧)も増加する。
FIG. 8 shows the quantum efficiency of the solar cell having this configuration. For comparison, the broken line shows the quantum efficiency of the 0.5 μm-thick CIGS solar cell described in the first embodiment. It can be seen that the quantum efficiency at each wavelength is improved by providing irregularities on the glass surface of the substrate. The reason is as follows. Light that is not absorbed and transmitted by the CIGS film reaches the Mo film and is reflected. At this time, light is irregularly reflected because the substrate has irregularities. In the case of diffuse reflection, the optical path length in which light travels in the CIGS film becomes longer than in specular reflection, and the substantial film thickness in which light is absorbed increases. Therefore, even if the CIGS film is made thin, light is sufficiently absorbed, and the photocurrent increases. As the photocurrent increases, the photovoltaic voltage (open-circuit voltage) also increases.

【0041】以上のように、基板に凹凸形状を設けるこ
とにより、CIGS膜を薄膜化しても光吸収量の減少は
少なくできるためエネルギー用太陽電池として必要とな
る変換効率が得られる。ここで、凹凸形状を有する基板
を用いる場合、裏面電極膜の被覆性が問題となる。凹凸
の高低差により裏面電極膜が被覆されない場合が生じ
る。CIGS太陽電池では、裏面電極のMo膜の膜厚は
0.5〜2μm程度である。従って、十分な被覆性を得
るには凹凸の高低差は10μm以下が妥当である。ま
た、凹凸の高低差が極端に小さいと乱反射の効果が生じ
ない。乱反射の効果を得るには凹凸の高低差としては
0.1μm以上が必要である。
As described above, by providing the substrate with irregularities, even if the CIGS film is made thinner, the reduction in the amount of light absorption can be reduced, so that the conversion efficiency required for an energy solar cell can be obtained. Here, in the case of using a substrate having an uneven shape, the coverage of the back electrode film becomes a problem. There is a case where the back electrode film is not covered by the difference in height of the unevenness. In a CIGS solar cell, the thickness of the Mo film on the back electrode is about 0.5 to 2 μm. Therefore, in order to obtain sufficient coverage, it is appropriate that the height difference between the irregularities is 10 μm or less. Further, if the height difference between the irregularities is extremely small, the effect of irregular reflection does not occur. In order to obtain the effect of irregular reflection, the height difference of the unevenness needs to be 0.1 μm or more.

【0042】また、平坦なガラス基板上に凹凸表面を有
する薄膜を形成しても同様な効果が得られる。例として
は、テクスチャー構造のZnO膜が挙げられる。ZnO
膜は製膜条件により凹凸表面を有する膜を形成できる。
この凹凸表面となるテクスチャー構造のZnO膜を基板
に堆積し、その上に裏面電極膜を形成すれば、同様な効
果が得られる。
Similar effects can be obtained by forming a thin film having an uneven surface on a flat glass substrate. An example is a textured ZnO film. ZnO
As the film, a film having an uneven surface can be formed depending on film forming conditions.
The same effect can be obtained by depositing a ZnO film having a texture structure to be the uneven surface on a substrate and forming a back electrode film thereon.

【0043】(実施の形態5)図9は本発明の一実施の
形態を示す薄膜太陽電池の断面模式図を示している。ガ
ラス基板22上に裏面電極となるMo膜23を形成し、
その上にI族とIII族とVI族元素からなる半導体薄膜であ
るCu(In,Ga)Se2(CIGS)膜24を形成して
いる。このCIGS膜の上に窓層となる半導体薄膜Cd
S膜25とZnO膜26を形成している。本実施の形態
では窓層となる半導体薄膜の上に表面に凹凸構造を有す
る透明電極膜ZnO:Al膜27を形成した構成であ
る。ここでは、CIGS膜としてCu(In0.8Ga0.2)
Se2を用い、その膜厚は0.5μmである。また、Zn
O:Al膜の膜厚は約0.5μmである。他の各層の膜
厚は、実施の形態1と同じである。
(Embodiment 5) FIG. 9 is a schematic sectional view of a thin-film solar cell showing an embodiment of the present invention. A Mo film 23 serving as a back electrode is formed on a glass substrate 22,
A Cu (In, Ga) Se 2 (CIGS) film 24 which is a semiconductor thin film made of Group I, Group III and Group VI elements is formed thereon. A semiconductor thin film Cd serving as a window layer is formed on the CIGS film.
An S film 25 and a ZnO film 26 are formed. In this embodiment, a transparent electrode film ZnO: Al film 27 having an uneven structure on the surface is formed on a semiconductor thin film serving as a window layer. Here, Cu (In 0.8 Ga 0.2 ) is used as the CIGS film.
Se 2 is used, and its film thickness is 0.5 μm. Also, Zn
The thickness of the O: Al film is about 0.5 μm. The thicknesses of the other layers are the same as in the first embodiment.

【0044】図10に本構成の太陽電池の量子効率を示
す。比較のため、実施の形態1で述べたCIGS膜の膜
厚0.5μmの太陽電池の量子効率を破線で示してあ
る。透明導電膜の表面に凹凸を設けることにより、各波
長での量子効率が改善されていることがわかる。これ
は、太陽電池の表面となる透明導電膜の表面に凹凸形状
があるため、入射光が乱反射し、CIGS膜内を進む光
の光路長が長くなり、光が吸収される実質的な膜厚が増
加することによる。従って、CIGS膜を薄膜化しても
十分に光が吸収されることになり、光電流が増加する。
光電流の増加にともない、光起電圧(開放端電圧)も増
加する。
FIG. 10 shows the quantum efficiency of the solar cell having this configuration. For comparison, the broken line shows the quantum efficiency of the 0.5 μm-thick CIGS solar cell described in the first embodiment. It can be seen that the quantum efficiency at each wavelength is improved by providing the unevenness on the surface of the transparent conductive film. This is because the surface of the transparent conductive film, which is the surface of the solar cell, has irregularities, so that incident light is irregularly reflected, the optical path length of light traveling in the CIGS film becomes longer, and a substantial film thickness that absorbs light is obtained. Is increased. Therefore, even if the CIGS film is made thin, light is sufficiently absorbed, and the photocurrent increases.
As the photocurrent increases, the photovoltaic voltage (open-circuit voltage) also increases.

【0045】以上のように、太陽電池の表面層となる透
明導電膜に凹凸形状を設けることにより、CIGS膜を
薄膜化しても光吸収量の減少は少なくできるためエネル
ギー用太陽電池として必要となる変換効率が得られる。
As described above, by providing the transparent conductive film serving as the surface layer of the solar cell with irregularities, even if the CIGS film is made thinner, the reduction in the amount of light absorbed can be reduced. Conversion efficiency is obtained.

【0046】[0046]

【発明の効果】本発明の膜厚が1μm以下のI族とIII族
とVI族元素からなる半導体薄膜を光吸収層に用いる薄膜
太陽電池では、光吸収層形成の必要となる原材料の消費
量の減少とプロセス時間の短縮による製造に要するエネ
ルギーの減少により太陽電池の低コスト化を図ることが
できる。さらに、プロセス時間の短縮による量産性の向
上による低コスト化を図ることができる。
According to the thin-film solar cell of the present invention, in which a semiconductor thin film having a film thickness of 1 μm or less and comprising a group I, group III, and group VI element is used as a light absorbing layer, the consumption of raw materials required for forming the light absorbing layer is reduced. As a result, the cost of the solar cell can be reduced due to the reduction in energy required for manufacturing due to the reduction in the process time and the process time. Furthermore, cost reduction can be achieved by improving mass productivity by shortening the process time.

【0047】また、光吸収層の薄膜化では、裏面電極で
の再結合によるキャリアの消滅が問題となるが、本発明
では、この問題を解決する方法を提供している。
In the case where the thickness of the light absorbing layer is reduced, the disappearance of carriers due to recombination at the back electrode becomes a problem. The present invention provides a method for solving this problem.

【0048】本発明の第1の方法によれば、III族元素
としてIn及びGaを用いる光吸収層となるI族とIII族
とVI族元素からなる半導体薄膜において、GaのIII族
元素に占める割合が40%以上である、すなわちGa/
(In+Ga)≧0.4である半導体薄膜か、あるいはV
I族元素としてSe及びSを用いる光吸収層となるI族と
III族とVI族元素からなる半導体薄膜において、SのVI
族元素に占める割合が40%以上である、すなわちS/
(Se+S)≧0.4である半導体薄膜を光吸収層とし
て用いれば、前記半導体薄膜の拡散長が短いため裏面電
極での再結合の効果を低減できる。
According to the first method of the present invention, Ga occupies the group III element of the semiconductor in the light absorbing layer using In and Ga as the group III element and comprising the group I, group III and group VI elements. The ratio is 40% or more, that is, Ga /
A semiconductor thin film satisfying (In + Ga) ≧ 0.4, or V
Group I to be a light absorbing layer using Se and S as Group I elements
In semiconductor thin films composed of Group III and Group VI elements,
Group element is 40% or more, that is, S /
If a semiconductor thin film satisfying (Se + S) ≧ 0.4 is used as the light absorbing layer, the effect of recombination at the back electrode can be reduced because the diffusion length of the semiconductor thin film is short.

【0049】本発明の第2の方法によれば、III族元素
としてIn及びGaを用いる光吸収層となるI族とIII族
とVI族元素からなる半導体薄膜において、膜の厚さ方向
に対しInとGaの組成比の相対値が変化する分布を有
する半導体薄膜かあるいはVI族元素としてSe及びSを
用いる光吸収層となるI族とIII族とVI族元素からなる半
導体薄膜において、膜の厚さ方向に対しSeとSの組成
比の相対値が変化する分布を有する半導体薄膜を光吸収
層に用いれば、裏面電極付近に伝導帯におけるエネルギ
ー障壁を形成できるため、裏面電極方向へと移動する光
励起キャリアが反射されることから裏面電極での再結合
によるキャリアの消滅を低減できる。さらに、本発明に
おいては、III族元素としてIn及びGaを用いる光吸
収層となるI族とIII族とVI族元素からなる半導体薄膜の
膜の厚さ方向に対し、III族元素中に占めるGaの組成
比が裏面電極膜側からpn接合面となる窓層側へと減少
する分布を有する半導体薄膜か、あるいはVI族元素とし
てSe及びSを用いる光吸収層となるI族とIII族とVI族
元素からなる半導体薄膜の膜の厚さ方向に対し、VI族元
素中に占めるSの組成比が裏面電極膜側からpn接合面
となる窓層側へと減少する分布を有する半導体薄膜を光
吸収層に用いれば、光吸収層内部に電界が生じ、その電
界により生成されたキャリアはpn接合面へと移動する
ことになる。従って、裏面電極での再結合によるキャリ
アの消滅を低減できる。
According to the second method of the present invention, in a semiconductor thin film comprising a group I, a group III and a group VI element serving as a light absorption layer using In and Ga as a group III element, In a semiconductor thin film having a distribution in which the relative value of the composition ratio of In and Ga changes, or in a semiconductor thin film made of Group I, Group III, and Group VI elements serving as a light absorption layer using Se and S as Group VI elements, If a semiconductor thin film having a distribution in which the relative value of the composition ratio of Se and S changes with respect to the thickness direction is used for the light absorbing layer, an energy barrier in the conduction band can be formed near the back electrode, so that it moves toward the back electrode. Since the excited photoexcited carriers are reflected, the disappearance of carriers due to recombination at the back electrode can be reduced. Further, in the present invention, in the thickness direction of a semiconductor thin film comprising a group I, a group III and a group VI element, which is a light absorption layer using In and Ga as a group III element, Semiconductor thin film having a distribution in which the composition ratio decreases from the back electrode film side to the window layer side serving as the pn junction surface, or a group I, group III, and VI serving as a light absorbing layer using Se and S as group VI elements A semiconductor thin film having a distribution in which the composition ratio of S in the group VI element decreases from the back electrode film side to the window layer side to be a pn junction surface with respect to the thickness direction of the semiconductor thin film made of the group III element. When used for the absorption layer, an electric field is generated inside the light absorption layer, and carriers generated by the electric field move to the pn junction surface. Therefore, the disappearance of carriers due to recombination at the back electrode can be reduced.

【0050】本発明の第3の方法によれば、電極となる
Mo膜と光吸収層となるI族とIII族とVI族元素からな
る半導体薄膜の間に、MoとVI族元素の化合物層を形成
すると、MoとVI族元素の化合物層と光吸収層で多数キ
ャリア濃度が異なることによる内部電界が生じ、少数キ
ャリアはこの電界により反射されpn接合面へと移動す
る。従って、裏面電極での再結合によるキャリアの消滅
を低減できる。
According to the third method of the present invention, a compound layer of Mo and a group VI element is provided between a Mo film serving as an electrode and a semiconductor thin film comprising a group I, group III and group VI element serving as a light absorbing layer. Is formed, an internal electric field is generated due to the difference in the majority carrier concentration between the compound layer of the Mo and group VI elements and the light absorbing layer, and the minority carriers are reflected by this electric field and move to the pn junction surface. Therefore, the disappearance of carriers due to recombination at the back electrode can be reduced.

【0051】また、光吸収層を薄膜化すると光吸収量の
低減という問題がある。本発明はこの問題を解決する方
法も提供している。
Further, when the light absorbing layer is made thin, there is a problem that the amount of light absorption is reduced. The present invention also provides a method for solving this problem.

【0052】本発明の第4の方法によれば、表面が凹凸
形態である基体を用いると、光吸収層で十分吸収されず
に透過し、裏面電極に到達した光は乱反射する。乱反射
すると光吸収層内部を伝搬する光の光路長が長くなり、
光が吸収される実質的な膜厚が増加する。従って、光吸
収層の薄膜化による光吸収量の低減を防ぐことができ
る。
According to the fourth method of the present invention, when a substrate having an uneven surface is used, the light is transmitted without being sufficiently absorbed by the light absorbing layer, and the light reaching the back electrode is irregularly reflected. Diffuse reflection increases the optical path length of light propagating inside the light absorbing layer,
The substantial film thickness in which light is absorbed increases. Therefore, it is possible to prevent a reduction in the amount of light absorption due to the thinning of the light absorption layer.

【0053】本発明の第5の方法によれば、光が入射す
る面の表面が凹凸形態であると、入射した光は乱反射
し、光吸収層内部を伝搬する光の光路長が長くなり、光
が吸収される実質的な膜厚が増加する。従って、光吸収
層の薄膜化による光吸収量の低減を防ぐことができる。
According to the fifth method of the present invention, if the surface on which the light is incident is irregular, the incident light is irregularly reflected, and the optical path length of the light propagating inside the light absorbing layer becomes longer. The substantial film thickness in which light is absorbed increases. Therefore, it is possible to prevent a reduction in the amount of light absorption due to the thinning of the light absorption layer.

【0054】以上から、本発明の薄膜太陽電池の構成を
用いるならば、光吸収層の薄膜化による変換効率の低減
を防ぐことが可能となる。従って、原材料の消費量が少
なく生産エネルギーが小さいエネルギー用太陽電池を大
量に提供できる。
As described above, if the structure of the thin-film solar cell of the present invention is used, it is possible to prevent the conversion efficiency from being reduced by reducing the thickness of the light absorbing layer. Therefore, it is possible to provide a large amount of energy solar cells with low consumption of raw materials and low production energy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施の形態である薄膜太陽電池の断
面模式図
FIG. 1 is a schematic cross-sectional view of a thin-film solar cell according to an embodiment of the present invention.

【図2】本発明の薄膜太陽電池の光吸収層の膜厚に対す
る太陽電池特性の変化を示す図
FIG. 2 is a diagram showing changes in solar cell characteristics with respect to the thickness of a light absorbing layer of the thin-film solar cell of the present invention.

【図3】本発明の薄膜太陽電池の波長に対する量子効率
を示す図
FIG. 3 is a diagram showing quantum efficiency with respect to wavelength of the thin-film solar cell of the present invention.

【図4】本発明の薄膜太陽電池の異なる光吸収層に対す
る太陽電池特性の変化を示す図
FIG. 4 is a diagram showing changes in solar cell characteristics for different light absorbing layers of the thin-film solar cell of the present invention.

【図5】本発明の1実施の形態である薄膜太陽電池の断
面模式図
FIG. 5 is a schematic cross-sectional view of a thin-film solar cell according to an embodiment of the present invention.

【図6】本発明の薄膜太陽電池のMoSe2層の膜厚に
対する太陽電池特性の変化を示す図
FIG. 6 is a diagram showing a change in solar cell characteristics with respect to the thickness of the MoSe2 layer of the thin-film solar cell of the present invention.

【図7】本発明の1実施の形態である薄膜太陽電池の断
面模式図
FIG. 7 is a schematic cross-sectional view of a thin-film solar cell according to an embodiment of the present invention.

【図8】本発明の薄膜太陽電池の波長に対する量子効率
を示す図
FIG. 8 is a diagram showing quantum efficiency with respect to wavelength of the thin-film solar cell of the present invention.

【図9】本発明の1実施の形態である薄膜太陽電池の断
面模式図
FIG. 9 is a schematic cross-sectional view of a thin-film solar cell according to an embodiment of the present invention.

【図10】本発明の薄膜太陽電池の波長に対する量子効
率を示す図
FIG. 10 is a diagram showing quantum efficiency with respect to wavelength of the thin-film solar cell of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 Mo膜(裏面電極膜) 3 Cu(In,Ga)Se2膜(光吸収層) 4 CdS膜(窓層) 5 ZnO膜(窓層) 6 ITO膜(透明電極膜) 7 MgF2膜(反射防止膜) 8 ガラス基板 9 Mo膜(裏面電極膜) 10 MoSe2膜 11 Cu(In,Ga)Se2膜(光吸収層) 12 CdS膜(窓層) 13 ZnO膜(窓層) 14 ITO膜(透明電極膜) 15 MgF2膜(反射防止膜) 16 表面が凹凸形態であるガラス基板 17 Mo膜(裏面電極膜) 18 Cu(In,Ga)Se2膜(光吸収層) 19 CdS膜(窓層) 20 ZnO膜(窓層) 21 ITO膜(透明電極膜) 22 ガラス基板 23 Mo膜(裏面電極膜) 24 Cu(In,Ga)Se2膜(光吸収層) 25 CdS膜(窓層) 26 ZnO膜(窓層) 27 凹凸表面を有するZnO:Al膜(透明導電膜)Reference Signs List 1 glass substrate 2 Mo film (backside electrode film) 3 Cu (In, Ga) Se 2 film (light absorbing layer) 4 CdS film (window layer) 5 ZnO film (window layer) 6 ITO film (transparent electrode film) 7 MgF 2 film (anti-reflection film) 8 glass substrate 9 Mo film (backside electrode film) 10 MoSe 2 film 11 Cu (In, Ga) Se 2 film (light absorption layer) 12 CdS film (window layer) 13 ZnO film (window layer) 14) ITO film (transparent electrode film) 15 MgF2 film (anti-reflection film) 16 Glass substrate having an uneven surface 17 Mo film (back surface electrode film) 18 Cu (In, Ga) Se 2 film (light absorbing layer) 19 CdS film (window layer) 20 ZnO film (window layer) 21 ITO film (transparent electrode film) 22 glass substrate 23 Mo film (backside electrode film) 24 Cu (In, Ga) Se 2 film (light absorbing layer) 25 CdS film (Window layer) 26 ZnO film (Window layer) 27 Has uneven surface ZnO: Al film (transparent conductive film)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小原 直樹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Naoki Ohara 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 膜厚が1μm以下のI族とIII族とVI族元
素からなる半導体薄膜を光吸収層に用いる薄膜太陽電
池。
1. A thin-film solar cell in which a semiconductor thin film having a film thickness of 1 μm or less and comprising a group I, group III or group VI element is used as a light absorbing layer.
【請求項2】 III族元素としてIn及びGaを用いる
光吸収層となるI族とIII族とVI族元素からなる半導体薄
膜において、GaのIII族元素に占める割合が40%以
上である半導体薄膜を用いる請求項1記載の薄膜太陽電
池。
2. A semiconductor thin film comprising a group I, a group III and a group VI element serving as a light absorbing layer using In and Ga as a group III element, wherein Ga accounts for at least 40% of the group III element. The thin-film solar cell according to claim 1, wherein
【請求項3】 III族元素としてIn及びGaを用いる
光吸収層となるI族とIII族とVI族元素からなる半導体薄
膜において、膜の厚さ方向に対しInとGaの組成比の
相対値が変化する分布を有する半導体薄膜を用いる請求
項1記載の薄膜太陽電池。
3. A relative value of a composition ratio of In and Ga in a thickness direction of a semiconductor thin film comprising a group I, a group III, and a group VI element, which is a light absorption layer using In and Ga as a group III element. The thin-film solar cell according to claim 1, wherein a semiconductor thin film having a distribution in which is changed.
【請求項4】 電極膜と光吸収層となる半導体薄膜と窓
層となる半導体薄膜を積層してなる構成を含む薄膜太陽
電池において、III族元素としてIn及びGaを用いる
光吸収層となるI族とIII族とVI族元素からなる半導体薄
膜の膜の厚さ方向に対し、III族元素中に占めるGaの
組成比が電極膜側から窓層側へと減少する分布を有する
半導体薄膜を用いる請求項3記載の薄膜太陽電池。
4. In a thin-film solar cell including a structure in which an electrode film, a semiconductor thin film serving as a light absorbing layer, and a semiconductor thin film serving as a window layer are laminated, I serving as a light absorbing layer using In and Ga as Group III elements. Use a semiconductor thin film that has a distribution in which the composition ratio of Ga in the group III element decreases from the electrode film side to the window layer side in the thickness direction of the semiconductor thin film composed of group III, group III, and group VI elements The thin-film solar cell according to claim 3.
【請求項5】 VI族元素としてSe及びSを用いる光吸
収層となるI族とIII族とVI族元素からなる半導体薄膜に
おいて、SのVI族元素に占める割合が40%以上である
半導体薄膜を用いる請求項1記載の薄膜太陽電池。
5. A semiconductor thin film comprising a group I, a group III and a group VI element serving as a light absorption layer using Se and S as group VI elements, wherein S accounts for at least 40% of the group VI element. The thin-film solar cell according to claim 1, wherein
【請求項6】 VI族元素としてSe及びSを用いる光吸
収層となるI族とIII族とVI族元素からなる半導体薄膜に
おいて、膜の厚さ方向に対しSeとSの組成比の相対値
が変化する分布を有する半導体薄膜を用いる請求項1記
載の薄膜太陽電池。
6. A relative value of a composition ratio of Se and S in a thickness direction of a semiconductor thin film comprising a group I, a group III, and a group VI element serving as a light absorption layer using Se and S as group VI elements. The thin-film solar cell according to claim 1, wherein a semiconductor thin film having a distribution in which is changed.
【請求項7】 電極膜と光吸収層となる半導体薄膜と窓
層となる半導体薄膜を積層してなる薄膜太陽電池におい
て、VI族元素としてSe及びSを用いる光吸収層となる
I族とIII族とVI族元素からなる半導体薄膜の膜の厚さ方
向に対し、VI族元素中に占めるSの組成比が電極膜側か
ら窓層側へと増加する分布を有する半導体薄膜を用いる
請求項6記載の薄膜太陽電池。
7. In a thin-film solar cell in which an electrode film, a semiconductor thin film serving as a light absorbing layer, and a semiconductor thin film serving as a window layer are stacked, the light absorbing layer uses Se and S as Group VI elements.
A semiconductor thin film having a distribution in which the composition ratio of S in the group VI element increases from the electrode film side to the window layer side in the thickness direction of the semiconductor thin film composed of the group I, group III, and group VI elements. The thin-film solar cell according to claim 6, which is used.
【請求項8】 電極となるMo膜、MoとVI族元素の化
合物層、請求項1〜7のいずれかに記載の半導体薄膜を
積層してなる構成を含む薄膜太陽電池。
8. A thin-film solar cell comprising a structure in which a Mo film serving as an electrode, a compound layer of Mo and a group VI element, and the semiconductor thin film according to claim 1 are stacked.
【請求項9】 MoとVI族元素の化合物層の厚みが1μ
m以下である請求項8記載の薄膜太陽電池。
9. The thickness of a compound layer of Mo and a group VI element is 1 μm.
9. The thin-film solar cell according to claim 8, which is not more than m.
【請求項10】 表面が凹凸形態である基体を用いる請
求項1〜9のいずれかに記載の薄膜太陽電池。
10. The thin-film solar cell according to claim 1, wherein a substrate having an uneven surface is used.
【請求項11】 ガラスあるいは焼結体あるいは金属体
のいずれかから構成される基体を用いる請求項10記載
の薄膜太陽電池。
11. The thin-film solar cell according to claim 10, wherein a base made of glass, a sintered body, or a metal body is used.
【請求項12】 平坦な基体上に凹凸形態を有する薄膜
を堆積してなる基体を用いる請求項10記載の薄膜太陽
電池。
12. The thin-film solar cell according to claim 10, wherein a base is formed by depositing a thin film having an uneven shape on a flat base.
【請求項13】 凹凸の山部と谷部の高低差が0.1μ
m以上で10μm以下である基体を用いる請求項10記
載の薄膜太陽電池。
13. The height difference between the peaks and valleys of the irregularities is 0.1 μm.
The thin-film solar cell according to claim 10, wherein a substrate having a size of not less than m and not more than 10 μm is used.
【請求項14】 光が入射する面の表面が凹凸形態であ
る請求項1〜9のいずれかに記載の薄膜太陽電池。
14. The thin-film solar cell according to claim 1, wherein the surface on which light is incident has an uneven shape.
JP9325801A 1997-11-27 1997-11-27 Thin-film solar cell Withdrawn JPH11163376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9325801A JPH11163376A (en) 1997-11-27 1997-11-27 Thin-film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9325801A JPH11163376A (en) 1997-11-27 1997-11-27 Thin-film solar cell

Publications (1)

Publication Number Publication Date
JPH11163376A true JPH11163376A (en) 1999-06-18

Family

ID=18180754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9325801A Withdrawn JPH11163376A (en) 1997-11-27 1997-11-27 Thin-film solar cell

Country Status (1)

Country Link
JP (1) JPH11163376A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086521A1 (en) * 2006-01-30 2007-08-02 Honda Motor Co., Ltd. Solar cell and its manufacturing method
JP2009289955A (en) * 2008-05-29 2009-12-10 Honda Motor Co Ltd Solar cell, and manufacturing method of solar cell
KR101283106B1 (en) * 2011-11-21 2013-07-05 엘지이노텍 주식회사 Solar cell and method for fabricating unsing the same
JP2014120628A (en) * 2012-12-17 2014-06-30 Rohm Co Ltd Photoelectric conversion device and method of manufacturing the same
JP2015162632A (en) * 2014-02-28 2015-09-07 セイコーエプソン株式会社 Photoelectric conversion device, method of manufacturing photoelectric conversion device, and electronic apparatus
WO2022138623A1 (en) * 2020-12-21 2022-06-30 出光興産株式会社 Electrode structure for solar cell and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086521A1 (en) * 2006-01-30 2007-08-02 Honda Motor Co., Ltd. Solar cell and its manufacturing method
JP2007201304A (en) * 2006-01-30 2007-08-09 Honda Motor Co Ltd Solar cell and its manufacturing method
JP2009289955A (en) * 2008-05-29 2009-12-10 Honda Motor Co Ltd Solar cell, and manufacturing method of solar cell
KR101283106B1 (en) * 2011-11-21 2013-07-05 엘지이노텍 주식회사 Solar cell and method for fabricating unsing the same
JP2014120628A (en) * 2012-12-17 2014-06-30 Rohm Co Ltd Photoelectric conversion device and method of manufacturing the same
JP2015162632A (en) * 2014-02-28 2015-09-07 セイコーエプソン株式会社 Photoelectric conversion device, method of manufacturing photoelectric conversion device, and electronic apparatus
WO2022138623A1 (en) * 2020-12-21 2022-06-30 出光興産株式会社 Electrode structure for solar cell and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP6689456B2 (en) Photovoltaic device with transparent tunnel junction
JP3434259B2 (en) Solar cell
US20110056544A1 (en) Solar cell
US20090314337A1 (en) Photovoltaic devices
JP2004311968A (en) Stacked photovoltaic element and method for producing the same
KR102350885B1 (en) Solar cell
KR20120063324A (en) Bifacial solar cell
CN113675289B (en) Photovoltaic cell, preparation method thereof and photovoltaic module
KR20120035756A (en) Solar cell
JP3837114B2 (en) Solar cell
JPH09172193A (en) Thin film solar battery
JPH11163376A (en) Thin-film solar cell
JPH11150282A (en) Photovoltaic element and its manufacture
KR101799580B1 (en) Heteo junction solar cell
JP3606886B2 (en) Solar cell and manufacturing method thereof
JP3130993B2 (en) Solar cell
EP2166578A2 (en) Photovoltaic device and method of manufacturing the same
JP2009033206A (en) Multi-layer photovoltaic element, and method of manufacturing the same
TW201414001A (en) Intentionally-doped cadmium oxide layer for solar cells
CN112466980B (en) Silicon carbide cell
CN219679160U (en) Photovoltaic cell
JPS60111478A (en) Photovoltaic device
TWI464889B (en) Solar cell with heterojunction and method of manufacturing the same
JPH05218480A (en) Solar cell
JP3133449B2 (en) Solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041110

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060515