JP2865258B2 - Plasma CVD equipment - Google Patents

Plasma CVD equipment

Info

Publication number
JP2865258B2
JP2865258B2 JP31559489A JP31559489A JP2865258B2 JP 2865258 B2 JP2865258 B2 JP 2865258B2 JP 31559489 A JP31559489 A JP 31559489A JP 31559489 A JP31559489 A JP 31559489A JP 2865258 B2 JP2865258 B2 JP 2865258B2
Authority
JP
Japan
Prior art keywords
film
plasma
substrate
electrodes
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31559489A
Other languages
Japanese (ja)
Other versions
JPH03175619A (en
Inventor
善行 津田
宏一 小寺
裕二 向井
秀明 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31559489A priority Critical patent/JP2865258B2/en
Publication of JPH03175619A publication Critical patent/JPH03175619A/en
Application granted granted Critical
Publication of JP2865258B2 publication Critical patent/JP2865258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプラズマCVD装置に関するもので、特に大き
な製膜速度で低温製膜が可能なECR(電子サイクロトロ
ン共鳴)プラズマCVD装置で顕著に現れるCVD堆積膜のス
テップカバレージの悪さを改善し、高品質なCVD膜を形
成する装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma CVD apparatus, and more particularly, to a CVD deposited film that appears remarkably in an ECR (electron cyclotron resonance) plasma CVD apparatus capable of forming a film at a low film forming rate at a high film forming speed. The present invention relates to an apparatus for forming a high-quality CVD film by improving poor step coverage.

従来の技術 従来のECR-CVD装置の一例を第5図に示す。これはECR
を用いて高密度のプラズマを発生させ、そのプラズマで
製膜の原料ガスを分解して製膜を行う装置である。マイ
クロ波供給手段1で発生させたマイクロ波は、導波管
2、マイクロ波導入窓3を通って、第1の作動ガス導入
系4および磁界発生手段5、5′を設置したプラズマ室
6に導入される。プラズマ室6内では875ガウス前後のE
CR条件が満たされており、高密度のプラズマが形成され
る。このプラズマは発散磁界7に沿って第2の作動ガス
導入系8、真空排気系9が設置された真空チャンバ10に
導入される。真空チャンバ10内では、プラズマの作用で
第2の作動ガス導入系8からのCVD原料ガスが分解さ
れ、真空チャンバ10内に設置された基板ホルダ11上の被
製膜基板12に薄膜が形成されるが、ECR-CVDでは分解し
たCVD原料ガスのイオン、ラジカルの直進性が高くステ
ップカバレージが悪いので、第6図(a)の模式図に示
すように基板の段差部分での製膜が均一化されない。そ
こで、これを改善するバイアスECR-CVD装置では、第5
図に示すようにRFバイアス電圧を印加する電極13および
RF電源14を設置し、被製膜基板12へのイオン、ラジカル
の直進性を抑制して製膜を行い、第6図(b)の模式図
に示すような製膜の均等化を得ている。
2. Description of the Related Art FIG. 5 shows an example of a conventional ECR-CVD apparatus. This is ECR
This is an apparatus for generating a high-density plasma by using the plasma and decomposing a raw material gas for the film formation by the plasma to form a film. The microwave generated by the microwave supply means 1 passes through the waveguide 2 and the microwave introduction window 3 and enters the first working gas introduction system 4 and the plasma chamber 6 in which the magnetic field generation means 5, 5 'are installed. be introduced. E of around 875 Gauss in plasma chamber 6
The CR condition is satisfied, and a high-density plasma is formed. This plasma is introduced along a diverging magnetic field 7 into a vacuum chamber 10 in which a second working gas introduction system 8 and a vacuum exhaust system 9 are installed. In the vacuum chamber 10, the CVD source gas from the second working gas introduction system 8 is decomposed by the action of plasma, and a thin film is formed on the film formation substrate 12 on the substrate holder 11 installed in the vacuum chamber 10. However, in the ECR-CVD method, the straightness of ions and radicals of the decomposed CVD raw material gas is high and the step coverage is poor, so that the film formation at the step portion of the substrate is uniform as shown in the schematic diagram of FIG. Is not converted. Therefore, in the bias ECR-CVD system to improve this,
As shown in the figure, the electrode 13 for applying the RF bias voltage and
An RF power source 14 is installed to form a film while suppressing the straightness of ions and radicals to the film-forming substrate 12, thereby obtaining a uniform film as shown in the schematic diagram of FIG. 6 (b). I have.

発明が解決しようとする課題 前記のバイアスECR-CVD装置においては、イオン、ラ
ジカルの直進性を抑制した結果、製膜速度が低下し、更
に膜質の若干の低下が現れる。これは大きな製膜速度を
有し、イオンのエネルギを利用して低温製膜が可能なEC
Rプラズマの長所が損なわれることであり、生産におい
てはタクトおよび製品の品質向上が望めず、製品の低コ
スト化および高品質化の大きな課題であった。
Problems to be Solved by the Invention In the above-mentioned bias ECR-CVD apparatus, as a result of suppressing the rectilinearity of ions and radicals, the film formation speed is reduced, and the film quality is slightly reduced. This is a EC that has a large film-forming speed and enables low-temperature film formation using the energy of ions.
The advantage of R-plasma was to be lost. In production, tact and quality of the product could not be improved. Therefore, cost reduction and high quality of the product were major issues.

課題を解決するための手段 本発明のプラズマCVD装置は、プラズマ室、CVDガス導
入系、真空排気系を備えた真空チャンバ内に被製膜基板
を設置する基板ホルダを配し、前記プラズマ室と被製膜
基板の間または被製膜基板の近傍に、複数個の電極を被
製膜基板を中心として円環状または額縁状に設置し、そ
の複数個の電極個々に独立して負の電圧を印加する電源
および配電制御器を設置したものである。更に、個々の
電極に電圧を印加する時期または電極に印加する電圧を
所定のプログラムに従って電源および配電制御器で制御
し、プラズマ室から被製膜基板に向かうプラズマ流の方
向が時間的に変化するようにしたものである。
Means for Solving the Problems The plasma CVD apparatus of the present invention includes a plasma chamber, a CVD gas introduction system, and a substrate holder for installing a film-forming substrate in a vacuum chamber equipped with a vacuum exhaust system. A plurality of electrodes are arranged in a ring or frame around the film-forming substrate between or near the film-forming substrates, and a negative voltage is applied to each of the plurality of electrodes independently. A power supply to be applied and a power distribution controller are installed. Further, the timing of applying a voltage to each electrode or the voltage applied to the electrodes is controlled by a power supply and a power distribution controller according to a predetermined program, and the direction of the plasma flow from the plasma chamber to the film-forming substrate changes with time. It is like that.

作用 本発明のプラズマCVD装置は、ECRプラズマがプラズマ
室から引き出されるプラズマの方向をプラズマ室と被製
膜基板の間に円環状または額縁状に設置した複数個の電
極で制御し、イオン、ラジカルが多方面から被製膜基板
に衝突するので、製膜される薄膜のステップカバレージ
が良好であり、段差部にも均一な膜厚の薄膜が形成され
る。また、イオン、ラジカルの方向のみが変化し、総量
およびエネルギは減少していないので大きな製膜速度で
低温製膜が可能となる。
The plasma CVD apparatus of the present invention controls the direction of the plasma in which the ECR plasma is extracted from the plasma chamber by using a plurality of electrodes arranged in an annular or frame-like shape between the plasma chamber and the film-forming substrate. Collides with the film formation substrate from various directions, the step coverage of the thin film to be formed is good, and a thin film having a uniform film thickness is formed on the step portion. Further, only the direction of ions and radicals changes, and the total amount and energy do not decrease, so that low-temperature film formation can be performed at a high film formation speed.

実施例 以下、本発明の実施例を図面にもとずいて説明する。
第1図は本発明のプラズマCVD装置の概略構成図であ
り、従来例と共通する構成部分には同一の参照番号を付
けている。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a plasma CVD apparatus of the present invention, and the same reference numerals are given to components common to the conventional example.

マイクロ波供給手段1で発生させたマイクロ波は、導
波管2、マイクロ波導入窓3を通って第1の作動ガス導
入系4および磁界発生手段5、5′を設置したプラズマ
室6に導入される。プラズマ室6内では875ガウス前後
のECR条件が満たされており、高密度のプラズマが形成
される。このプラズマは発散磁界に沿って第2の作動ガ
ス導入系8、真空排気系9が設置された真空チャンバ10
に導入される。真空チャンバ10内ではプラズマの作用で
第2の作動ガス導入系8からのCVD原料ガスが分解さ
れ、真空チャンバ10内に設置された基板ホルダ11上の被
製膜基板12に薄膜が形成される。ここで、プラズマ室6
と被製膜基板12の間には複数個の電極15a、15b、15cが
被製膜基板12を中心として円環状または額縁状に設置し
ている。この電極配置の一例を平面的に示したものが第
2図で、長方形にした4個の電極が矩形の被製膜基板12
を中心として額縁状に配置された例である。電極15a、1
5b、15c、15dには各々の電極に独立して電圧を印加する
ため、電源16につながる配電制御器17と個々に接続され
る。個々の電極に電圧を印加する時期または印加する電
圧を所定のプログラムに従って電源16および配電制御器
17で変化させる。
The microwave generated by the microwave supply means 1 is introduced through the waveguide 2 and the microwave introduction window 3 into the first working gas introduction system 4 and the plasma chamber 6 in which the magnetic field generation means 5, 5 'are installed. Is done. In the plasma chamber 6, the ECR condition of about 875 Gauss is satisfied, and high-density plasma is formed. This plasma is generated along a diverging magnetic field by a vacuum chamber 10 in which a second working gas introduction system 8 and a vacuum exhaust system 9 are installed.
Will be introduced. In the vacuum chamber 10, the CVD source gas from the second working gas introduction system 8 is decomposed by the action of plasma, and a thin film is formed on the film formation substrate 12 on the substrate holder 11 installed in the vacuum chamber 10. . Here, the plasma chamber 6
A plurality of electrodes 15 a, 15 b, and 15 c are disposed between the substrate and the film-forming substrate 12 in an annular or frame-like shape around the film-forming substrate 12. FIG. 2 is a plan view showing an example of this electrode arrangement, and four rectangular electrodes are formed on a rectangular film-forming substrate 12.
This is an example in which they are arranged in a frame shape with the center as the center. Electrodes 15a, 1
Each of the electrodes 5b, 15c, and 15d is individually connected to a power distribution controller 17 connected to a power supply 16 in order to apply a voltage to each electrode independently. Power supply 16 and power distribution controller according to a predetermined program
Change with 17.

真空チャンバ10内に電極からの電界が存在しない場合
には、プラズマ室6で発生したプラズマは、第5図の従
来例で示したように磁界発生手段5、5′からの発散磁
界7に沿ってプラズマ流として流出するので、第2の作
動ガス導入系8からの原料ガスから分解した原子または
分子はイオンやラジカルの状態で、そのプラズマ流と同
様の直進性をもって被製膜基板12の上に堆積し薄膜が形
成される。そのとき被製膜基板12の上に段差部19が存在
すると、上記の直進性のために、第6図(a)で示した
ような段差部19に部分的に膜厚の薄い部分が生じる。こ
の薄膜を電気配線に用いた場合は断線の原因になり、絶
縁膜として用いた場合は絶縁不良の原因になる。
When there is no electric field from the electrodes in the vacuum chamber 10, the plasma generated in the plasma chamber 6 follows the diverging magnetic field 7 from the magnetic field generating means 5, 5 'as shown in the conventional example of FIG. As a result, the atoms or molecules decomposed from the source gas from the second working gas introduction system 8 are converted into ions or radicals on the film-forming substrate 12 with the same rectilinearity as the plasma flow. To form a thin film. At this time, if the step portion 19 is present on the film-formed substrate 12, due to the straightness described above, the step portion 19 has a partly thin portion as shown in FIG. 6A. . When this thin film is used for electric wiring, it causes disconnection, and when used as an insulating film, it causes insulation failure.

本発明の実施例においては、第3図(a)に示すよう
にプラズマ室6と被製膜基板12の間に設置した電極15a
に負の電圧を印加すると、プラズマ流は矢印18のように
偏向する。この状態ではイオンやラジカルが被製膜基板
12の段差部19の右側のステップカバレージは良好になる
が、段差部19の左側のステップカバレージは非常に悪
い。そこで電極15aへの電圧印加を停止し、第3図
(b)に示すように電極15cへの電圧印加に切り換える
と、第3図(a)の場合とは逆の方向にプラズマ流が偏
向するので、第1の堆積膜20のステップカバレージが悪
かった部分に第2の堆積膜21が形成され、堆積膜全体と
してステップカバレージが良好な薄膜が形成される。以
上のような個々の電極へ負の電圧の印加の切り換えは、
個々の電極15a、15b、15c、15dと電源16の間に設置され
た配電制御器17で行われる。その制御は、被製膜基板12
の段差部19のスペックで予め決定された所定のプログラ
ムで、電圧印加のON-OFFまたは印加する電圧値の調整で
行われる。第3図に示した例では2個の電極の制御につ
いて述べたが、第2図に示した場合では、長方形の4個
の電極15a、15b、15c、15dに上記と同様、個々の電極に
順次負の電圧の印加を行って、角形の被製膜基板12上に
薄膜形成する。
In the embodiment of the present invention, as shown in FIG. 3 (a), an electrode 15a provided between the plasma chamber 6 and the film forming substrate 12 is formed.
When a negative voltage is applied to the, the plasma flow is deflected as indicated by an arrow 18. In this state, ions and radicals are
The step coverage on the right side of the twelve steps 19 is good, but the step coverage on the left of the steps 19 is very bad. Therefore, when the application of the voltage to the electrode 15a is stopped and the application of the voltage to the electrode 15c is switched as shown in FIG. 3 (b), the plasma flow is deflected in a direction opposite to that in the case of FIG. 3 (a). Therefore, the second deposited film 21 is formed in the portion of the first deposited film 20 where the step coverage is poor, and a thin film having good step coverage is formed as the whole deposited film. Switching of the application of the negative voltage to the individual electrodes as described above
This is performed by a power distribution controller 17 installed between the individual electrodes 15a, 15b, 15c, 15d and the power supply 16. The control is performed on the film substrate 12
This is performed by turning on / off the voltage application or adjusting the voltage value to be applied by a predetermined program predetermined by the specifications of the step portion 19 of FIG. In the example shown in FIG. 3, control of two electrodes has been described. However, in the case shown in FIG. 2, each of the four rectangular electrodes 15a, 15b, 15c, and 15d has the same A negative voltage is sequentially applied to form a thin film on the square film-formed substrate 12.

電極形状に関しては、角形の被製膜基板上に製膜する
場合は、第4図(a)または(b)に示すような形状、
丸形の被製膜基板上に製膜する場合は第4図(c)に示
した形状でもよい。更に、電極の個数も被製膜基板12上
の段差部19のパターンによって変更すればよく、また個
々の電極に負の電圧を印加する順序はプラズマの安定性
が最も良く維持されるように決定すればよい。
Regarding the electrode shape, when a film is formed on a square film-formed substrate, a shape as shown in FIG.
When forming a film on a round film-formed substrate, the shape shown in FIG. 4 (c) may be used. Further, the number of electrodes may be changed according to the pattern of the step portion 19 on the film-formed substrate 12, and the order of applying a negative voltage to each electrode is determined so that the stability of plasma is best maintained. do it.

発明の効果 以上の説明のように、本発明によるプラズマCVD装置
は、プラズマ中のイオン、ラジカルのエネルギを減少さ
せることなく、その直進性を制御することによって、大
きな製膜速度で被製膜基板の段差部にもステップカバレ
ージの良い薄膜を低温で形成できるので、製品の高品質
化および高いスループットと歩留り向上による低コスト
化を実現することができる。
Effect of the Invention As described above, the plasma CVD apparatus according to the present invention controls the straightness of the plasma without reducing the energy of the ions and radicals in the plasma, thereby allowing the substrate to be formed at a high film forming speed. Since a thin film having good step coverage can be formed at a low temperature also on the stepped portion, it is possible to realize high quality of the product, low cost by high throughput and improvement of the yield.

【図面の簡単な説明】 第1図は本発明によるプラズマCVD装置の概略構成図、
第2図は本発明のプラズマCVD装置における電極配置の
一実施例を示した図、第3図(a)および第3図(b)
は本発明のプラズマCVD装置の作用説明図、第4図
(a)および第4図(b)および第4図(c)は電極配
置の他の実施例を示した平面図、第5図は従来のECR-CV
D装置の概略構成因、第6図(a)および第6図(b)
は従来のECR-CVD装置における作用説明図である。 6……プラズマ室 9……真空排気系 10……真空チャンバ 11……基板ホルダ 12……被製膜基板 15……電極 16……電源 17……配電制御器
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of a plasma CVD apparatus according to the present invention,
FIG. 2 is a view showing one embodiment of the electrode arrangement in the plasma CVD apparatus of the present invention, and FIGS. 3 (a) and 3 (b).
FIGS. 4 (a), 4 (b) and 4 (c) are plan views showing another embodiment of the electrode arrangement, and FIGS. Conventional ECR-CV
FIG. 6 (a) and FIG. 6 (b)
FIG. 3 is an operation explanatory view of a conventional ECR-CVD apparatus. 6 Plasma chamber 9 Vacuum evacuation system 10 Vacuum chamber 11 Substrate holder 12 Film substrate 15 Electrode 16 Power supply 17 Power distribution controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安井 秀明 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭62−143418(JP,A) 特開 昭63−33822(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideaki Yasui 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-62-143418 (JP, A) JP-A-63- 33822 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】プラズマ室、CVDガス導入手段、真空排気
手段を備えた真空チャンバ内に被製膜基板を設置する基
板ホルダを配し、前記プラズマ室と被製膜基板の間また
は被製膜基板の近傍に、複数個の電極を被製膜基板を中
心として環状に配置し、前記複数個の電極を個々に時間
的に独立して負の電圧を印加するようにして制御し、プ
ラズマ室から被製膜基板に向かうプラズマ流の方向が時
間的に変化するように構成したことを特徴とするプラズ
マCVD装置。
1. A substrate holder for placing a film-forming substrate in a vacuum chamber provided with a plasma chamber, a CVD gas introducing means, and a vacuum evacuation means. In the vicinity of the substrate, a plurality of electrodes are arranged in a ring around the substrate to be formed, and the plurality of electrodes are individually controlled independently so as to apply a negative voltage in a timely manner. A plasma CVD apparatus characterized in that a direction of a plasma flow from a substrate to a film formation substrate changes with time.
JP31559489A 1989-12-04 1989-12-04 Plasma CVD equipment Expired - Fee Related JP2865258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31559489A JP2865258B2 (en) 1989-12-04 1989-12-04 Plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31559489A JP2865258B2 (en) 1989-12-04 1989-12-04 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPH03175619A JPH03175619A (en) 1991-07-30
JP2865258B2 true JP2865258B2 (en) 1999-03-08

Family

ID=18067237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31559489A Expired - Fee Related JP2865258B2 (en) 1989-12-04 1989-12-04 Plasma CVD equipment

Country Status (1)

Country Link
JP (1) JP2865258B2 (en)

Also Published As

Publication number Publication date
JPH03175619A (en) 1991-07-30

Similar Documents

Publication Publication Date Title
KR100436072B1 (en) Device for Fabricating Film for Plasma-Forming Thin Film
WO2002013225A2 (en) Plasma processing method and apparatus
JP3316490B2 (en) Power supply method to discharge electrode, high frequency plasma generation method, and semiconductor manufacturing method
US20040037971A1 (en) Plasma processing apparatus and processing method
JPH0622205B2 (en) Plasma CVD equipment
JPH08977B2 (en) Plasma CVD method and apparatus
JP2865258B2 (en) Plasma CVD equipment
JPH0658909B2 (en) Film forming method and apparatus by low temperature plasma
JP2823611B2 (en) Plasma CVD equipment
JP2002313744A (en) Plasma treating equipment, plasma treating method, thin film formed by the equipment and the method, substrate and semiconductor device
JPH08264462A (en) Film formation apparatus
JP3144165B2 (en) Thin film generator
JP2761875B2 (en) Deposition film forming equipment by bias sputtering method
JP2002313743A (en) Plasma treating equipment, plasma treating method, thin film formed by the equipment and the method, substrate and semiconductor device
KR100911327B1 (en) Plasma generator
JPH06120153A (en) Film-forming apparatus
KR950003958B1 (en) Thin film manufacturing method by flasma chemical deposition
JP3071657B2 (en) Thin film forming apparatus and thin film forming method
JPH08241797A (en) Plasma treatment device
JP3615919B2 (en) Plasma CVD equipment
JPS62124277A (en) Plasma cvd device
JPS60123021A (en) Amorphous semiconductor film forming device
JPH05160044A (en) Method and device for plasma cvd
JPH08199355A (en) Sputtering device and sputtering
JPS62205618A (en) Plasma cvd unit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees