JP2861152B2 - Lead oxide-hydrogen storage battery and its manufacturing method - Google Patents

Lead oxide-hydrogen storage battery and its manufacturing method

Info

Publication number
JP2861152B2
JP2861152B2 JP1313589A JP31358989A JP2861152B2 JP 2861152 B2 JP2861152 B2 JP 2861152B2 JP 1313589 A JP1313589 A JP 1313589A JP 31358989 A JP31358989 A JP 31358989A JP 2861152 B2 JP2861152 B2 JP 2861152B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
lead oxide
negative electrode
hydrogen
hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1313589A
Other languages
Japanese (ja)
Other versions
JPH03173068A (en
Inventor
伸行 柳原
廣 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1313589A priority Critical patent/JP2861152B2/en
Publication of JPH03173068A publication Critical patent/JPH03173068A/en
Application granted granted Critical
Publication of JP2861152B2 publication Critical patent/JP2861152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電気化学的に水素を吸蔵・放出する水素吸
蔵合金又は水素化物を負極とし、酸化鉛を正極とする酸
化鉛−水素蓄電池とその製造方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead oxide-hydrogen storage battery in which a hydrogen storage alloy or hydride electrochemically storing and releasing hydrogen is used as a negative electrode and lead oxide is used as a positive electrode, and its production. About the method.

従来の技術 一般に、水素を活物質とする水素ガス拡散電極(以
下、水素極という)を負極とし、酸化ニッケルを正極と
するニッケル・水素蓄電池には高圧型と低圧型の2種類
がある。正極に酸化ニッケルを用い、負極には貴金属触
媒を担持した水素極を用い、アルカリ水溶液を電解質と
し、これらを高圧容器内に装着する、いわゆる高圧型ニ
ッケル・水素蓄電池である。この種の蓄電池は高エネル
ギー密度を得られる事から宇宙用として提案されている
(米国特許第3,669,774号,同第3,867,199号,同第3,99
0,910号明細書)。
2. Description of the Related Art In general, there are two types of nickel-hydrogen storage batteries having a hydrogen gas diffusion electrode (hereinafter, referred to as a hydrogen electrode) using hydrogen as an active material as a negative electrode and nickel oxide as a positive electrode, a high-pressure type and a low-pressure type. This is a so-called high-pressure nickel-hydrogen storage battery in which nickel oxide is used for the positive electrode, a hydrogen electrode supporting a noble metal catalyst is used for the negative electrode, an alkaline aqueous solution is used as an electrolyte, and these are mounted in a high-pressure container. This type of storage battery has been proposed for use in space because of its high energy density (U.S. Patent Nos. 3,669,774, 3,867,199, and 3,993).
0,910).

しかし、充電時に水素極より発生する水素が高圧容器
内に高圧状態で充満され、過充電過程に入ると35kg/cm2
まで内圧が上昇して安全性に問題がある。そこで、電池
容器の内圧を下げる対策として、貴金属触媒を担持した
水素極を負極に用い、充電時に水素極から発生する水素
を電池容器内に装着した水素吸蔵合金、例えばRENi5
(REは希土類金属)で吸収し、電池容器内の圧力上昇を
抑制する低圧型ニッケル・水素蓄電池が提案されている
(米国特許3,850,694号,同第3,959,018号明細書)。電
池容器内に水素吸蔵合金を装着する事により過充電状態
でも電池内圧は3〜5kg/cm2程度であり、安全性は高く
なった。これらのニッケル・水素蓄電池では電解質とし
てアルカリ水溶液を用い、正極に酸化ニッケルを用いて
いるために、電池電圧が平均1.2Vである。アルカリ性電
解液ではさらに電圧を高くする事は困難である。
However, when the hydrogen generated from the hydrogen electrode during charging is filled in the high-pressure container under high pressure, and enters the overcharge process, 35 kg / cm 2
Until the internal pressure rises, there is a problem in safety. Therefore, as a countermeasure to lower the internal pressure of the battery container, a hydrogen storage alloy in which a hydrogen electrode supporting a noble metal catalyst is used as a negative electrode and hydrogen generated from the hydrogen electrode during charging is mounted in the battery container, for example, a RENi 5 series (RE is a rare earth element) A low-pressure nickel-metal hydride storage battery has been proposed which absorbs with a metal (metal) and suppresses a rise in the pressure inside the battery container (US Pat. Nos. 3,850,694 and 3,959,018). By mounting the hydrogen storage alloy in the battery container, the internal pressure of the battery was about 3 to 5 kg / cm 2 even in an overcharged state, and the safety was enhanced. In these nickel-metal hydride storage batteries, an alkaline aqueous solution is used as an electrolyte, and nickel oxide is used for a positive electrode. Therefore, the battery voltage is 1.2 V on average. It is difficult to further increase the voltage with an alkaline electrolyte.

そこで、さらに電池電圧を向上させるために硫酸水溶
液を電解質とし、酸化鉛からなる正極と貴金属触媒を担
持したカーボン材料からなる水素ガス拡散電極(水素
極)からなる負極を用い、これらを高圧容器内に装着し
た高圧型の酸化鉛−水素蓄電池を提案している(米国特
許第4,467,020号明細書)。この酸化鉛−水素蓄電池は
正極に酸化鉛を用い、負極には貴金属(Pt−Pd)触媒を
担持したカーボン材料からなる水素極を用い、酸性電解
液と正・負極をセパレータと共に高圧容器内に装着する
高圧型の蓄電池である。この蓄電池は酸化鉛を用いるの
で、重量増加となり飛躍的な高エネルギー密度化には結
びつかないが、電池電圧が1.7〜1.8Vとなり、アルカリ
蓄電池の1.2Vよりは高くなる特徴を有する。
Therefore, in order to further improve the battery voltage, a sulfuric acid aqueous solution is used as an electrolyte, and a positive electrode made of lead oxide and a negative electrode made of a hydrogen gas diffusion electrode (hydrogen electrode) made of a carbon material carrying a noble metal catalyst are used. (US Pat. No. 4,467,020). This lead oxide-hydrogen storage battery uses lead oxide for the positive electrode, a hydrogen electrode made of a carbon material carrying a noble metal (Pt-Pd) catalyst for the negative electrode, and an acidic electrolyte and positive and negative electrodes together with a separator in a high-pressure container. It is a high-voltage storage battery to be mounted. Since this storage battery uses lead oxide, the weight increases and does not lead to a dramatic increase in energy density, but the battery voltage is 1.7 to 1.8 V, which is higher than 1.2 V of the alkaline storage battery.

発明が解決しようとする課題 前記の酸化鉛からなる正極と、水素極とからなる負極
と、酸性水溶液からなる電解液を用いる酸化鉛−水素蓄
電池は充電中に水素極より水素が発生し、過充電状態に
なると電池容器内の圧力は30kg/cm2以上に上昇する、い
わゆる高圧型の蓄電池に属し、同様に安全性の点で問題
となる。一般に用いられている鉛蓄電池のエネルギー密
度よりは大きくなるが、水素極に水素酸化用の貴金属触
媒を使用するために電極自体が鉛電極と比べて非常に高
価となると言う課題を有している。
Problems to be Solved by the Invention In a lead oxide-hydrogen storage battery using the above-described positive electrode made of lead oxide, the negative electrode made of a hydrogen electrode, and an electrolytic solution made of an acidic aqueous solution, hydrogen is generated from the hydrogen electrode during charging, and excessive When the battery is charged, the pressure in the battery container rises to 30 kg / cm 2 or more, which belongs to a so-called high-pressure storage battery, and similarly poses a problem in terms of safety. Although it is larger than the energy density of commonly used lead-acid batteries, it has the problem that the electrode itself is very expensive compared to the lead electrode because a noble metal catalyst for hydrogen oxidation is used for the hydrogen electrode. .

課題を解決するための手段 本発明は酸化鉛からなる正極と、水素を電気化学的に
吸蔵および放出する水素吸蔵合金又は水素化物を主成分
とする負極と、前記正・負極を分離する耐酸性のセパレ
ータとが酸性水溶液からなる電極液と共に電槽内に配置
されているものであって、電解液濃度,液量,負極を構
成する水素吸蔵合金又は水素化物の水素平衡解離圧力,
組成,集電体材質等を規制したものである。
Means for Solving the Problems The present invention provides a positive electrode made of lead oxide, a negative electrode mainly composed of a hydrogen storage alloy or hydride that electrochemically stores and releases hydrogen, and an acid-resistant separator that separates the positive and negative electrodes. Is disposed in the battery case together with an electrode solution composed of an acidic aqueous solution, and the electrolyte concentration, the liquid volume, the hydrogen equilibrium dissociation pressure of the hydrogen storage alloy or hydride constituting the negative electrode,
The composition, current collector material, etc. are regulated.

本発明はまた、酸化鉛からなる正極と、水素を電気化
学的に吸蔵・放出する水素吸蔵合金又は水素化物からな
る負極との間にセパレータを介して渦巻状に巻回した電
極体あるいは複数の正極と負極を板状に積層した電極体
を金属製あるいは樹脂製電槽に収納し、酸性電解液を注
入した状態で封口し密閉化したものであって、電極容量
比率,電解液濃度,電解液量,などを規制し、さらには
負極体表面,水素吸蔵合金粒子表面に炭素粉末層あるい
は触媒を含む水素吸蔵合金,水素化物からなる負極を用
いたものである。
The present invention also provides an electrode or a plurality of spirally wound electrodes via a separator between a positive electrode made of lead oxide and a negative electrode made of a hydrogen storage alloy or hydride that electrochemically stores and releases hydrogen. An electrode body in which a positive electrode and a negative electrode are laminated in a plate shape is housed in a metal or resin container, sealed and sealed with an acidic electrolyte injected, and has an electrode capacity ratio, electrolyte concentration, The liquid amount and the like are regulated, and a negative electrode made of a hydrogen storage alloy containing a carbon powder layer or a catalyst or a hydride is used on the surface of the negative electrode body or the surface of the hydrogen storage alloy particles.

さらにまた本発明は、正極と負極の間に耐酸性の陽イ
オン交換樹脂単独か又は多孔性補強体,分離板と一緒に
陽イオン交換樹脂膜が酸性水溶液からなる電解液と共に
電槽内に配置された、あるいは負極体表面,水素吸蔵合
金粒子表面に耐酸性の陽イオン交換樹脂薄膜を形成させ
た酸化鉛−水素蓄電池とその製造方法を提供するもので
ある。
Furthermore, the present invention provides a method in which an acid-resistant cation exchange resin alone or a cation exchange resin membrane together with a porous reinforcing member and a separator is disposed in a battery container together with an electrolytic solution comprising an acidic aqueous solution between a positive electrode and a negative electrode. It is intended to provide a lead oxide-hydrogen storage battery in which an acid-resistant cation exchange resin thin film is formed on the surface of a negative electrode body or hydrogen storage alloy particles, and a method of manufacturing the same.

作用 酸性水溶液を電解液とする酸性蓄電池の正極を構成す
るPbO2(二酸化鉛)の電極電位は、カ性カリ水溶液を電
解液とするアルカリ蓄電池の正極を構成するNiOOH(オ
キシ水酸化ニッケル又は通常酸化ニッケルとも言う)の
電極電位より高いので、電池電圧が高くなる。即ち、ア
ルカリ蓄電池の開路電圧は1.35V(NiOOHの電極電位0.
52Vと、MH(金属水素化物)の電極(水素極)電位0.8
3Vとの電位差)に対して、酸性蓄電池の開路電圧は2.07
V(PbO2の単極電位2.07Vと、MHの電極(水素極)電位
0Vとの電位差)である故に約0.7V程開路電圧が高くな
る。また、当然の事であるが、5時間率負荷で放電した
時の平均電圧も0.5〜0.6V高くなる。
Function The electrode potential of PbO 2 (lead dioxide), which constitutes the positive electrode of an acidic storage battery using an acidic aqueous solution as an electrolyte, is NiOOH (nickel oxyhydroxide or normal) which constitutes the positive electrode of an alkaline storage battery using a potassium hydroxide aqueous solution as an electrolyte. (Also referred to as nickel oxide), the battery voltage is higher. That is, the open-circuit voltage of the alkaline storage battery is 1.35 V (the electrode potential of NiOOH is 0.
52V, MH (metal hydride) electrode (hydrogen electrode) potential 0.8
Open-circuit voltage of the acid storage battery is 2.07
V (PbO 2 unipolar potential 2.07V and MH electrode (hydrogen electrode) potential
(A potential difference from 0 V), the open circuit voltage increases by about 0.7 V. Also, needless to say, the average voltage when discharging at a load of 5 hours is increased by 0.5 to 0.6 V.

この様に、高い電圧を示す作用を有するので、積層電
池を構成する時に非常に有利である。しかも、Pbの利用
率とMHの利用率を比較すると、Pbが約25%に対してMHは
殆んど100%に近く、1g当りの実質容量はPbの場合が0.0
8Ah,MHの場合が水素吸蔵量によって0.2〜0.5Ahまで期待
できる。したがって、PbをMHに代える事によって、高エ
ネルギー密度化が図れる。また、MHの水素平衡解離圧
力,生成熱、あるいは電解液濃度,電解液量を規制する
事により、過充電時のガス吸収反応を促進する作用と、
高容量化が付加され、密閉化と高エネルギー密度化の可
能性を有している。この作用を電極反応式で表わすと次
の様になる。
As described above, since it has a function of showing a high voltage, it is very advantageous when forming a laminated battery. Moreover, when comparing the Pb utilization rate with the MH utilization rate, MH is almost 100% with respect to Pb of about 25%, and the actual capacity per gram of Pb is 0.0%.
In the case of 8Ah and MH, 0.2 ~ 0.5Ah can be expected depending on the amount of hydrogen storage. Therefore, high energy density can be achieved by replacing Pb with MH. In addition, by regulating the hydrogen equilibrium dissociation pressure of MH, the heat of formation, or the concentration of the electrolyte and the amount of the electrolyte, the function of accelerating the gas absorption reaction during overcharging,
High capacity is added, and it has the possibility of sealing and high energy density. This action is represented by the electrode reaction formula as follows.

過充電状態になると、電解液中の水が分解して正極か
ら酸素が発生し、負極においてMH2+1/2O2→M+H2Oの
反応により、酸化ガスを速やかに負極で吸収して水に戻
すとともに負極での反応M+2H++2e→MH2で示す様に、
負極からの水素ガス発生を抑え、電池の密閉化を可能に
する事になる。
When the battery is overcharged, water in the electrolytic solution is decomposed to generate oxygen from the positive electrode. The reaction of MH 2 + 1 / 2O 2 → M + H 2 O at the negative electrode promptly absorbs the oxidizing gas at the negative electrode to form water. as shown in reaction M + 2H + + 2e → MH 2 at the negative electrode with return,
Hydrogen gas generation from the negative electrode is suppressed, and the battery can be hermetically sealed.

実施例 以下、実施例に従って詳細に説明する。Example Hereinafter, an example will be described in detail.

実施例1 まず初めに、市販のTi(チタン),Zr(ジルコニウ
ム),Mg(マグネシウム),Ni(ニッケル),Al(アルミ
ニウム)の各試料を一定の組成比に秤量し、水冷銅るつ
ぼ中に入れ10-4〜10-5Torrまで真空吸引し、次にアルゴ
ンを含む状態でアーク放電には加熱融触させ、合金組成
の一例として、Ti1.4Zr0.4Mg0.2Ni0.8Al0.2を主成分と
する合金を製造した。この合金はA2B型(A:Ti,Zr,Mg、
B:Ni,Al)の結晶構造を有し、酸性溶液中に浸漬すると
表面が一部酸化されて耐酸性の被膜を形成し、耐食性を
保持している。この一度酸性溶液中で処理して表面に耐
酸性被膜を形成した合金を水洗,乾燥した後、さらに粉
砕機で30μm以下まで細かく粉砕し、負極用合金粉末と
した。つぎにこの合金粉末に結着剤として耐酸性樹脂例
えば、ポリビニルアルコール,フッ素樹脂,ポリエチレ
ン樹脂などを1種以上加えてペースト状となし、鉛合金
からなるリード板付のエキスパンドメタル格子内部に、
このペースト状合金粉末を充てんした後、加圧・乾燥し
て負極板とした。ここでは負極板を複数枚耐酸性のある
セパレータを介して通常の酸化鉛(PbO2)からなる正極
板と、交互に積層組合せて単電池を構成した。電解液と
しては濃度35〜40wt%の硫酸水溶液、電解液量は約10ml
/Ahとした。
Example 1 First, commercially available samples of Ti (titanium), Zr (zirconium), Mg (magnesium), Ni (nickel), and Al (aluminum) were weighed to a fixed composition ratio, and placed in a water-cooled copper crucible. Vacuum suction to 10 -4 to 10 -5 Torr, and then heat welding to arc discharge in a state containing argon, as an example of alloy composition, Ti 1.4 Zr 0.4 Mg 0.2 Ni 0.8 Al 0.2 Alloys were produced. This alloy is A 2 B type (A: Ti, Zr, Mg,
(B: Ni, Al), and when immersed in an acidic solution, the surface is partially oxidized to form an acid-resistant film, thereby maintaining corrosion resistance. The alloy once treated in an acidic solution to form an acid-resistant film on the surface was washed with water and dried, and then finely pulverized by a pulverizer to 30 μm or less to obtain an alloy powder for a negative electrode. Next, at least one kind of acid-resistant resin such as polyvinyl alcohol, fluorine resin, polyethylene resin, etc. is added as a binder to the alloy powder to form a paste, and inside the expanded metal lattice with a lead plate made of a lead alloy,
After filling this paste-like alloy powder, it was pressed and dried to obtain a negative electrode plate. Here, a unit cell was formed by alternately stacking and combining a plurality of negative electrode plates with a positive electrode plate made of ordinary lead oxide (PbO 2 ) via an acid-resistant separator. As the electrolytic solution, an aqueous solution of sulfuric acid with a concentration of 35-40% by weight, the amount of the electrolytic solution is about 10 ml.
/ Ah.

また、正極律速になる様に負極容量よりも正極容量を
小さくした。正極容量として極板1枚当り1Ahの電極板
を5枚使用し、5Ahの電池を試作した。負極板は電極群
の左右の外側に位置する様、7枚構成とした。この電池
をAとした。その電池の構成を第1図に示す。この電池
は水素吸蔵合金又は水素化物からなる負極1と、セパレ
ータ2を介してPbO2からなる正極3が配置される様に正
極と負極が交互に積層され、この電極群を電槽4内に電
解液5と共に配置し、注液栓6のある蓋7を取付け、蓋
の上部に設けた正極端子8,負極端子9から出力を取り出
すようにしたものである。
Further, the capacity of the positive electrode was made smaller than the capacity of the negative electrode so as to control the positive electrode. A 5 Ah battery was prototyped using five electrode plates of 1 Ah per electrode plate as the positive electrode capacity. Seven negative plates were provided so as to be positioned on the left and right sides of the electrode group. This battery was designated as A. FIG. 1 shows the configuration of the battery. In this battery, a negative electrode 1 made of a hydrogen storage alloy or a hydride, and a positive electrode 3 and a negative electrode are alternately stacked such that a positive electrode 3 made of PbO 2 is arranged via a separator 2. It is arranged together with the electrolytic solution 5 and a lid 7 having a liquid injection plug 6 is attached, and an output is taken out from a positive electrode terminal 8 and a negative electrode terminal 9 provided on the upper part of the lid.

充・放電はすべて0.2C(5時間率)とし、充電は正極
容量の150%まで充電して、電池容量,電池電圧よりエ
ネルギー密度を算出し、サイクル寿命を測定した。
The charge and discharge were all performed at 0.2 C (5 hour rate), the charge was performed up to 150% of the positive electrode capacity, the energy density was calculated from the battery capacity and the battery voltage, and the cycle life was measured.

実施例2 負極に用いる水素吸蔵合金として、Mm(ミッシュメタ
ル:希土類金属の混合物),Ti(チタン),Zr(ジルコニ
ウム),Ni(ニッケル),Co(コバルト),Al(アルミニ
ウム)の各試料を一定の組成比に秤量し、カーボンるつ
ぼ、カルシヤるつぼ等の耐熱容器内に入れ、10-4〜10-5
Torrまで真空吸引し、高周波誘導加熱によって加熱溶解
させ、合金組成の一例として、Mm0.8Ti0.1Zr0.1Ni4.0Co
0.7Al0.3を主成分とする合金を製造した。この合金はAB
5型(A:Mm,Ti,Zr、B:Ni,Co,Al)の結晶構造を有し、酸
性溶解液中に浸漬すると表面が酸化を受け、耐酸性の被
膜を形成するために耐食性を保持している。一度酸性溶
液中で処理した合金を水洗・乾燥した後、さらに粉砕機
で30μm以下まで細かく粉砕し、負極用合金粉末とし
た。つぎにこの合金粉末に結着剤としてフッ素樹脂の水
性分散液を加えてペースト状となし、リード取付け済み
の炭素繊維,炭素フェルト(不織布)からなる多孔体内
部に充てんした後、加圧し、不活性雰囲気中で熱処理し
て負極板とした。この負極をセパレータを介して酸化鉛
(PbO2)からなる正極と交互に積層・組合せて単電池を
構成した。この電池をBとする。電池の構成は実施例1
と全く同じ条件である。
Example 2 As a hydrogen storage alloy used for a negative electrode, each sample of Mm (Misch metal: a mixture of rare earth metals), Ti (titanium), Zr (zirconium), Ni (nickel), Co (cobalt), and Al (aluminum) was used. Weigh to a certain composition ratio, put in a heat-resistant container such as a carbon crucible, a calcium crucible, etc., 10 -4 to 10 -5
Vacuum suction to Torr, heat and melt by high frequency induction heating, as an example of alloy composition, Mm 0.8 Ti 0.1 Zr 0.1 Ni 4.0 Co
An alloy containing 0.7 Al 0.3 as a main component was manufactured. This alloy is AB
It has a type 5 (A: Mm, Ti, Zr, B: Ni, Co, Al) crystal structure. When immersed in an acidic solution, the surface is oxidized and forms an acid-resistant film, which results in corrosion resistance. keeping. After the alloy once treated in an acidic solution was washed with water and dried, the alloy was further finely pulverized to 30 μm or less by a pulverizer to obtain an alloy powder for a negative electrode. Next, an aqueous dispersion of a fluororesin is added to this alloy powder as a binder to form a paste, which is filled into a porous body made of carbon fibers and carbon felt (non-woven fabric) to which leads have been attached. Heat treatment was performed in an active atmosphere to obtain a negative electrode plate. The negative electrode was alternately stacked and combined with a positive electrode made of lead oxide (PbO 2 ) via a separator to form a unit cell. This battery is designated as B. Example 1 Battery Configuration
This is exactly the same condition.

実施例3 実施例1において、負極用の水素吸蔵合金の中にPt
(白金),Pd(パラジウム),Ru(ルテニウム),Rh(ロ
ジウム)などの貴金属を1種以上0.1〜1mg/cm2程添加し
た電極を用い、電解液は硫酸濃度30〜45wt%,7ml/Ahと
し、電槽は注液口をなくし、正・負極端子のみを取付け
完全密閉状態とした。充電は10時間率(0.1C)で正極容
量の150%充電し、0.2Cで放電し、その時の放電容量,
端子電圧を測定した。この記述以外は実施例1と全く同
じ電極の製造方法であり、その密閉型電池の構造の一例
を第2図に示す。この電池をCとする。この電池は水素
吸蔵合金又は水素化物からなる負極11とセパレータ12を
介してPbO2からなる正極13が配置される様に正極と負極
が交互に積層され、この電極群を電槽14内に電解液15と
共に配置し、完全密閉可能な様に蓋16を取付け、蓋の上
部より正極端子17,負極端子18から負荷を取り出すよう
にしたものである。密閉型電池で、過充電時に発生する
酸素ガスの吸収能力を高めるために、開放時よりは電解
液量を少なく規制している。また、安全対策の面から電
池の蓋に安全弁を設ける事もできる。電解液量の減少を
極力抑制し、メンテナンスフリーの電池とする事も可能
である。
Example 3 In Example 1, Pt was added to the hydrogen storage alloy for the negative electrode.
(Platinum), Pd (palladium), Ru (ruthenium), Rh (rhodium), etc. One or more noble metals such as 0.1 to 1 mg / cm 2 are added. Electrolyte is sulfuric acid concentration 30 to 45 wt%, 7 ml / Ah, the battery case had no injection port, and only the positive and negative terminals were attached to make it completely sealed. Charging is performed at a rate of 10 hours (0.1 C), charging 150% of the positive electrode capacity, discharging at 0.2 C, and discharging capacity at that time.
The terminal voltage was measured. Except for this description, the manufacturing method of the electrode is exactly the same as that of Example 1. An example of the structure of the sealed battery is shown in FIG. This battery is designated as C. In this battery, a positive electrode and a negative electrode are alternately laminated such that a negative electrode 11 made of a hydrogen storage alloy or hydride and a positive electrode 13 made of PbO 2 are arranged via a separator 12, and this electrode group is electrolyzed in a battery case 14. A lid 16 is attached so as to be placed together with the liquid 15 and can be completely sealed, and a load is taken out from the positive terminal 17 and the negative terminal 18 from the upper part of the lid. In a sealed battery, the amount of electrolyte is regulated to be smaller than when the battery is open in order to increase the ability to absorb oxygen gas generated during overcharge. Also, a safety valve can be provided on the battery lid for safety measures. It is also possible to suppress the decrease in the amount of the electrolytic solution as much as possible and to obtain a maintenance-free battery.

実施例4 実施例1において、負極として水素吸蔵合金粒子の表
面にカーボン粉末で包囲した電極を用いた以外は、すべ
て実施例1と同じ電極製法,電池構成である。この電池
をDとする。
Example 4 In Example 1, the electrode manufacturing method and battery configuration were the same as in Example 1 except that an electrode in which the surface of the hydrogen storage alloy particles was surrounded by carbon powder was used as the negative electrode. This battery is designated as D.

実施例5 実施例2において、水素吸蔵合金からなる負極板の表
面に炭素粉末を結合剤と共に塗着し、炭素粉末層を形成
した電極を用いる以外は実施例2と全く同じ電極製法を
用い、電池を構成した。この電池をEとする。
Example 5 In Example 2, the same electrode manufacturing method as in Example 2 was used except that carbon powder was applied together with a binder onto the surface of the negative electrode plate made of a hydrogen storage alloy, and an electrode having a carbon powder layer was used. A battery was configured. This battery is designated as E.

実施例6 実施例1において、セパレータの代わりに補強体と一
体化した陽イオン交換膜を単独かあるいは多孔性分離板
と共に用いた以外はすべて実施例1と同じ電極製法で電
池を構成した。この電池をFとする。
Example 6 A battery was constructed in the same manner as in Example 1, except that the cation exchange membrane integrated with the reinforcing member was used alone or in combination with the porous separator in place of the separator. This battery is designated as F.

実施例7 実施例2において、水素吸蔵合金粒子表面に陽イオン
交換樹脂薄膜を形成している負極を用いる以外はすべて
実施例2と同じ電極製法で、電池を構成した。この電池
をGとする。
Example 7 A battery was constructed in the same manner as in Example 2 except that a negative electrode in which a cation exchange resin thin film was formed on the surface of the hydrogen storage alloy particles was used. This battery is designated as G.

実施例8 実施例2において、水素吸蔵合金からなる負極板の表
面に陽イオン交換樹脂薄膜を形成させた負極を用いる以
外はすべて実施例2と同じ電極製法で電池を構成した。
この電池をHとする。
Example 8 A battery was constructed in the same manner as in Example 2 except that a negative electrode in which a cation exchange resin thin film was formed on the surface of a negative electrode plate made of a hydrogen storage alloy was used.
This battery is designated as H.

以上の各実施例で形成した電池の電圧,負極容量,サ
イクル寿命,エネルギー密度(Wh/kg)を測定した結果
を比較例と合わせて表1に示す。
Table 1 shows the results of measurement of the voltage, negative electrode capacity, cycle life, and energy density (Wh / kg) of the batteries formed in each of the above Examples, together with Comparative Examples.

但し、比較例1は一般に市販されている密閉型鉛蓄電
池である。
However, Comparative Example 1 is a sealed lead-acid battery that is generally commercially available.

比較例2は一般に市販されている密閉型Ni−Cd蓄電池
である。
Comparative Example 2 is a commercially available sealed Ni-Cd storage battery.

比較例3は高圧容器内にニッケル正極,セパレータを
介して水素極(白金触媒担持ニッケル焼結体)をアルカ
リ性電解液と共に配置した公知の高圧型Ni/H2蓄電池で
ある。
Comparative Example 3 is a known high-pressure Ni / H 2 storage battery in which a hydrogen electrode (a platinum catalyst-supported nickel sintered body) is disposed in a high-pressure container via a nickel positive electrode and a separator together with an alkaline electrolyte.

比較例4は高圧容器内に酸化鉛正極,セパレータを介
して水素極(白金触媒担持カーボン多孔体)を酸性電解
液と共に配置した高圧型Ni/H2蓄電池である。
Comparative Example 4 is a high-pressure Ni / H 2 storage battery lead oxide positive electrode, a hydrogen electrode through the separator (platinum catalyst-carrying carbon porous body) was placed together with the acid electrolyte in the high pressure vessel.

実施例3における電池C以外は、開放型あるいは半密
閉型電池として、比較例電池と比較した。
The batteries other than the battery C in Example 3 were compared with the batteries of Comparative Example as open or semi-closed batteries.

比較例1の密閉型鉛蓄電池と比較すると、本実施例の
電池の電圧は低いが、高容量の負極を採用しているの
で、軽量化,あるいは高容量につながりエネルギー密度
が大きくなる。活物質の電極における化学変化が少なく
なるので長寿命となっている。
Compared with the sealed lead-acid battery of Comparative Example 1, although the voltage of the battery of this embodiment is lower, the adoption of a high-capacity negative electrode leads to a reduction in weight or a higher capacity, resulting in a higher energy density. Since the chemical change in the electrode of the active material is reduced, the life is long.

比較例2の密閉型Ni−Cd蓄電池と比較すると本実施例
の電池電圧は0.5〜0.6V/セル程高く、高容量の負極を用
いているのでエネルギー密度も約25%程大きい。開放型
電池でも同様な傾向にある。また過充電時の内圧は殆ん
ど大差ないが、サイクル寿命が約20%程度短かくなる
が、低コスト化が可能となる特徴を有する。一方、比較
例3の高圧型ニッケル・水素蓄電池と比較すると、本実
施例の電池電圧は0.5〜0.6V/セル程高く、過充電時の電
池内圧は約1/10程である。したがって比較例の電池より
は安全性が高くなる。比較例の電池は活物質として高圧
状の水素ガスを用いるので、長寿命化,高エネルギー密
度化にはなるが、安全性の点で問題が残る。
Compared with the sealed Ni-Cd storage battery of Comparative Example 2, the battery voltage of this embodiment is higher by about 0.5 to 0.6 V / cell, and the energy density is about 25% higher because a high capacity negative electrode is used. The same tendency applies to open batteries. The internal pressure during overcharge is almost the same, but the cycle life is shortened by about 20%, but the cost can be reduced. On the other hand, as compared with the high-pressure nickel-metal hydride storage battery of Comparative Example 3, the battery voltage of this embodiment is higher by about 0.5 to 0.6 V / cell, and the internal pressure of the battery at the time of overcharge is about 1/10. Therefore, the safety is higher than the battery of the comparative example. Since the battery of the comparative example uses high-pressure hydrogen gas as an active material, the battery life is increased and the energy density is increased, but a problem remains in terms of safety.

比較例4の高圧型ニッケル・水素蓄電池と比較する
と、本実施例の電池は過充電時の電池内圧が約1/10程低
く、非常に安全性が高くなっている。しかもエネルギー
密度,サイクル寿命も殆んど大差がない。
Compared to the high-pressure nickel-metal hydride storage battery of Comparative Example 4, the battery of this example has a battery internal pressure at the time of overcharging that is about 1/10 lower, and thus has extremely high safety. Moreover, there is almost no difference in energy density and cycle life.

本発明の電池の中で、開放型電池よりは密閉型電池の
方が、過充電時のガス吸収能を考慮して電解液量が規制
されているので負極容量が少し低く、サイクル寿命が少
し短かくなっている。その電解液量によってエネルギー
密度も影響を受ける事となる。
Among the batteries of the present invention, the sealed type battery has a slightly lower negative electrode capacity and a shorter cycle life than the open type battery because the amount of the electrolyte is regulated in consideration of the gas absorption capacity during overcharge. It is getting shorter. The energy density is also affected by the amount of the electrolyte.

本発明の電池Cの様に水素吸蔵合金の中に貴金属触媒
1種添加する事により、過充電時に正極から発生する酸
素ガスを負極で効率よく吸収させる事ができる。この作
用が電池内圧の上昇を抑制する事になる。
By adding one kind of noble metal catalyst to the hydrogen storage alloy as in the battery C of the present invention, oxygen gas generated from the positive electrode during overcharge can be efficiently absorbed by the negative electrode. This action suppresses an increase in battery internal pressure.

また、負極を構成する水素吸蔵合金は表面に耐食性の
被膜が形成されているとは言え、耐酸性は十分とは言え
ない。そこで、本発明の電池D・Eの様に、負極を構成
する水素吸蔵合金粒子の表面、あるいは負極板表面に耐
酸性の強い炭素粉末層を形成させ、酸性電解液に対して
水素吸蔵合金を保護したものである。表1からもわかる
様に本発明の電池D・Eは炭素粉末処理の電池よりは長
寿命化の傾向にある。500回の充・放電をくりかえした
後、負極を取り出して調べて見ても、負極の破損が比較
的少ない事を確かめている。
In addition, it can be said that the hydrogen-absorbing alloy constituting the negative electrode has a corrosion-resistant film formed on the surface, but does not have sufficient acid resistance. Thus, as in the batteries D and E of the present invention, a highly acid-resistant carbon powder layer is formed on the surface of the hydrogen storage alloy particles constituting the negative electrode or on the surface of the negative electrode plate, and the hydrogen storage alloy is applied to the acidic electrolyte. Protected. As can be seen from Table 1, the batteries D and E of the present invention tend to have a longer life than the batteries treated with carbon powder. After 500 charge / discharge cycles, the negative electrode was taken out and inspected, confirming that the damage to the negative electrode was relatively small.

つぎに、本発明の電池F・G・Hの様に、セパレータ
の代わりに、陽イオン(H+)のみを透過する陽イオン交
換膜(商品名:ナフイオン117)を用いたり、負極を構
成する水素吸蔵合金粒子の表面、あるいは負極板表面に
陽イオン交換樹脂の薄膜を形成させ、酸性電解液との接
触を少なくし、水素吸蔵合金の腐食を防止している。表
1からもわかる様に本発明の電池F・G・Hは陽イオン
交換膜、あるいは陽イオン交換樹脂薄膜を用いない電池
よりは長寿命化の傾向にある。500回充・放電をくりか
えした後、負極を取り出して調べると、負極の破損が少
なく、ほぼ原形をとどめている。水素吸蔵合金が酸性電
解液と殆んど接触せず、陽イオン交換膜を通して陽イオ
ン(H+)のみと反応しているためである。陽イオン交換
膜は厚くなると抵抗が大きくなるので、機械的強度を保
持できる程度の薄い膜の方がよい。
Next, like the battery FGH of the present invention, instead of the separator, a cation exchange membrane (trade name: Nafion 117) that transmits only cations (H + ) is used, or a negative electrode is formed. A thin film of a cation exchange resin is formed on the surface of the hydrogen storage alloy particles or on the surface of the negative electrode plate to reduce contact with an acidic electrolyte and prevent corrosion of the hydrogen storage alloy. As can be seen from Table 1, the batteries F, G, and H of the present invention tend to have a longer life than batteries that do not use a cation exchange membrane or a cation exchange resin thin film. After 500 charge / discharge cycles, the negative electrode was taken out and examined. This is because the hydrogen storage alloy hardly comes into contact with the acidic electrolyte and reacts only with cations (H + ) through the cation exchange membrane. Since the resistance of the cation exchange membrane increases as the thickness increases, a membrane that is thin enough to maintain the mechanical strength is better.

本実施例では電解液に濃度35〜40wt%の硫酸水溶液を
用いたが、さらに広範囲25〜50wt%(6.4〜13.7N)の電
解液であってもよい。硫酸濃度が低くなり過ぎると電解
液の抵抗が大きくなり、電池電圧容量が低下する。逆に
電解液濃度が高くなり過ぎると正極活性物質の利用率が
異常に上昇し、より微細化が進み、又は電極の腐食度合
が大きくなるので、正極及び負極の寿命が短くなる。し
たがって、電解液濃度は25wt%〜50wt%(6.4〜13.7N)
が最適な範囲である。また、容量規制する電極によっ
て、電池容量が決まって来るので、電解液量が少な過ぎ
ると正極の利用率が低下すると共に電池内部抵抗の増大
を伴なうので、電池容量規制する電極容量の1Ah当り少
なくとも5ml以上を必要とする。電解液量が多すぎると
電解液の抵抗は小さくなるが、活物質の脱落(とくに開
放電池の場合)が多くなり、サイクル寿命が短かくなる
問題点を有し、1Ah当り15ml以下が望ましい。したがっ
て、開放型電池の電解液量の最適範囲は放電容量規定す
る電極の実質容量1Ah当り5〜15mlと言う事になる。ま
た、負極に用いる水素吸蔵合金は水素平衡解離圧力が低
過ぎると放電容量が小さく、逆に水素平衡解離圧力が高
過ぎると充電できなくなるので、20℃で0.05〜5気圧の
水素平衡解離圧力を有する水素吸蔵合金がとくに適して
いる。
In this embodiment, an aqueous solution of sulfuric acid having a concentration of 35 to 40% by weight is used as the electrolytic solution. However, an electrolytic solution having a wider range of 25 to 50% by weight (6.4 to 13.7N) may be used. If the sulfuric acid concentration is too low, the resistance of the electrolyte increases and the battery voltage capacity decreases. Conversely, if the concentration of the electrolyte is too high, the utilization rate of the positive electrode active substance is abnormally increased, the fineness is further advanced, or the degree of corrosion of the electrode is increased, so that the life of the positive electrode and the negative electrode is shortened. Therefore, the concentration of the electrolyte is 25wt% -50wt% (6.4-13.7N)
Is the optimal range. In addition, since the battery capacity is determined by the electrode that regulates the capacity, if the amount of the electrolyte is too small, the utilization rate of the positive electrode decreases and the internal resistance of the battery increases. You need at least 5 ml per bottle. If the amount of the electrolytic solution is too large, the resistance of the electrolytic solution will decrease, but the amount of active material falling off (especially in the case of an open battery) will increase, and the cycle life will be shortened. Therefore, the optimal range of the amount of the electrolytic solution of the open-type battery is 5 to 15 ml per 1 Ah of the actual capacity of the electrode for defining the discharge capacity. Also, the hydrogen storage alloy used for the negative electrode has a small discharge capacity if the hydrogen equilibrium dissociation pressure is too low, and conversely, cannot be charged if the hydrogen equilibrium dissociation pressure is too high. A hydrogen storage alloy is particularly suitable.

本実施例では一例としてMm,Ti,Zr,Ni,Co,Alを主成分
とする水素吸蔵合金、あるいはTi,Zr,Mg,Ni,Alを主成分
とする水素吸蔵合金を用いたが、いずれにせよ耐酸性の
強い多元系水素吸蔵合金(又は水素化物)であれば負極
に用いる事ができる。しかも1グラム分子当りの水素吸
蔵合金から1モルの水素(H2)を含む水素化物を生成す
る時の生成熱△Hが−6Kcalより小さい値を有する水素
吸蔵合金(又は水素化物)が望ましい。この値より大き
い水素吸蔵合金は水素平衡解離圧力が常温で5気圧より
高く、充電効率が大きく低下する。よって、生成熱△H
が−6Kcal/H2より小さい水素吸蔵合金が望ましい。本実
施例では結晶質型の水素吸蔵合金を用いたが、非晶質型
の水素吸蔵合金でもよい。非晶質合金は耐酸性に優れて
いるが、容量がやや小さい。
In the present embodiment, as an example, a hydrogen storage alloy containing Mm, Ti, Zr, Ni, Co, Al as a main component or a hydrogen storage alloy containing Ti, Zr, Mg, Ni, Al as a main component was used. Anyway, a multi-component hydrogen storage alloy (or hydride) having strong acid resistance can be used for the negative electrode. In addition, a hydrogen storage alloy (or hydride) having a heat of formation ΔH of less than −6 Kcal when generating a hydride containing one mole of hydrogen (H 2 ) from a hydrogen storage alloy per gram molecule is desirable. A hydrogen storage alloy larger than this value has a hydrogen equilibrium dissociation pressure higher than 5 atm at room temperature, and the charging efficiency is greatly reduced. Therefore, the heat of formation △ H
A hydrogen storage alloy having a lower than -6 Kcal / H 2 is preferable. In this embodiment, a crystalline hydrogen storage alloy is used, but an amorphous hydrogen storage alloy may be used. Amorphous alloys have excellent acid resistance, but have a slightly lower capacity.

本実施例では水素吸蔵合金(水素化物)を保持する支
持体として、あるいは集電体として鉛合金を用いたが、
鉛金属,Ti,Ti基合金,ステンレス鋼,Ni基合金(例えば
インコネル)など耐食性の保持体であればよい。密閉型
蓄電池として角型板状の電極を一例として採用したが、
円筒型蓄電池の様に渦巻状に巻回した電極体を用いる事
も可能である。電気構成は市販の円筒型蓄電池と全く同
じ構造で形成できる。
In this embodiment, a lead alloy was used as a support for holding a hydrogen storage alloy (hydride) or as a current collector.
Any corrosion-resistant support such as lead metal, Ti, Ti-based alloy, stainless steel, Ni-based alloy (for example, Inconel) may be used. A square plate-like electrode was used as an example of a sealed storage battery,
It is also possible to use a spirally wound electrode body like a cylindrical storage battery. The electric configuration can be formed in exactly the same structure as a commercially available cylindrical storage battery.

密閉型蓄電池においては過充電時に正極で発生した酸
素ガスを負極で吸収しやすい様に、電解液濃度を30〜45
wt%,電解液量を1Ah当り6〜10mlの範囲にすると、電
池内圧力の上昇が少ない。この液量よりも少ないと電池
内部抵抗が上昇し、電池性能が悪くなる。逆に多過ぎる
と負極での酸素ガス吸収が悪くなり、過充電時に電池内
圧が上昇する。よって密閉型蓄電池においては4〜10ml
/Ahの範囲が最適である。
In sealed storage batteries, the electrolyte concentration should be 30-45 so that oxygen gas generated at the positive electrode during overcharge can be easily absorbed at the negative electrode.
When the wt% and the amount of the electrolytic solution are in the range of 6 to 10 ml per 1 Ah, the increase in the pressure in the battery is small. If the amount is less than this, the internal resistance of the battery increases, and the battery performance deteriorates. Conversely, if it is too large, oxygen gas absorption at the negative electrode will be poor, and the internal pressure of the battery will increase during overcharge. Therefore, 4 to 10 ml for sealed storage batteries
The range of / Ah is optimal.

また、本実施例では陽イオン交換樹脂膜の材料として
フッ素樹脂からなる膜を採用したが、他の耐酸性の陽イ
オン交換膜であればよい。本実施例では鉛基合金の格
子,多孔性炭素繊維,フェルト(不織布)を水素吸蔵合
金の保持体に用いたが、他の三次元的構造を有するスポ
ンジ状鉛(鉛合金)多孔体,繊維状鉛(鉛合金)多孔体
あるいは耐酸性の金属多孔体であってもよい。例えば、
Ti合金,ステンレス鋼,ニッケル基合金など耐酸性の材
料を保持体とする事ができる。
Further, in the present embodiment, a membrane made of a fluororesin is used as a material of the cation exchange resin membrane, but any other acid-resistant cation exchange membrane may be used. In this embodiment, the lattice of the lead-based alloy, the porous carbon fiber, and the felt (non-woven fabric) are used as the holder of the hydrogen storage alloy. However, other sponge-like porous lead (lead alloy) having a three-dimensional structure, fiber It may be a porous lead (lead alloy) or an acid-resistant metal porous body. For example,
An acid-resistant material such as a Ti alloy, stainless steel, or a nickel-based alloy can be used as the holder.

本発明の電池は密閉型にも、開放型にも構成可能であ
り、正極律速の方がガス吸収より効果的に行なえるが、
開放型電池では負極律速とし、負極規制の電池も構成す
る事ができる。この場合低電流で放電しても負極の不働
態化現象が発生せず、一般の鉛蓄電池では見られない特
徴も発揮する。密閉型蓄電池の負極律速では過充電時に
負極から水素ガス(H2)が発生し、電池内部の圧力が上
昇するので望ましくなり、この様に従来にない機能・効
果を有する新しい系の蓄電池である。
The battery of the present invention can be configured as a closed type or an open type, and the positive electrode rate-limiting can be performed more effectively than gas absorption.
In the case of an open type battery, the negative electrode is rate-determined, and a negative electrode regulated battery can also be configured. In this case, even when the battery is discharged at a low current, the passivation phenomenon of the negative electrode does not occur, and a characteristic not seen in a general lead-acid battery is also exhibited. In the case of the rate limiting of the negative electrode of the sealed storage battery, hydrogen gas (H 2 ) is generated from the negative electrode at the time of overcharge, and the pressure inside the battery rises, which is desirable. Thus, it is a new type of storage battery having functions and effects that have not existed in the past. .

発明の効果 以上の様に、本発明によれば、従来のNi−Cd蓄電池等
では困難である高い電圧と低コスト化を得る事ができ
る。一方、これまでの鉛蓄電池よりは高い容量が得られ
るので高エネルギー密度化がはかれ、サイクル寿命も長
く、密閉化も可能であるなど実用の高い酸化鉛−水素蓄
電池とその製造方法が得られる。
Effects of the Invention As described above, according to the present invention, it is possible to obtain a high voltage and a low cost, which are difficult with a conventional Ni-Cd storage battery or the like. On the other hand, a higher capacity than conventional lead-acid batteries can be obtained, so that high energy density can be achieved, cycle life is long, and sealing is possible. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の開放型酸化鉛−水素蓄電池の構成を示
す図、第2図は本発明の密閉型酸化鉛−水素蓄電池の構
成を示す図である。 1,11……水素吸蔵合金(又は水素化物)からなる負極、
2,12……セパレータ(又は陽イオン交換膜)、3,3……
酸化鉛からなる正極、4,4……電槽、5,15……電解液
(硫酸水溶液)、6……注液栓(注液口)、7……蓋
(開放構造)、8,17……正極端子、9,18……負極端子、
16……密閉構造の蓋。
FIG. 1 is a diagram showing a configuration of an open type lead oxide-hydrogen storage battery of the present invention, and FIG. 2 is a diagram showing a configuration of a closed type lead oxide-hydrogen storage battery of the present invention. 1,11 ... a negative electrode made of a hydrogen storage alloy (or hydride),
2,12 …… Separator (or cation exchange membrane), 3,3 ……
Positive electrode made of lead oxide, 4,4… Electric container, 5,15… Electrolyte (sulfuric acid aqueous solution), 6… Injection stopper (injection port), 7… Lid (open structure), 8,17 …… Positive terminal, 9,18 …… Negative terminal,
16 ... A lid with a closed structure.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 12/08 H01M 10/02 - 10/12 H01M 10/34 - 10/38──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 12/08 H01M 10/02-10/12 H01M 10/34-10/38

Claims (21)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化鉛からなる正極と、水素を電気化学的
に吸蔵および放出する水素吸蔵合金又は水素化物を主成
分とする負極と、前記正・負極を分離する耐酸性のセパ
レータとが酸性水溶液からなる電解液と共に電槽内に配
備されている酸化鉛−水素蓄電池。
1. A positive electrode made of lead oxide, a negative electrode mainly composed of a hydrogen storage alloy or hydride electrochemically storing and releasing hydrogen, and an acid-resistant separator for separating the positive electrode and the negative electrode. A lead oxide-hydrogen storage battery provided in a battery case together with an electrolytic solution composed of an aqueous solution.
【請求項2】電解液が硫酸酸性水溶液であって、その硫
酸濃度が25〜50wt%(6.4N〜13.7N)である特許請求の
範囲第1項記載の酸化鉛−水素蓄電池。
2. The lead oxide-hydrogen storage battery according to claim 1, wherein the electrolytic solution is a sulfuric acid acidic aqueous solution, and the sulfuric acid concentration is 25 to 50 wt% (6.4N to 13.7N).
【請求項3】硫酸酸性水溶液からなる電解液量が放電容
量を規制する電極の実質容量1Ah当り5ml〜15mlである特
許請求の範囲第1項記載の酸化鉛−水素蓄電池。
3. The lead oxide-hydrogen storage battery according to claim 1, wherein the amount of the electrolytic solution comprising the sulfuric acid aqueous solution is 5 to 15 ml per 1 Ah of the actual capacity of the electrode for regulating the discharge capacity.
【請求項4】負極を構成する水素吸蔵合金又は水素化物
の水素平衡解離圧力が、20℃において0.05〜5気圧であ
る特許請求の範囲第1項記載の酸化鉛−水素蓄電池。
4. The lead oxide-hydrogen storage battery according to claim 1, wherein the hydrogen storage alloy or hydride constituting the negative electrode has a hydrogen equilibrium dissociation pressure of 0.05 to 5 atm at 20 ° C.
【請求項5】負極を構成する水素吸蔵合金又は水素化物
が耐酸性であって、しかも少なくとも複数の希土類金属
とニッケルを含む多元系合金又は水素化物である特許請
求の範囲第1項記載の酸化鉛−水素蓄電池。
5. The oxidation according to claim 1, wherein the hydrogen storage alloy or hydride constituting the negative electrode is acid-resistant, and is a multi-component alloy or hydride containing at least a plurality of rare earth metals and nickel. Lead-hydrogen storage battery.
【請求項6】負極を構成する水素吸蔵合金又は水素化物
が耐酸性であって、電気化学的活性部分が希土類混合
物,Ti,ZrおよびMgのうちの3種以上からなり、水素1g分
子当り水素吸蔵合金から生成する水素化物の生成熱が−
6KCalより小さい値を有する結晶質型あるいは非晶質型
である特許請求の範囲第1項記載の酸化鉛−水素蓄電
池。
6. The hydrogen storage alloy or hydride constituting the negative electrode is acid-resistant, and the electrochemically active portion is composed of at least three of a rare earth mixture, Ti, Zr and Mg, and hydrogen is contained per 1 g of hydrogen molecule. The heat of formation of hydride generated from the storage alloy is-
2. The lead oxide-hydrogen storage battery according to claim 1, wherein the battery is a crystalline type or an amorphous type having a value smaller than 6 KCal.
【請求項7】負極を構成する水素吸蔵合金又は水素化物
を保持する保持体あるいは集電体が鉛,鉛基合金,チタ
ン,チタン基合金,ステンレス鋼,ニッケル基合金のう
ちのいずれかである特許請求の範囲第1項記載の酸化鉛
−水素蓄電池。
7. A holder or current collector for holding a hydrogen storage alloy or hydride constituting a negative electrode is any one of lead, a lead-based alloy, titanium, a titanium-based alloy, stainless steel, and a nickel-based alloy. The lead oxide-hydrogen storage battery according to claim 1.
【請求項8】三次元的に連続した構造を有する耐酸性ス
ポンジ状金属多孔体,繊維状金属多孔体,炭素繊維状多
孔体、および炭素フェルト状多孔体のうちのいずれかに
電気化学的に水素を吸蔵・放出する水素吸蔵合金又は水
素化物を含有させた負極と、酸化鉛からなる正極が、耐
酸性のセパレータを介して対向し、酸性電解液と共に電
槽内に配備されている酸化鉛−水素蓄電池。
8. An electrochemically sponge-like metal porous body, fibrous metal porous body, carbon fibrous porous body, or carbon felt-like porous body having a three-dimensionally continuous structure. A negative electrode containing a hydrogen storage alloy or hydride that stores and releases hydrogen, and a positive electrode made of lead oxide are opposed to each other via an acid-resistant separator, and lead oxide is provided in the battery case together with an acidic electrolyte. A hydrogen storage battery.
【請求項9】酸化鉛からなる正極と、水素を電気化学的
に吸蔵・放出する水素吸蔵合金又は水素化物からなる負
極との間にセパレータを介在して渦巻状に巻回した電極
体、あるいは複数の正極と負極を板状に積層した電極体
を金属製あるいは樹脂製電槽に収納し、酸性電解液を注
入した状態で封口密閉化されている酸化鉛−水素蓄電
池。
9. An electrode body spirally wound with a separator interposed between a positive electrode made of lead oxide and a negative electrode made of a hydrogen storage alloy or hydride electrochemically storing and releasing hydrogen, or A lead oxide-hydrogen storage battery in which an electrode body in which a plurality of positive electrodes and negative electrodes are laminated in a plate shape is housed in a metal or resin container, and sealed with an acidic electrolyte injected.
【請求項10】水素吸蔵合金又は水素化物からなる負極
の放電容量と、酸化鉛からなる正極の放電容量の比率に
おいて、正極容量を負極容量より小さくし、正極容量律
速とした特許請求の範囲第9項記載の酸化鉛−水素蓄電
池。
10. The positive electrode capacity is limited by setting the positive electrode capacity smaller than the negative electrode capacity in the ratio of the discharge capacity of the negative electrode made of a hydrogen storage alloy or hydride to the discharge capacity of the positive electrode made of lead oxide. 10. A lead oxide-hydrogen storage battery according to claim 9.
【請求項11】濃度が30〜45wt%の硫酸酸性水溶液から
なる電解液の量が、放電容量を規制する電極の実質容量
1Ah当り4〜10mlである特許請求の範囲第9項記載の酸
化鉛−水素蓄電池。
11. The actual capacity of an electrode which regulates discharge capacity is determined by the amount of an electrolytic solution comprising a sulfuric acid aqueous solution having a concentration of 30 to 45 wt%.
10. The lead oxide-hydrogen storage battery according to claim 9, wherein the amount is 4 to 10 ml per 1 Ah.
【請求項12】酸化鉛からなる正極と、水素吸蔵合金又
は水素化物からなる負極の表面、あるいは水素吸蔵を合
金粒子の表面に合成樹脂を含む炭素粉末層を形成した負
極を用いた特許請求の範囲第9項記載の酸化鉛−水素蓄
電池。
12. A negative electrode comprising a positive electrode comprising lead oxide and a negative electrode comprising a carbon powder layer containing a synthetic resin on the surface of a negative electrode comprising a hydrogen storage alloy or hydride, or the surface of alloy particles for storing hydrogen. A lead oxide-hydrogen storage battery according to claim 9, wherein:
【請求項13】触媒及び合成樹脂製結着剤を含有する水
素吸蔵合金又は水素化物からなる負極と、酸化鉛からな
る正極とをセパレータを介して密着させた電極体を密閉
容器に収納し、酸性電解液を充てんして密閉した酸化鉛
−水素蓄電池。
13. An electrode body in which a negative electrode made of a hydrogen storage alloy or hydride containing a catalyst and a binder made of a synthetic resin and a positive electrode made of lead oxide are closely attached via a separator, and are housed in a closed container. A sealed lead oxide-hydrogen storage battery filled with an acidic electrolyte.
【請求項14】酸化鉛からなる正極と、水素を可逆的に
吸蔵および放出する水素吸蔵合金又は水素化物を主成分
とする負極と、前記正・負極の間に耐酸性の陽イオン交
換樹脂膜単独かあるいは多孔性補強体、分離板と共に陽
イオン交換樹膜が酸性水溶液からなる電極液と共に電槽
内に配備されている酸化鉛−水素蓄電池。
14. A positive electrode made of lead oxide, a negative electrode mainly composed of a hydrogen storage alloy or hydride that reversibly stores and releases hydrogen, and an acid-resistant cation exchange resin membrane between the positive and negative electrodes. A lead oxide-hydrogen storage battery having a cation exchange resin alone or in combination with a porous reinforcing member and a separator in an electric vessel together with an electrode solution composed of an acidic aqueous solution.
【請求項15】酸化鉛からなる正極と、水素を電気化学
的に吸蔵および放出する水素吸蔵合金又は水素化物を主
成分とする負極と、前記正・負極を分離する耐酸性のセ
パレータが酸性水溶液からなる電解液と共に電槽内に配
備され、前記負極表面、あるいは水素吸蔵合金粒子の表
面に耐酸性の陽イオン交換樹脂薄膜を形成した酸化鉛−
水素蓄電池。
15. A positive electrode made of lead oxide, a negative electrode containing hydrogen-absorbing alloy or hydride as a main component for electrochemically storing and releasing hydrogen, and an acid-resistant separator for separating the positive and negative electrodes is made of an acidic aqueous solution. Lead oxide formed in a battery case together with an electrolytic solution comprising an acid-resistant cation exchange resin thin film on the surface of the negative electrode or the surface of the hydrogen storage alloy particles.
Hydrogen storage battery.
【請求項16】酸化鉛からなる正極と、水素を電気化学
的に吸蔵および放出する水素吸蔵合金又は水素化物を主
成分とする負極と、前記正・負極を分離する耐酸性のセ
パレータが酸性水溶液からなる電解液と共に電槽内に配
備された蓄電池において、前記水素吸蔵合金又は水素化
物を予め酸性溶液中に浸漬処理する工程を有する酸化鉛
−水素蓄電池の製造方法。
16. A positive electrode made of lead oxide, a negative electrode mainly containing a hydrogen storage alloy or hydride for electrochemically storing and releasing hydrogen, and an acid-resistant separator for separating the positive electrode and the negative electrode from each other. A method for producing a lead oxide-hydrogen storage battery, comprising a step of immersing the hydrogen storage alloy or hydride in an acidic solution in advance in a storage battery provided in a battery case together with an electrolytic solution comprising:
【請求項17】三次元的に連続した構造を有する耐酸性
スポンジ状金属多孔体,繊維状金属多孔体,炭素繊維状
多孔体、および炭素フェルト状多孔体のうちのいずれか
に電気化学的に水素を吸蔵・放出する水素吸蔵合金又は
水素化物を含有する負極と、酸化鉛からなる正極が耐酸
性のセパレータを介して対向し、酸性電解液と共に電槽
内に配備された蓄電池において、前記水素吸蔵合金又は
水素化物を予め酸性溶液中に浸漬処理する工程を有する
酸化鉛−水素蓄電池の製造方法。
17. An electrochemically sponge-like metal porous body, fibrous metal porous body, carbon fibrous porous body, or carbon felt-like porous body having a three-dimensionally continuous structure. In a storage battery in which a negative electrode containing a hydrogen storage alloy or hydride that stores and releases hydrogen and a positive electrode made of lead oxide are opposed via an acid-resistant separator, and the storage battery is disposed in a battery case together with an acidic electrolytic solution, A method for producing a lead oxide-hydrogen storage battery, comprising a step of previously immersing a storage alloy or hydride in an acidic solution.
【請求項18】酸化鉛からなる正極と、予め酸性溶液中
に浸漬処理されて表面に耐酸性被膜を形成した水素を電
気化学的に吸蔵・放出する水素吸蔵合金又は水素化物か
らなる負極との間にセパレータを介在して渦巻状に巻回
した電極体、あるいは複数の正極と負極を板状に積層し
た電極体を金属製あるいは樹脂製電槽に収納する工程
と、酸性電解液を注入した状態で封口密閉化する工程を
有する酸化鉛−水素蓄電池の製造方法。
18. A positive electrode made of lead oxide and a negative electrode made of a hydrogen storage alloy or hydride electrochemically storing and releasing hydrogen which has been previously immersed in an acidic solution to form an acid-resistant film on its surface. A step of housing an electrode body wound spirally with a separator in between, or an electrode body in which a plurality of positive electrodes and a negative electrode are laminated in a plate shape in a metal or resin container, and injecting an acidic electrolytic solution A method for producing a lead oxide-hydrogen storage battery, comprising a step of sealing and sealing in a state.
【請求項19】触媒及び合成樹脂結着剤を含有する、予
め酸性溶液中に浸漬処理されて表面に耐酸性被膜を形成
した水素吸蔵合金又は水素化物からなる負極と、酸化鉛
からなる正極とをセパレータを介して密着させた電極体
を密閉容器内に収納する工程と、酸性電解液を充てんし
た後封口密閉化する工程を有する酸化鉛−水素蓄電池の
製造方法。
19. A negative electrode containing a catalyst and a synthetic resin binder, which is preliminarily immersed in an acid solution and has a surface formed with an acid-resistant film and has a hydrogen storage alloy or hydride, and a positive electrode made of lead oxide. A method for producing a lead oxide-hydrogen storage battery, comprising: a step of housing an electrode body in which the electrodes are closely adhered via a separator in a closed container; and a step of sealing and sealing after filling with an acidic electrolytic solution.
【請求項20】酸化鉛からなる正極と、予め酸性溶液中
に浸漬処理されて表面に耐酸性被膜が形成された水素を
可逆的に吸蔵および放出する水素吸蔵合金又は水素化物
を主成分とする負極と前記正・負極の間に耐酸性の陽イ
オン交換樹脂膜単独あるいは多孔性補強体、分離板と共
に陽イオン交換樹脂膜を電槽内に収納する工程と、酸性
電解液を電槽内に注入する工程を有する酸化鉛−水素蓄
電池の製造方法。
20. A positive electrode made of lead oxide and a hydrogen storage alloy or hydride which reversibly occupies and releases hydrogen having an acid-resistant film formed on its surface after being immersed in an acidic solution in advance. A step of storing the cation exchange resin membrane alone or the porous reinforcement body between the negative electrode and the positive / negative electrode and the cation exchange resin membrane together with the separator in the battery case, and placing the acidic electrolytic solution in the battery case. A method for producing a lead oxide-hydrogen storage battery having a step of injecting.
【請求項21】酸化鉛からなる正極と、予め酸性溶液中
に浸漬処理されて表面に耐酸性被膜が形成された水素を
電気化学的に吸蔵および放出する水素吸蔵合金又は水素
化物を主成分とする負極と、前記正・負極を分離する耐
酸性のセパレータが酸性水溶液からなる電解液と共に電
槽内に配置される工程において、前記負極表面、あるい
は水素吸蔵合金粒子表面に耐酸性の陽イオン交換樹脂薄
膜を形成させる工程を有する酸化鉛−水素蓄電池の製造
方法。
21. A positive electrode composed of lead oxide and a hydrogen storage alloy or hydride electrochemically storing and releasing hydrogen previously immersed in an acid solution and having an acid-resistant film formed on its surface. In the step of disposing the negative electrode and the acid-resistant separator for separating the positive electrode and the negative electrode together with the electrolytic solution composed of the acidic aqueous solution in the battery case, acid-resistant cation exchange is performed on the surface of the negative electrode or the surface of the hydrogen storage alloy particles. A method for manufacturing a lead oxide-hydrogen storage battery having a step of forming a resin thin film.
JP1313589A 1989-12-01 1989-12-01 Lead oxide-hydrogen storage battery and its manufacturing method Expired - Fee Related JP2861152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1313589A JP2861152B2 (en) 1989-12-01 1989-12-01 Lead oxide-hydrogen storage battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1313589A JP2861152B2 (en) 1989-12-01 1989-12-01 Lead oxide-hydrogen storage battery and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH03173068A JPH03173068A (en) 1991-07-26
JP2861152B2 true JP2861152B2 (en) 1999-02-24

Family

ID=18043135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1313589A Expired - Fee Related JP2861152B2 (en) 1989-12-01 1989-12-01 Lead oxide-hydrogen storage battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2861152B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9525177B2 (en) * 2008-11-18 2016-12-20 Johnson Controls Technology Company Electrical power storage devices

Also Published As

Publication number Publication date
JPH03173068A (en) 1991-07-26

Similar Documents

Publication Publication Date Title
EP0170519B1 (en) A method of producing a sealed metal oxide-hydrogen storage cell
JPS60109183A (en) Sealed type nickel-hydrogen storage battery
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JP2861152B2 (en) Lead oxide-hydrogen storage battery and its manufacturing method
JPH0447676A (en) Manufacture of sealed storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JPH05258748A (en) Hydride secondary battery
JP2537084B2 (en) Hydrogen storage alloy electrode
JP2883450B2 (en) Hydrogen storage alloy material and method for producing the same
JP2566912B2 (en) Nickel oxide / hydrogen battery
JPH0810596B2 (en) Metal oxide / hydrogen battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JP2594147B2 (en) Metal-hydrogen alkaline storage battery
JP3070081B2 (en) Sealed alkaline storage battery
JPH04322073A (en) Hydride secondary battery
JPS60119079A (en) Hydrogen absorption electrode
JP2940952B2 (en) Method for manufacturing nickel-hydrogen alkaline storage battery
JP3342506B2 (en) Hydride secondary battery and method for producing the same
JP3221040B2 (en) Alkaline storage battery
JP2974802B2 (en) Hydride rechargeable battery
JPH0690922B2 (en) Sealed alkaline storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JPS60220556A (en) Manufacturing method of hydrogen occluding electrode for enclosed storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees