JP2854316B2 - Liquid crystal display - Google Patents

Liquid crystal display

Info

Publication number
JP2854316B2
JP2854316B2 JP9210189A JP9210189A JP2854316B2 JP 2854316 B2 JP2854316 B2 JP 2854316B2 JP 9210189 A JP9210189 A JP 9210189A JP 9210189 A JP9210189 A JP 9210189A JP 2854316 B2 JP2854316 B2 JP 2854316B2
Authority
JP
Japan
Prior art keywords
film
insulating film
liquid crystal
conductor
hard carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9210189A
Other languages
Japanese (ja)
Other versions
JPH02271321A (en
Inventor
英一 太田
裕治 木村
均 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP9210189A priority Critical patent/JP2854316B2/en
Publication of JPH02271321A publication Critical patent/JPH02271321A/en
Application granted granted Critical
Publication of JP2854316B2 publication Critical patent/JP2854316B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非線形抵抗素子としてMIM(金属−絶縁膜−
金属)素子を用いた、OA用、TV用等の高容量フラットパ
ネルディスプレーに応用可能なアクティブマトリックス
型液晶表示装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a metal-insulating film (MIM) as a non-linear resistance element.
The present invention relates to an active matrix liquid crystal display device using a (metal) element and applicable to a high-capacity flat panel display for OA, TV, and the like.

〔従来技術〕(Prior art)

アクティブマトリックス型液晶表示装置は一般に液晶
層を支持する2枚の絶縁基板の少くとも一方の基板の各
画素に非線形抵抗素子を直列に接続したもので、非線形
抵抗素子としてはMIM素子が多く使用されている。
An active matrix type liquid crystal display device generally has a non-linear resistance element connected in series to each pixel of at least one of two insulating substrates supporting a liquid crystal layer, and a MIM element is often used as the non-linear resistance element. ing.

しかし、絶縁膜として陽極酸化膜を用いたMIM素子に
おいては、1)絶縁膜が下部金属の陽極酸化膜に限られ
るため、その物性値の制御、ひいてはMIM素子特性の制
御を任意に行なうことは不可能である、2)比誘電率が
高いため、液晶表示装置のスイッチング素子として用い
る場合、MIM素子/液晶容易<1/10という制約から素子
面積を小さくする必要があり、このため高度の微細加工
が要求される等の欠点を有している。
However, in the case of a MIM device using an anodic oxide film as an insulating film, 1) since the insulating film is limited to the anodic oxide film of the lower metal, it is not possible to arbitrarily control the physical property values and, consequently, the characteristics of the MIM device 2) Since the dielectric constant is high, when used as a switching element in a liquid crystal display device, the element area needs to be reduced due to the restriction of MIM element / liquid crystal easy <1/10. It has disadvantages such as requiring processing.

また絶縁膜として気相法によるSiNX又はSiOX膜を用い
たMIM素子の場合は以上のような欠点は解消されるもの
の、3)画素電極又はバスライン電極となる透明導電膜
(通常ITO膜)中の成分がSiNX又はSiOX中に拡散、混入
して素子特性を劣化させるという欠点がある。
In the case of a MIM device using a SiN X or SiO X film formed by a vapor phase method as an insulating film, the above-mentioned disadvantages are solved, but 3) a transparent conductive film (usually an ITO film) serving as a pixel electrode or a bus line electrode There is a drawback that the components in ()) diffuse and mix in SiN X or SiO X to deteriorate the device characteristics.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明の第一の目的は従来の気相法による絶縁膜を用
いた場合の欠点であるMIM素子特性の劣化を防止し得る
液晶表示装置を提供することである。
A first object of the present invention is to provide a liquid crystal display device capable of preventing deterioration of MIM element characteristics, which is a drawback when an insulating film formed by a conventional vapor phase method is used.

本発明の第二の目的は従来の陽極酸化膜の欠点を除去
し、MIM素子特性の制御が自由に行なえる上、高度の微
細加工を必要としない液晶表示装置を提供することであ
る。
A second object of the present invention is to provide a liquid crystal display device which eliminates the drawbacks of the conventional anodic oxide film, can freely control the characteristics of the MIM element, and does not require advanced fine processing.

〔発明の構成・動作〕[Configuration and operation of the invention]

本発明の液晶表示装置は液晶層を支持する2枚の絶縁
基板の少くとも一方の基板の各画素に非線形抵抗素子を
直列に接続せしめた液晶表示装置において、前記非線形
抵抗素子がバスライン電極としての第一導体と画素電極
としての第二導体との間に絶縁膜を挟んだ構造のMIM素
子からなり、前記絶縁膜が気相法で形成された硬質炭素
膜であり、且つ前記第一及び第二導体が少くとも2層構
造であり、絶縁膜と接する層がSnO2あるいは半透明金属
であることを特徴とするものである。
A liquid crystal display device according to the present invention is a liquid crystal display device in which a non-linear resistance element is connected in series to each pixel of at least one of two insulating substrates supporting a liquid crystal layer, wherein the non-linear resistance element serves as a bus line electrode. A MIM element having a structure in which an insulating film is sandwiched between a first conductor and a second conductor as a pixel electrode, wherein the insulating film is a hard carbon film formed by a gas phase method, and The second conductor has at least a two-layer structure, and the layer in contact with the insulating film is made of SnO 2 or translucent metal.

従来の気相法を用いて絶縁膜を形成するタイプのMIM
素子の典型例を第6図及び第7図に示す。両方とも絶縁
基板1上のバスラインとなる第一導体2と画素電極とな
る第二導体3の間に気相法で作製された絶縁膜4(材料
としてはSiNX,SiOX等)が配置された構成となってい
る。表示装置の必要上、画素電極となる第二導体3は透
明導電膜(一般にはITO)が使用されるが、ITO(In2O3
〜SnO2混合系)の成分であるInは絶縁膜4中に拡散、混
入し易く、このため素子特性が劣化してしまう。特に第
6図、第7図のごとく画素電極が絶縁膜の下層となって
いる場合は、気相に存在するイオン及び電子によるボン
バードの結果、Inの拡散は著しいものとなる。更に、バ
スラインとなる第一導体は金属等でもよいが、マスク数
の低減等を考えると、透明導電膜である方がよく、この
場合第二導体3と同様の問題が起こる。
MIM of the type that forms an insulating film using a conventional vapor phase method
FIGS. 6 and 7 show typical examples of the element. In both cases, an insulating film 4 (made of SiN x , SiO x, etc.) formed by a gas phase method is disposed between a first conductor 2 serving as a bus line and a second conductor 3 serving as a pixel electrode on the insulating substrate 1. It is the configuration that was done. On the need for the display device, the second conductor 3 for constituting a pixel electrode is a transparent conductive film (typically ITO) is used, ITO (an In 2 O 3
In, which is a component of (〜SnO 2 mixed system), easily diffuses and mixes into the insulating film 4, and therefore, the element characteristics are deteriorated. In particular, when the pixel electrode is under the insulating film as shown in FIGS. 6 and 7, the diffusion of In becomes remarkable as a result of bombardment by ions and electrons present in the gas phase. Further, the first conductor serving as the bus line may be made of metal or the like. However, considering reduction of the number of masks, it is better to use a transparent conductive film. In this case, the same problem as the second conductor 3 occurs.

本発明の層構成によればこの問題を解決できる。透明
導電膜の材料としては、ITO,In2O3,SnO2,ZnO等がある
が、気相法で作成される絶縁膜ではInが最も拡散し易
く、Snが最も拡散し難い。これにはSnO2が化学的に安
定である、拡散(固相−固相反応速度)は原子価の小
さいものの方が大きい、という2つの理由が考えられ
る。本発明は以上の原理に基づくもので、第二導体3あ
るいは第一導体2の絶縁体と接する側には拡散し難いSn
O2で、絶縁膜と接しない側をITO,In2O3,ZnO等で作製す
る。即ち、2層構造とすることで達せられる。但しSnO2
だけでは抵抗値が高く、電極として十分機能しない。あ
るいは絶縁膜と接する側は半透明の金属(Al,Ni,Pt,Au,
Ag,Cu,Mo,Ta,Ti等)で構成しても同様の効果を有する。
According to the layer constitution of the present invention, this problem can be solved. As a material of the transparent conductive film, there are ITO, In 2 O 3 , SnO 2 , ZnO, and the like. In an insulating film formed by a vapor phase method, In diffuses most easily, and Sn diffuses the least. There are two possible reasons for this: SnO 2 is chemically stable, and the diffusion (solid-solid reaction rate) is higher for those having a lower valence. The present invention is based on the above principle, and the Sn or the second conductor 3 or the first conductor 2 which is hardly diffused on the side in contact with the insulator is used.
In O 2, to prepare the side not in contact with the insulating film ITO, by In 2 O 3, ZnO and the like. That is, this can be achieved by forming a two-layer structure. However, SnO 2
Alone alone has a high resistance value and does not function sufficiently as an electrode. Alternatively, the side in contact with the insulating film is translucent metal (Al, Ni, Pt, Au,
Ag, Cu, Mo, Ta, Ti, etc.) have the same effect.

また絶縁膜の材料にSiNX,SiOX等を用いた場合には成
膜温度が300℃程度と高いため、用いる基板材質に耐熱
性のあるものが要求される上、ダスト等によるピンホー
ルが発生し易く、歩留りが低下するという問題がある。
なお絶縁膜が陽極酸化膜の場合も300〜500℃程度の熱処
理が必要であるため、同様に基板材質には耐熱性が要求
される。
When using SiN x , SiO x, etc. as the material of the insulating film, the film formation temperature is as high as about 300 ° C., so that a heat-resistant substrate material is required and pinholes due to dust or the like are generated. This is problematic in that it easily occurs and the yield is reduced.
In addition, when the insulating film is an anodic oxide film, heat treatment at about 300 to 500 ° C. is necessary, and thus the substrate material is also required to have heat resistance.

本発明では気相法による絶縁膜として硬質炭素膜を用
いることによりこれらの問題も解決し、理想的な絶縁膜
として利用できる。即ち本発明のMIM素子に用いられる
絶縁膜としては硬質炭素膜を用いる。この絶縁膜は炭素
原子及び水素原子を主要な組織形成元素として非晶質及
び微結晶質の少なくとも一方を含む硬質炭素膜(i−C
膜、ダイヤモンド状炭素膜、アモルファスダイヤモンド
膜、ダイヤモンド薄膜とも呼ばれる。)からなってい
る。硬質炭素膜の一つの特徴は気相成長膜であるため、
後述するようにその諸物性が成膜条件によって広範囲に
制御できることにある。従って絶縁膜といってもその抵
抗値は半絶縁体から絶縁体領域までをカバーしており、
この意味では本発明のMIM素子は特開昭61−275819号で
示されるMIM素子(Metal−Semi−Insulator)としても
位置付けられるものである。
In the present invention, these problems are solved by using a hard carbon film as an insulating film formed by a vapor phase method, and the film can be used as an ideal insulating film. That is, a hard carbon film is used as the insulating film used in the MIM element of the present invention. This insulating film is a hard carbon film (i-C) containing at least one of amorphous and microcrystalline with carbon atoms and hydrogen atoms as main structure forming elements.
Also called a film, a diamond-like carbon film, an amorphous diamond film, and a diamond thin film. ). One characteristic of the hard carbon film is that it is a vapor-grown film.
As described later, the physical properties can be controlled in a wide range by the film forming conditions. Therefore, even though it is an insulating film, its resistance value covers from the semi-insulator to the insulator region,
In this sense, the MIM element of the present invention is also regarded as a MIM element (Metal-Semi-Insulator) disclosed in JP-A-61-275819.

このような硬質炭素膜を形成するためには有機化合物
ガス、特に炭化水素ガスが用いられる。この原料におけ
る相状態は常温常圧において必ずしも気相である必要は
なく、加熱或は減圧等により溶融、蒸発、昇華等を経て
気化し得るものであれば、液相でも固相でも使用可能で
ある。
To form such a hard carbon film, an organic compound gas, particularly a hydrocarbon gas, is used. The phase state of this raw material does not necessarily need to be a gas phase at normal temperature and normal pressure, and any material that can be vaporized through melting, evaporation, sublimation, etc. by heating or decompression can be used in a liquid phase or a solid phase. is there.

原料ガスとしての炭化水素ガスについては例えばCH4,
C2H6,C3H8,C4H10等のパラフィン系炭化水素、C2H4等の
アセチレン系炭化水素、オレフィン系炭化水素、ジオレ
フィン系炭化水素、さらには芳香族炭化水素などすべて
の炭化水素を含むガスが使用できる。
For example, CH 4 ,
Paraffin hydrocarbons such as C 2 H 6 , C 3 H 8 , C 4 H 10 , acetylene hydrocarbons such as C 2 H 4 , olefin hydrocarbons, diolefin hydrocarbons, and aromatic hydrocarbons Gases containing all hydrocarbons can be used.

さらに、炭化水素以外でも、例えば、アルコール類、
ケトン類、エーテル類、エステル類、CO,CO2等の炭素元
素を含む化合物であれば使用できる。
Further, other than hydrocarbons, for example, alcohols,
Any compound containing a carbon element such as ketones, ethers, esters, and CO and CO 2 can be used.

本発明における原料ガスからの硬質炭素膜の形成方法
としては、成膜活性種が、直流、低周波、高周波、或い
はマイクロ波等を用いたプラズマ法により生成されるプ
ラズマ状態を経て形成される方法が、好ましいが、大面
積化、均一性向上、低温成膜の目的で、低圧下で堆積を
行なうため、磁界効果を利用する方法がさらに好まし
い。
As a method for forming a hard carbon film from a source gas in the present invention, a method in which a film forming active species is formed through a plasma state generated by a plasma method using a direct current, a low frequency, a high frequency, or a microwave or the like However, a method using a magnetic field effect is more preferable because deposition is performed at a low pressure for the purpose of increasing the area, improving uniformity, and forming a film at a low temperature.

またこの活性種は高温熱分解によって形成できる。そ
の他にも、イオン化蒸着法、或いはイオンビーム蒸着法
等により生成されるイオン状態を経て形成されてもよい
し、真空蒸着法、或いはスパッタリング法等により生成
される中性粒子から形成されてもよいし、さらには、こ
れらの組み合わせにより形成されてもよい。
This active species can be formed by high-temperature pyrolysis. In addition, it may be formed through an ion state generated by an ionization evaporation method, an ion beam evaporation method, or the like, or may be formed from neutral particles generated by a vacuum evaporation method, a sputtering method, or the like. Alternatively, it may be formed by a combination of these.

こうして作製される硬質炭素膜の堆積条件の一例はプ
ラズマCVD法の場合、概ね次の通りである。
An example of the deposition conditions of the hard carbon film thus produced is generally as follows in the case of the plasma CVD method.

RF出力:0.1〜50W/cm2 圧 力:10-3〜10Torr 最適温度:室温〜950℃ このプラズマ状態により原料ガスがラジカルとイオン
とに分解され反応することによって、基板上に炭素原子
Cと水素原子Hとからなるアモルファス(非晶質)及び
微結晶質(結晶の大きさは数10Å〜数μm)の少くとも
一方を含む硬質炭素膜が堆積する。なお硬質炭素膜の諸
特性を表−1に示す。
RF output: 0.1 to 50 W / cm 2 Pressure: 10 -3 to 10 Torr Optimum temperature: room temperature to 950 ° C. The raw material gas is decomposed into radicals and ions by this plasma state, and reacts with carbon atoms C on the substrate. A hard carbon film containing at least one of amorphous (amorphous) composed of hydrogen atoms H and microcrystalline (crystal size is several tens to several μm) is deposited. Table 1 shows various properties of the hard carbon film.

こうして形成される硬質炭素膜はIR吸収法及びラマン
分光法による分析の結果、夫々、第8図及び第9図に示
すように炭素原子がSP3の混成軌道とSP2の混成軌道とを
形成した原子間結合が混在していることが明らかになっ
ている。SP3結合とSP2結合と比率は、IRスペクトルをピ
ーク分離することで概ね推定できる。IRスペクトルに
は、2800〜3150cm-1に多くのモードのスペクトルが重な
って測定されるが、夫々の波数に対応するピークの帰属
は明らかになっており、第10図のようにガウス分布によ
ってピーク分離を行ない、夫々のピーク面積を算出し、
その比率を求めればSP3/SP2を知ることができる。
Thus the hard carbon film to be formed is analyzed by IR absorption and Raman spectroscopy, respectively, the carbon atoms as shown in FIG. 8 and FIG. 9 is formed a hybrid orbital of the hybrid orbitals and SP 2 of SP 3 It is clear that the interatomic bonds are mixed. SP 3 bond and SP 2 bond and ratio can generally estimated by separating peaks of IR spectrum. In the IR spectrum, spectra of many modes are overlapped and measured at 2800 to 3150 cm -1 , but the assignment of peaks corresponding to each wave number has been clarified, and peaks are found by Gaussian distribution as shown in Fig. 10. Separate and calculate each peak area,
It is possible to know the SP 3 / SP 2 by obtaining the ratio.

また、X線及び電子回析分析によればアモルファス状
態(a−C:H)、及び/又は約50Å〜数μm程度の微結
晶粒を含むアモルファス状態にあることが判っている。
According to X-ray and electron diffraction analysis, it has been found that it is in an amorphous state (a-C: H) and / or an amorphous state containing fine crystal grains of about 50 ° to several μm.

一般に量産に適しているプラズマCVD法の場合にはRF
出力が小さいほど膜の比抵抗値および硬度が増加し、低
圧力なほど活性種の寿命が増加するために基板温度の低
温化、大面積での均一化が図れ、且つ比抵抗及び硬度が
増加する傾向にある。更に、低圧力ではプラズマ密度が
減少するため、磁場閉じ込め効果を利用する方法は膜質
の向上には特に効果的である。
In the case of plasma CVD which is generally suitable for mass production, RF
The lower the output, the higher the specific resistance and hardness of the film, and the lower the pressure, the longer the life of the active species. Therefore, the substrate temperature can be lowered, the uniformity over a large area can be achieved, and the specific resistance and hardness increase. Tend to. Furthermore, since the plasma density decreases at low pressure, the method using the magnetic field confinement effect is particularly effective for improving the film quality.

さらに、この方法は常温〜150℃程度の比較的低い温
度条件でも同様に良質の硬質炭素膜を形成できるという
特徴を有しているため、MIM素子製造プロセスの低温化
には最適である。従って使用する基板材料の選択自由度
が広がり、基板温度をコントロールし易くするために大
面積に均一な膜が得られるという特徴をもっている。ま
た硬質炭素膜の構造、物性は表−1に示したように、広
範囲に制御可能であるため、デバイス特性を自由に設計
できる利点もある。さらには膜の誘電率も3〜5と従来
のMIM素子に使用されていたTa2O5,Al2O3,SiNXと比較し
て小さいため、同じ電気容量を持った素子を作る場合、
素子サイズが大きくてすむので、それほど微細加工を必
要とせず、歩留りが向上する。
Further, this method has a feature that a high-quality hard carbon film can be similarly formed under a relatively low temperature condition of about room temperature to about 150 ° C., and thus is most suitable for lowering the manufacturing process of the MIM element. Therefore, there is a feature that the degree of freedom in selecting a substrate material to be used is widened and a uniform film can be obtained over a large area so that the substrate temperature can be easily controlled. Further, as shown in Table 1, the structure and physical properties of the hard carbon film can be controlled in a wide range, and therefore, there is an advantage that device characteristics can be freely designed. Furthermore, since the dielectric constant of the film is 3-5, which is smaller than Ta 2 O 5 , Al 2 O 3 , and SiN X used for the conventional MIM element, when making an element having the same electric capacity,
Since the element size is large, fine processing is not so required, and the yield is improved.

(駆動条件の関係からLCDとMIM素子の容量比はCLCD:C
MIM=10:1程度必要である。) また、前述したように素子急峻性 であるため、誘電率εが小さければ急峻性は大きくな
り、オン電流Ionとオフ電流Ioffとの比が大きくとれる
ようになる。このため低デューティ比でのLCD駆動が可
能となり、高密度のLCDが実現できる。さらに膜の硬度
が高いため、液晶材料封入時のラビング工程による損傷
が少なく、この点からも歩留りが向上する。以上の点か
ら硬質炭素膜を使用することで、低コスト、階調性(カ
ラー化)、高密度LCD等が実現できる。
(Due to the driving conditions, the capacitance ratio between the LCD and the MIM element is C LCD : C
MIM = about 10: 1 is required. Also, as described above, the device steepness Therefore, if the dielectric constant ε is small, the steepness increases, and the ratio between the on-current Ion and the off-current Ioff can be increased. For this reason, LCD driving at a low duty ratio becomes possible, and a high-density LCD can be realized. Further, since the hardness of the film is high, damage due to the rubbing step at the time of enclosing the liquid crystal material is small, and the yield is also improved in this respect. From the above points, by using the hard carbon film, low cost, gradation (colorization), high-density LCD and the like can be realized.

以上のような硬質炭素膜には必要に応じて抵抗値の制
御、あるいは膜の安定性、耐熱性の向上、さらに硬度の
向上のために、不純物として周期律表第III族元素、同
第IV族元素、同第V族元素、アルカリ金属元素、アルカ
リ土類金属元素、窒素原子、酸素原子、カルコゲン系元
素又はハロゲン原子を含有させることができる。これら
不純物の量は周期率表第III族元素については全構成原
子に対し5原子%以下、同じく第IV族元素の量は35原子
%以下、同じく第V族元素の量は5原子%以下、アルカ
リ金属元素の量は5原子%以下、アルカリ土類金属元素
の量は5原子%以下、窒素原子の量は5原子%以下、酸
素原子の量は5原子%以下、カルコゲン系元素の量は35
原子%以下、またハロゲン元素の量は35原子%以下であ
る。なおこれら元素又は原子の量は元素分析の常法、例
えばオージェ分析によって測定することができる。また
この量は原料ガスに含まれる他の化合物の量や成膜条件
等で調節可能である。
In the hard carbon film as described above, if necessary, control of the resistance value, or stability of the film, improvement of heat resistance, and further improvement of hardness, as an impurity, an element of Group III of the periodic table, and an element of Group IV. A group element, group V element, alkali metal element, alkaline earth metal element, nitrogen atom, oxygen atom, chalcogen element or halogen atom can be contained. The amount of these impurities is 5 atomic% or less based on all the constituent atoms of the group III element of the periodic table, the amount of the group IV element is 35 atomic% or less, the amount of the group V element is 5 atomic% or less, The amount of alkali metal element is 5 atomic% or less, the amount of alkaline earth metal element is 5 atomic% or less, the amount of nitrogen atom is 5 atomic% or less, the amount of oxygen atom is 5 atomic% or less, and the amount of chalcogen element is 35
Atomic% or less, and the amount of halogen element is 35 atomic% or less. The amounts of these elements or atoms can be measured by a conventional method of elemental analysis, for example, Auger analysis. Also, this amount can be adjusted by the amount of other compounds contained in the source gas, film forming conditions, and the like.

いずれにしても硬質炭素膜の膜厚範囲は駆動電圧と破
壊電圧との関係より膜厚が100〜8000Å、比抵抗が106
1013Ω・cmの範囲であることが望ましい。なお駆動電圧
と耐圧(絶縁破壊電圧)とのマージンを考慮すると、膜
厚は200Å以上であることが望ましく、また画素部とMIM
素子部の段差(セルギャップ差)に起因する色ムラが、
実用上問題とならないようにするには膜厚は6000Å以下
であることが望ましいことから硬質炭素膜の膜厚は200
〜6000Å、比抵抗は5〜106〜1012Ω・cmであることが
いっそう好ましい。
In any case, the thickness range of the hard carbon film is 100 to 8000 mm and the specific resistance is 10 6 to 10 due to the relationship between the driving voltage and the breakdown voltage.
It is desirable to be in the range of 10 13 Ω · cm. In consideration of the margin between the driving voltage and the withstand voltage (dielectric breakdown voltage), the film thickness is desirably 200 mm or more.
Color unevenness caused by a step (cell gap difference) in the element section
In order to avoid practical problems, the thickness of the hard carbon film is desirably 200 mm or less.
~6000A, resistivity is more preferably 5~10 6 ~10 12 Ω · cm.

さらには、硬質炭素膜のピンホールによる素子の欠陥
数は膜厚の減少に伴なって増加し、300Å以下では特に
顕著になること(欠陥率は1%を越える)、及び膜厚の
面内分布の均一性(ひいては素子特性の均一性)が確保
できなくなる(膜厚制御の精度は30Å程度が限度で、膜
厚のバラツキが10%を越える)ことから、膜厚は300Å
以上であることがいっそう望ましい。
Further, the number of defects of the element due to the pinholes of the hard carbon film increases with the decrease in the film thickness, and becomes particularly remarkable at 300 ° or less (the defect rate exceeds 1%). Since the uniformity of distribution (and thus the uniformity of device characteristics) cannot be ensured (the accuracy of film thickness control is limited to about 30 mm and the variation in film thickness exceeds 10%), the film thickness is 300 mm.
More desirably.

また、ストレスによる硬質炭素膜の剥離が起こり難く
するため、及びより低デユーティ比(望ましくは1/1000
以下)で駆動するために膜厚は4000Å以下であることが
更に望ましい。従って硬質炭素膜の膜厚は300〜4000
Å、比抵抗は107〜1011Ω・cmであることが更に好まし
い。
Further, the hard carbon film is hardly peeled off due to stress, and has a lower duty ratio (preferably 1/1000).
It is more desirable that the film thickness be 4000 ° or less in order to drive in the following. Therefore, the thickness of the hard carbon film is 300-4000
Å, the specific resistance is more preferably 10 7 to 10 11 Ω · cm.

本発明の実施例を第1〜5図によって更に詳しく説明
する。
An embodiment of the present invention will be described in more detail with reference to FIGS.

第1図(a),(b)及び第2図はサンドイッチ型MI
M素子の斜視図、第3図〜5図はコプレナー型MIM素子の
斜視図である。実施例のバリエーションはバスラインと
なる第一導体2と画素電極となる第二導体3のどちらが
絶縁膜4に対して上部に来るかによって決まり、それ以
外の点は、材料、作製法ともに概ね同じなので、第1図
(a),(b)を代表例として説明する。
Figures 1 (a), (b) and 2 show sandwich type MI.
3 to 5 are perspective views of a coplanar MIM element. The variation of the embodiment depends on which of the first conductor 2 serving as a bus line and the second conductor 3 serving as a pixel electrode comes above the insulating film 4, and the other points are substantially the same in both material and manufacturing method. Therefore, FIGS. 1A and 1B will be described as representative examples.

まず絶縁基板1(材料としてはガラス板、プラスチッ
ク板又はフレキシブルなプラスチックフィルム等)に画
素電極となる第二導体3を形成する。具体的には絶縁膜
と接しない側32をまず形成する。材料はITO,In2O3,ZnO,
SnO2等の透明導電体であり、蒸着、スパッタリング等の
方法で形成する。さらに、その上に絶縁膜と接する側31
を積層する。材料はSnO2あるいは半透明金属である。金
属の種類はAl,Ni,Cr,NiCr,Pt,Ag,Au,Cu,Mo,Ti,Ta等であ
り、形成法は32と同様である。次にウェット又はドライ
エッチングにより所定のパターンにパターニングして第
二導体とした。その上にプラズマCVD法、イオンビーム
法等により絶縁膜4(硬質炭素膜)を被覆後、ドライエ
ッチング、ウェットエッチング又はレジストを用いるリ
フトオフ法により所定のパターンにパターニングして絶
縁膜とした。
First, a second conductor 3 serving as a pixel electrode is formed on an insulating substrate 1 (made of a glass plate, a plastic plate, a flexible plastic film, or the like). Specifically, the side 32 not in contact with the insulating film is first formed. The material is ITO, In 2 O 3 , ZnO,
It is a transparent conductor such as SnO 2 and is formed by a method such as vapor deposition or sputtering. Further, a side 31 in contact with the insulating film is formed thereon.
Are laminated. The material is SnO 2 or translucent metal. The type of the metal is Al, Ni, Cr, NiCr, Pt, Ag, Au, Cu, Mo, Ti, Ta, or the like. Next, a predetermined pattern was formed by wet or dry etching to obtain a second conductor. An insulating film 4 (hard carbon film) was coated thereon by a plasma CVD method, an ion beam method, or the like, and then patterned into a predetermined pattern by dry etching, wet etching, or a lift-off method using a resist to form an insulating film.

さらに、その上にバスラインとなる第一導体2を形成
する。具体的には絶縁膜と接する側21をまず形成する。
材料はSnO2あるいは半透明金属である。金属の種類はA
l,Ni,Cr,NiCr,Pt,Ag,Au,Cu,Mo,Ti,Ta等であり、形成法
は32と同様、蒸着、スパッタリング等である。
Further, a first conductor 2 serving as a bus line is formed thereon. Specifically, the side 21 that contacts the insulating film is first formed.
The material is SnO 2 or translucent metal. Metal type is A
l, Ni, Cr, NiCr, Pt, Ag, Au, Cu, Mo, Ti, Ta, and the like.

さらに絶縁膜と接しない側22を積層し(材料は上記の
金属又はITO,In2O3,ZnO,SnO2等の透明導電体であ
る。)、パターニングし、素子が完成する。なお第2〜
5図はすべて積層としている。
Further, the side 22 that is not in contact with the insulating film is laminated (the material is the above-mentioned metal or a transparent conductor such as ITO, In 2 O 3 , ZnO, SnO 2 ) and patterned to complete the element. Note that the second
5 are all laminated.

こゝで下部電極、上部電極及びその他の電極の厚さは
通常、いずれも100〜数千Åの範囲である。また絶縁膜
の厚さは100〜8000Å、望ましくは200〜6000Å、さらに
望ましくは300〜4000Åの範囲である。
Here, the thickness of the lower electrode, the upper electrode, and the other electrodes is usually in the range of 100 to several thousand square meters. The thickness of the insulating film is in the range of 100 to 8000, preferably 200 to 6000, and more preferably 300 to 4000.

以上のようなMIM素子を有する基板を用いて本発明の
液晶表示装置を作るにはこの基板とストライプ状の共通
電極が形成された第二の基板を用意し、両基板間に常法
により液晶層を形成すればよい。
In order to make the liquid crystal display device of the present invention using the substrate having the MIM element as described above, a second substrate on which this substrate and a stripe-shaped common electrode are formed is prepared, and a liquid crystal is formed between the two substrates by an ordinary method. A layer may be formed.

〔発明の作用効果〕[Function and effect of the invention]

本発明の液晶表示装置はMIM素子の構成を以上のよう
にしたので、特性が安定化し、且つ特性の対称性は向上
する。また気相法による絶縁膜を使用したので、MIM素
子特性の制御が自由に行なえる上、高度の微細加工も必
要なくなる。
In the liquid crystal display device of the present invention, since the configuration of the MIM element is as described above, the characteristics are stabilized and the symmetry of the characteristics is improved. In addition, since the insulating film formed by the vapor phase method is used, the characteristics of the MIM element can be freely controlled, and sophisticated fine processing is not required.

更に絶縁膜を硬質炭素膜で形成したことにより成膜或
いは膜処理に要する高温加熱が不要となるため、基板材
質の選択の自由度、従ってデバイス設計上の自由度が拡
大する上、ピンホールの発生も殆んどなくなるので、量
産時の歩留り(低欠陥率)が著しく向上し、また硬質炭
素膜の利点によって均一な特性、高速駆動、優れた耐
圧、閾値電圧、及び経済性を有するマトリックス型MIM
素子を提供することができる。
Further, since the insulating film is formed of a hard carbon film, high-temperature heating required for film formation or film processing is not required, so that the degree of freedom in selection of a substrate material, that is, the degree of freedom in device design is increased, and pinholes are reduced. Since the generation is almost eliminated, the yield (low defect rate) at the time of mass production is remarkably improved, and a matrix type having uniform characteristics, high-speed driving, excellent withstand voltage, threshold voltage, and economy due to the advantages of the hard carbon film. MIM
An element can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1〜5図は本発明の液晶表示装置に用いられるMIM素
子の一例の斜視図、第6〜7図は従来の気相法による絶
縁膜を用いたMIM素子の一例の斜視図、第8〜9図は夫
々、本発明のMIM素子に用いられる硬質炭素膜系絶縁膜
のIRスペクトル及びラマンスペクトルを示し、また第10
図は前記硬質炭素膜のガウス分布を示す。 1……絶縁膜 2……第一導体(バスライン電極となる) 3……第二導体(画素電極となる) 4……絶縁膜
1 to 5 are perspective views of an example of a MIM element used in the liquid crystal display device of the present invention. FIGS. 6 to 7 are perspective views of an example of a MIM element using an insulating film formed by a conventional vapor phase method. 9 show the IR spectrum and the Raman spectrum of the hard carbon film-based insulating film used in the MIM device of the present invention.
The figure shows a Gaussian distribution of the hard carbon film. DESCRIPTION OF SYMBOLS 1 ... Insulating film 2 ... 1st conductor (it becomes a bus line electrode) 3 ... 2nd conductor (it becomes a pixel electrode) 4 ... Insulating film

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−40929(JP,A) 特開 昭62−124530(JP,A) 特開 昭63−289533(JP,A) (58)調査した分野(Int.Cl.6,DB名) G02F 1/136 G02F 1/1343 G02F 1/13 101 G02F 1/1333 G09F 9/30 H01L 49/02──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-64-40929 (JP, A) JP-A-62-124530 (JP, A) JP-A-63-289533 (JP, A) (58) Field (Int.Cl. 6 , DB name) G02F 1/136 G02F 1/1343 G02F 1/13 101 G02F 1/1333 G09F 9/30 H01L 49/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】液晶層を支持する2枚の絶縁基板の少くと
も一方の基板の各画素に非線形抵抗素子を直列に接続せ
しめた液晶表示装置において、前記非線形抵抗素子はバ
スライン電極としての第一導体と画素電極としての第二
導体との間に絶縁膜を挟んだ構造のMIM素子からなり、
前記絶縁膜が気相法で形成された硬質炭素膜であり、且
つ前記第一及び第二導体が少くとも2層構造であり、絶
縁膜と接する層がSnO2あるいは半透明金属であることを
特徴とする液晶表示装置。
1. A liquid crystal display device in which a non-linear resistance element is connected in series to each pixel of at least one of two insulating substrates supporting a liquid crystal layer, wherein said non-linear resistance element is a bus line electrode. Consists of a MIM element with a structure in which an insulating film is sandwiched between one conductor and a second conductor as a pixel electrode,
The insulating film is a hard carbon film formed by a gas phase method, and the first and second conductors have at least a two-layer structure, and a layer in contact with the insulating film is SnO 2 or a translucent metal. Characteristic liquid crystal display device.
JP9210189A 1989-04-12 1989-04-12 Liquid crystal display Expired - Lifetime JP2854316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9210189A JP2854316B2 (en) 1989-04-12 1989-04-12 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9210189A JP2854316B2 (en) 1989-04-12 1989-04-12 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH02271321A JPH02271321A (en) 1990-11-06
JP2854316B2 true JP2854316B2 (en) 1999-02-03

Family

ID=14045056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9210189A Expired - Lifetime JP2854316B2 (en) 1989-04-12 1989-04-12 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP2854316B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124530A (en) * 1985-11-25 1987-06-05 Sharp Corp Liquid crystal display element
JPS63289533A (en) * 1987-05-22 1988-11-28 Oki Electric Ind Co Ltd Liquid crystal display device
JPS6440929A (en) * 1987-08-07 1989-02-13 Nec Corp Thin film two-terminal element type active matrix liquid crystal display device

Also Published As

Publication number Publication date
JPH02271321A (en) 1990-11-06

Similar Documents

Publication Publication Date Title
JP2799875B2 (en) Liquid crystal display
JP2757207B2 (en) Liquid crystal display
US5101288A (en) LCD having obliquely split or interdigitated pixels connected to MIM elements having a diamond-like insulator
US6031250A (en) Integrated circuit devices and methods employing amorphous silicon carbide resistor materials
US5214416A (en) Active matrix board
US5008732A (en) Thin film two terminal element
JP2854316B2 (en) Liquid crystal display
Zhang et al. Appearance of a knee on the Fowler–Nordheim plot of carbon nanotubes on a substrate
JP2798962B2 (en) Liquid crystal display
JP3155332B2 (en) Switching element
JP2864480B2 (en) Active matrix type liquid crystal display
JP2816172B2 (en) MIM element
JP3009520B2 (en) Plastic substrate for thin film laminated device and thin film laminated device using the same
JP2798965B2 (en) Matrix display device
JP2798964B2 (en) Liquid crystal display
JP2879747B2 (en) MIM element
JP2942604B2 (en) Liquid crystal display
JP2876138B2 (en) Thin-film two-terminal element
JP2869436B2 (en) Liquid crystal display
JPH0756194A (en) Active matrix substrate and liquid crystal display device
JP3049085B2 (en) Thin-film two-terminal element and liquid crystal display device using the same
JPH03163533A (en) Thin film two-terminal element
JPH03163532A (en) Thin film two-terminal element
JP2543913B2 (en) Method for manufacturing MIM element using hard carbon film
JPH03223723A (en) Active matrix substrate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071120

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11