JP2849120B2 - Rechargeable battery - Google Patents

Rechargeable battery

Info

Publication number
JP2849120B2
JP2849120B2 JP1218653A JP21865389A JP2849120B2 JP 2849120 B2 JP2849120 B2 JP 2849120B2 JP 1218653 A JP1218653 A JP 1218653A JP 21865389 A JP21865389 A JP 21865389A JP 2849120 B2 JP2849120 B2 JP 2849120B2
Authority
JP
Japan
Prior art keywords
lithium
solvent
positive electrode
electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1218653A
Other languages
Japanese (ja)
Other versions
JPH0384871A (en
Inventor
圭司 谷口
祥子 米山
文人 増渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1218653A priority Critical patent/JP2849120B2/en
Publication of JPH0384871A publication Critical patent/JPH0384871A/en
Application granted granted Critical
Publication of JP2849120B2 publication Critical patent/JP2849120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 導電性高分子を正極にリチウムまたはリチウム合金を
負極に用いる二次電池に関し、さらに詳しくはその電解
液の改良に関する。
The present invention relates to a secondary battery using a conductive polymer as a positive electrode and lithium or a lithium alloy as a negative electrode, and more particularly to an improvement in an electrolyte solution thereof.

[従来の技術] ポリアニリン、ポリピロール等の導電性高分子を正極
に使用し、リチウムまたはリチウム合金を負極に使用し
た二次電池は充放電効率が良い、自己放電が少ない、過
放電に強いという長所を有する。またポリマー電極特有
の重量エネルギー密度の高さを利用した電池形態も種々
提案されている。
[Related Art] A secondary battery using a conductive polymer such as polyaniline or polypyrrole for a positive electrode and using lithium or a lithium alloy for a negative electrode has advantages of good charge / discharge efficiency, low self-discharge, and resistance to overdischarge. Having. Also, various battery configurations utilizing the high weight energy density specific to polymer electrodes have been proposed.

しかし、この様な導電性高分子を正極に使用したリチ
ウム二次電池では充電時電解液中のアニオンが正極にド
ープされ、リチウムイオンが負極リチウム上に金属とし
て析出し、放電の際に正極からアニオンが負極からリチ
ウムイオンが放出されるというシステムができるため、
電解液中のアニオン及びリチウムイオンが電池活物質と
同様の役目を負っており、そのため多量の電解液が必要
となる。
However, in a lithium secondary battery using such a conductive polymer for the positive electrode, the anion in the electrolyte solution is doped into the positive electrode during charging, and lithium ions precipitate as metal on the negative electrode lithium. Since a system in which anions release lithium ions from the negative electrode is created,
The anions and lithium ions in the electrolyte have the same role as the battery active material, and therefore require a large amount of the electrolyte.

従って、実際の電池を組立てた場合、導電性高分子正
極が軽いにもかかわらず、多量の電解液を使用しなけれ
ばならないために体積、重量あたりのエネルギー密度を
充分に高める事ができないという欠点があった。
Therefore, when an actual battery is assembled, a large amount of electrolyte must be used in spite of the lightness of the conductive polymer cathode, so that the energy density per volume and weight cannot be sufficiently increased. was there.

従来よりリチウム電池用の電解液としてはプロピレン
カーボネート、γ−ブチロラクトン等の高誘電率を有す
る溶媒にジメトキシエタン等のエーテル系低粘度溶媒を
添加して用いられてきた。しかしながら、これらの溶媒
では導電性高分子を正極に使用したリチウム二次電池で
必要とする高塩濃度の電解液を得る事ができず、また繰
返し充放電での放電容量低下等の劣化も抑制することが
できず、十分でない。
Conventionally, as an electrolyte for a lithium battery, a solvent having a high dielectric constant such as propylene carbonate or γ-butyrolactone has been used by adding an ether-based low-viscosity solvent such as dimethoxyethane. However, with these solvents, it is not possible to obtain the high salt concentration electrolyte required for lithium secondary batteries using conductive polymers for the positive electrode, and to suppress deterioration such as a decrease in discharge capacity due to repeated charge and discharge. Not enough, not enough.

特開平1−107468においてはポリアニリン正極、リチ
ウム負極、LiBF4電解質塩でジメトキシエタンを単独で
溶媒として使用することにより、4〜6モル/という
高濃度変化が可能であるが、この場合4〜6モル/の
電解液は高粘度でありイオンの移動度が低下する結果、
最大放電電流が小さいという欠点があった。
In JP-A-1-107468, a high concentration change of 4 to 6 mol / is possible by using dimethoxyethane alone as a solvent in a polyaniline positive electrode, a lithium negative electrode, and a LiBF 4 electrolyte salt. The mol / mol of the electrolytic solution has a high viscosity and the ion mobility is reduced,
There is a disadvantage that the maximum discharge current is small.

[発明が解決しようとする課題] 本発明は、こうした状況の下に、導電性高分子を正極
に使用したリチウム二次電池において、電池全体の体
積、重量あたりのエネルギー密度を向上させるため、高
塩濃度化が可能で、かつ粘度が低い電解液溶媒を採用し
て、繰返し充放電の放電容量安定性に優れ、また最大放
電電流が大きくとれる二次電池を提供することを目的と
するものである。
[Problems to be Solved by the Invention] Under such circumstances, the present invention provides a lithium secondary battery using a conductive polymer for a positive electrode, in order to improve the energy density per volume and weight of the whole battery. The purpose of the present invention is to provide a secondary battery capable of forming a salt concentration and having a low-viscosity electrolytic solution solvent, having excellent discharge capacity stability of repeated charging and discharging, and having a large maximum discharge current. is there.

[課題を解決するための手段] 本発明者等は上記課題を解決するために鋭意研究を行
ったところ、高誘電率溶媒を併用せず、エーテル系溶媒
のみを使用したところ、意外にも最大6〜8モル/と
高濃度電解液とすることができ、しかも充放電の繰返し
による放電容量の低下も著しく小さくすることができる
ことがわかった。
[Means for Solving the Problems] The present inventors have conducted intensive studies in order to solve the above-mentioned problems. As a result, when only the ether-based solvent was used without using a high dielectric constant solvent, surprisingly, It was found that a high concentration electrolyte solution of 6 to 8 mol / could be obtained, and that a decrease in discharge capacity due to repetition of charge / discharge could be significantly reduced.

更に、エーテル系溶媒も対称型のエーテル系溶媒のみ
あるいは非対称型のエーテル系溶媒のみを使用した場合
よりも両者を併用する事により、電解液粘度が大幅に低
下し、そのため、最大放電電流値が向上することを見出
し、本発明の完成に至った。
Furthermore, by using both the ether-based solvent and the symmetrical-type ether-based solvent alone or the asymmetric-type ether-based solvent alone, the viscosity of the electrolytic solution is greatly reduced, and therefore, the maximum discharge current value is reduced. The inventors have found that the present invention is improved, and have completed the present invention.

すなわち、本発明は導電性高分子を正極にリチウムま
たはリチウム合金を負極に使用する二次電池において、
電解液溶媒が下記一般式(1)で表される溶媒と下記一
般式(2)で表される溶媒との混合物である二次電池で
ある。
That is, the present invention relates to a secondary battery using a conductive polymer as a positive electrode and lithium or a lithium alloy as a negative electrode,
A secondary battery in which an electrolyte solvent is a mixture of a solvent represented by the following general formula (1) and a solvent represented by the following general formula (2).

R1−OC2H4O−R2 (1) (式中、R1とR2は各々異なる低級アルキル基) R3−OC2H2O−R4 (2) (式中、R3とR4は同一の低級アルキル基) である。R 1 —OC 2 H 4 O—R 2 (1) (wherein R 1 and R 2 are different lower alkyl groups) R 3 —OC 2 H 2 O—R 4 (2) (where R 3 is And R 4 are the same lower alkyl group).

本発明の電池は基本的には正極、負極及び電解液、セ
パレーターより構成され、正極の電極活物質に導電性高
分子が使用される。
The battery of the present invention basically includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and a conductive polymer is used as an electrode active material of the positive electrode.

本発明の電池はアニオンによって導電性高分子がドー
プされてエネルギーを貯え、脱ドープによって外部回路
を通じてエネルギーを放出するものである。本発明の電
池においてはこのドープ・脱ドープが可逆的に行われる
ので二次電池として使用することができる。
In the battery of the present invention, the conductive polymer is doped with anions to store energy, and the energy is released through an external circuit by undoping. The battery of the present invention can be used as a secondary battery because the doping and undoping are performed reversibly.

本発明の正極活物質に用いられる導電性高分子は、た
とえば、ピロール、アニリン、チオフェン、フラン、ベ
ンゼン、アズレン、ジフェニルベンジジン、ジフェニル
アミン、トリフェニルアミンあるいはこれら誘導体を重
合したものである。
The conductive polymer used for the positive electrode active material of the present invention is, for example, a polymer obtained by polymerizing pyrrole, aniline, thiophene, furan, benzene, azulene, diphenylbenzidine, diphenylamine, triphenylamine or a derivative thereof.

これら導電性高分子とドープ、脱ドープ反応を行うア
ニオンとしては例えばBF4 -、ClO4 -、PF6 -、AsF6 -、SbF6
-、パラトルエンスルホン酸アニオン、ニトロベンゼン
スルホン酸アニオン、Fe(CN)6 -などの錯アニオンある
いはAlCl3、FeCl3、ZnCl2などのルイス酸をあげること
ができる。
Examples of anions that perform doping and undoping reactions with these conductive polymers include BF 4 , ClO 4 , PF 6 , AsF 6 , and SbF 6.
-, p-toluenesulfonic acid anion, trinitrobenzene sulfonic acid anion, Fe (CN) 6 - can be mentioned complex anions or AlCl 3, Lewis acids such as FeCl 3, ZnCl 2, such as.

これら導電性高分子は化学重合あるいは電解重合によ
り得られる。
These conductive polymers are obtained by chemical polymerization or electrolytic polymerization.

電解重合法は一般には例えばJ.Electrochem.Soc.,Vo
l.130.No.7,1506〜1509(1983)、またElectrochem.Act
a.,Vol 27,No.1 61〜65(1982)、J.Chem.Soc.,Chem.Co
mmum.,1199〜(1984)などに示されているが、単量体と
電解質塩とを溶媒に溶解した液を所定の電解槽に入れ、
電極を浸漬し、陽極酸化あるいは陰極還元による電解重
合反応を起させることによって行うことができる。
Electropolymerization is generally performed, for example, by J. Electrochem. Soc., Vo.
l.130.No.7, 1506-1509 (1983) and Electrochem.Act
a., Vol 27, No. 1 61-65 (1982), J. Chem. Soc., Chem. Co.
mmum., 1199- (1984), etc., a solution obtained by dissolving a monomer and an electrolyte salt in a solvent is placed in a predetermined electrolytic cell,
It can be carried out by immersing the electrode and causing an electrolytic polymerization reaction by anodic oxidation or cathodic reduction.

化学重合法は例えばConducting Polymers.,105(198
7)等に示されている。
Chemical polymerization methods are described, for example, in Conducting Polymers., 105 (198
7) etc.

これ等導電性高分子を正極活物質とするリチウム二次
電池は充放電に伴い電解液中のアニオンは正極にドー
プ、脱ドープ(リチウムイオンは負極に析出、溶解)す
るため、電解液中のイオン濃度は活物質へのドーピング
に使用される理論量以上を必要とする。
In a lithium secondary battery using such a conductive polymer as a positive electrode active material, anions in the electrolytic solution are doped and undoped (lithium ions are precipitated and dissolved in the negative electrode) during charge / discharge. The ion concentration needs to be higher than the theoretical amount used for doping the active material.

軽量で小型な電池とするためには電解液の量が少ない
程好ましいため、電解液の濃度は高い程よい。
The smaller the amount of the electrolytic solution is, the smaller the battery is, the more preferable the battery is. Therefore, the higher the concentration of the electrolytic solution is, the better.

本発明で用いられる電解液は電解質塩とエーテル系溶
媒からなる。ただし必要によっては本発明の趣旨に反し
ない限り、他の添加剤等を加える事はかまわない。
The electrolyte used in the present invention comprises an electrolyte salt and an ether solvent. However, if necessary, other additives and the like may be added as long as the purpose of the present invention is not violated.

エーテル系溶媒は下記一般式(1)及び下記一般式
(2)の混合物よりなる。
The ether solvent comprises a mixture of the following general formulas (1) and (2).

R1−OC2H4O−R2 (1) (式中、R1とR2は各々異なる低級アルキル基) R3−OC2H4O−R4 (2) (式中、R3とR4は同一の低級アルキル基) (1)と(2)の混合割合は1/9〜9/1、特に好ましく
は3/7〜7/3である(体積比)。一般式(1)の具体例と
してはメトキシエトキシエタン、メトキシプロポキシエ
タン、メトキシイソプロポキシエタン、メトキシブトキ
シエタン、メトキシ−t−ブトキシエタン、エトキシプ
ロポキシエタン、エトキシイソプロキシエタン等があげ
られる。
R 1 —OC 2 H 4 O—R 2 (1) (wherein R 1 and R 2 are different lower alkyl groups) R 3 —OC 2 H 4 O—R 4 (2) (wherein R 3 And R 4 are the same lower alkyl group.) The mixing ratio of (1) and (2) is 1/9 to 9/1, particularly preferably 3/7 to 7/3 (volume ratio). Specific examples of the general formula (1) include methoxyethoxyethane, methoxypropoxyethane, methoxyisopropoxyethane, methoxybutoxyethane, methoxy-t-butoxyethane, ethoxypropoxyethane, and ethoxyisoproxyethane.

一般式(2)の具体例としてはジメトキシエタン、ジ
エトキシエタン、ジノルマルプロポキシエタン、ジイソ
プロポキシエタン、ジブトキシエタン等が挙げられる。
Specific examples of the general formula (2) include dimethoxyethane, diethoxyethane, dinormalpropoxyethane, diisopropoxyethane, dibutoxyethane and the like.

電解質塩としてはSCN-、Cl-、Br-、I-、BF4 -、PF6 -
CF3SO3 -、SbF6 -、AsF6 -、ClO4 -、B(C6H54 -、CF3SO3
-等のアニオンとLi+とからなる電解質塩が挙げられる。
As the electrolyte salt SCN -, Cl -, Br - , I -, BF 4 -, PF 6 -,
CF 3 SO 3 -, SbF 6 -, AsF 6 -, ClO 4 -, B (C 6 H 5) 4 -, CF 3 SO 3
- electrolyte salts comprising an anion and Li + and the like.

電解質塩の濃度は、2モル/〜9モル/、好まし
くは3モル/〜8モル/がよい。
The concentration of the electrolyte salt is 2 mol // 9 mol /, preferably 3 mol / 〜8 mol /.

本発明で用いられる負極としては、基本的には充放電
によってLiLi+の反応が起るものであれば良い。
As the negative electrode used in the present invention, basically, any material may be used as long as a LiLi + reaction is caused by charging and discharging.

具体的にリチウム金属、リチウム合金、ウッドメタ
ル、リチウム層間化合物等があるが、リチウム金属、リ
チウム合金が好ましい。
Specifically, there are lithium metal, lithium alloy, wood metal, lithium intercalation compound and the like, and lithium metal and lithium alloy are preferable.

以下、実施例により説明する。 Hereinafter, an embodiment will be described.

正極の作製例 (1)化学重合ポリアニリンの合成 300mlの1M HCl水溶液にアニリン20.4g(0.219mol)を
溶解し、氷冷下5〜10℃に保ちながら、(NH42S2O61
1.5g(0.0504mol)を200mlのM HCl水溶液に溶解した溶
液を滴下、撹拌した。滴下終了後2時間同温度で撹拌を
続け、析出したポリアニリン(粉状)を濾取した。得ら
れたポリアニリンを200mlの水で3回洗浄し、次にメタ
ノール100mlで2回洗浄し乾燥した。
Dissolving aniline 20.4 g (0.219 mol) in aqueous 1M HCl Synthesis 300ml Preparation Example (1) chemical polymerization of polyaniline positive electrode, while maintaining under ice-cooling 5~10 ℃, (NH 4) 2 S 2 O 6 1
A solution of 1.5 g (0.0504 mol) dissolved in 200 ml of an aqueous M HCl solution was added dropwise and stirred. After completion of the dropwise addition, stirring was continued at the same temperature for 2 hours, and the precipitated polyaniline (powder) was collected by filtration. The resulting polyaniline was washed three times with 200 ml of water, then twice with 100 ml of methanol and dried.

次に本ポリアニリンをヒドラジンの20%メタノール溶
液300ml中、室温で2時間撹拌し、脱ドープおよび還元
を行い、濾取し、メタノール100mlで2回洗浄し、淡青
色のポリアニリン10.1gを得た。
Next, this polyaniline was stirred in 300 ml of a 20% methanol solution of hydrazine at room temperature for 2 hours, dedoped and reduced, filtered, and washed twice with 100 ml of methanol to obtain 10.1 g of pale blue polyaniline.

(2)合剤型正極の作成 (1)で得られたポリアニリン0.227g及びグラファイ
ト0.023gを充分混練し、30kg/cm2で加圧成型して直径16
mmの合剤型正極を作成した。
(2) Preparation of mixture type positive electrode 0.227 g of polyaniline obtained in (1) and 0.023 g of graphite were sufficiently kneaded, and the mixture was molded under pressure at 30 kg / cm 2 to form a mixture having a diameter of 16 kg.
A mixture-type positive electrode of mm was prepared.

電池特性試験 正極の作成例で作製した合剤型正極、Li−Al合金(80
%リチウム、厚さ1.5mm)を負極に、集電体としてステ
ンレスメッシュ、セパレーターとしてガラス繊維不織布
を用い、第1図に示す電池を作成した。
Battery characteristics test The mixture-type positive electrode prepared in the positive electrode preparation example, Li-Al alloy (80
% Lithium, a thickness of 1.5 mm) as a negative electrode, a stainless steel mesh as a current collector, and a glass fiber nonwoven fabric as a separator, to produce a battery shown in FIG.

電解質塩としてはLiBF4を使用した。LiBF 4 was used as an electrolyte salt.

充放電条件は充放電ともに4mA、2.5〜3.7Vで行った。 The charge and discharge conditions were 4 mA and 2.5 to 3.7 V for both charge and discharge.

各電解液組成及び放電容量、最大放電電流のデータを
表−1に示す。
Table 1 shows data on the composition of each electrolytic solution, the discharge capacity, and the maximum discharge current.

[発明の効果] 以上説明したように、本発明の2次電池は高濃度の電
解液を使用でき、放電容量の劣化も少なく、最大放電電
流値も大きく、優れた特性を有する事ができる。
[Effects of the Invention] As described above, the secondary battery of the present invention can use a high-concentration electrolytic solution, has little deterioration in discharge capacity, has a large maximum discharge current value, and has excellent characteristics.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明は二次電池の一例を示す図。 FIG. 1 is a diagram showing an example of a secondary battery according to the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性高分子を正極にリチウムまたはリチ
ウム合金を負極に使用する二次電池において、電解液溶
媒が下記一般式(1)で表される溶媒と下記一般式
(2)で表される溶媒との混合物であることを特徴とす
る二次電池。 R1−OC2H4O−R2 (1) (式中、R1とR2は各々異なる低級アルキル基) R3−OC2H4O−R4 (2) (式中、R3とR4は同一の低級アルキル基)
In a secondary battery using a conductive polymer as a positive electrode and lithium or a lithium alloy as a negative electrode, an electrolyte solvent is a solvent represented by the following general formula (1) and a solvent represented by the following general formula (2). A secondary battery, which is a mixture with a solvent to be used. R 1 —OC 2 H 4 O—R 2 (1) (wherein R 1 and R 2 are different lower alkyl groups) R 3 —OC 2 H 4 O—R 4 (2) (wherein R 3 And R 4 are the same lower alkyl group)
JP1218653A 1989-08-28 1989-08-28 Rechargeable battery Expired - Fee Related JP2849120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1218653A JP2849120B2 (en) 1989-08-28 1989-08-28 Rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1218653A JP2849120B2 (en) 1989-08-28 1989-08-28 Rechargeable battery

Publications (2)

Publication Number Publication Date
JPH0384871A JPH0384871A (en) 1991-04-10
JP2849120B2 true JP2849120B2 (en) 1999-01-20

Family

ID=16723319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1218653A Expired - Fee Related JP2849120B2 (en) 1989-08-28 1989-08-28 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP2849120B2 (en)

Also Published As

Publication number Publication date
JPH0384871A (en) 1991-04-10

Similar Documents

Publication Publication Date Title
JP2717890B2 (en) Lithium secondary battery
US6090504A (en) High capacity composite electrode and secondary cell therefrom
EP3182501B1 (en) Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using the same
US4803138A (en) Nonaqueous secondary battery
EP0924782B1 (en) Electrode materials for use in batteries, and electrodes and batteries using same
US5037713A (en) Secondary battery
EP0996181B1 (en) Polymer Electrode
KR20040092417A (en) Electrode for Electrochemical Cell and Electrochemical Cell therewith
KR100389713B1 (en) Solid polymer electrolyte, battery and solid-state electric double layer capacitor using the same as well as processes for the manufacture thereof
US4128702A (en) Cell with N,N-bis (substituted phenyl)-4,4- dipyridinium salt depolarizer
JP2849120B2 (en) Rechargeable battery
JP3723140B2 (en) Power storage device using quinoxaline compound
JPH07130356A (en) Electrode for secondary battery and secondary battery having the electrode
JP2934452B2 (en) Rechargeable battery
JPH08295713A (en) Solid polymer electrolyte, battery and solid electric double layer capacitor containing same, their production and material for solid polymer electrolyte
JP2542221B2 (en) Battery using polyaniline composite electrode
CN109863633A (en) Electrochemical appliance
EP0198484A2 (en) Secondary battery
JP2607571B2 (en) Novel conductive polymer and secondary battery using it as cathode material
JP2501821B2 (en) Secondary battery
JP3161906B2 (en) Polymer solid electrolyte, battery and solid electric double layer capacitor using the same, and methods for producing them
JP4076727B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP2536865B2 (en) Battery active material
JPH0359962A (en) Lithium secondary battery
JPS632251A (en) Secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071106

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees