JP2847768B2 - Method for forming coating film and method for manufacturing semiconductor device - Google Patents

Method for forming coating film and method for manufacturing semiconductor device

Info

Publication number
JP2847768B2
JP2847768B2 JP1159343A JP15934389A JP2847768B2 JP 2847768 B2 JP2847768 B2 JP 2847768B2 JP 1159343 A JP1159343 A JP 1159343A JP 15934389 A JP15934389 A JP 15934389A JP 2847768 B2 JP2847768 B2 JP 2847768B2
Authority
JP
Japan
Prior art keywords
fluidity
force
increase
spinner
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1159343A
Other languages
Japanese (ja)
Other versions
JPH0324726A (en
Inventor
利郎 津守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1159343A priority Critical patent/JP2847768B2/en
Publication of JPH0324726A publication Critical patent/JPH0324726A/en
Application granted granted Critical
Publication of JP2847768B2 publication Critical patent/JP2847768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、塗布膜の形成方法及び該塗布膜の形成方法
を用いた半導体装置の製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for forming a coating film and a method for manufacturing a semiconductor device using the method for forming a coating film.

本発明の塗布膜の形成方法は、電子材料その他基体上
に塗布ガラスにより塗布膜を形成して用いる各種の分野
で利用することができる。また、本発明の半導体装置の
製造方法は、LSIその他絶縁膜を有する任意の半導体装
置の製造に適用することができる。
The method for forming a coating film of the present invention can be used in various fields in which a coating film is formed on a substrate such as an electronic material using a coating glass. Further, the method for manufacturing a semiconductor device of the present invention can be applied to the manufacture of an LSI or any other semiconductor device having an insulating film.

〔発明の概要〕[Summary of the Invention]

本出願の第1の発明は、塗布ガラスに微粉末充填剤を
含有させ、加える力に対するその流動性を調べることに
より、加える力が大きくなると流動性の増加が小さくな
る流動特性を示す塗布ガラスを得るとともに、該流動性
の増加が小さくなる力の大きさを調べておき、該塗布ガ
ラスを、下地に段差を有する被塗布基体に塗布してスピ
ナーで塗布する際、低速でスピナーを回転させて上記流
動性の増加が小さくなる力の大きさよりも力の弱い状態
で塗布ガラスを被塗布基体全面に行きわたらせ、次いで
スピナーの回転数を上げて上記流動性の増加が小さくな
る力の大きさよりも力の強い状態にしてその流動性を抑
え、これにより下地段差を完全に埋めて、平坦化を達成
させる塗布膜の形成方法であり、本発明の第2の発明
は、上記第1の発明の塗布膜の形成方法を用いて絶縁膜
を形成する半導体装置の製造方法であって、これによっ
て、薄く、かつ平坦化度の高い膜を形成するようにした
ものである。
The first invention of the present application is to incorporate a fine powder filler into a coated glass and examine its fluidity with respect to an applied force. While obtaining, the magnitude of the force at which the increase in the fluidity becomes small is checked, and when the coated glass is applied to a substrate to be coated having a step on a base and coated with a spinner, the spinner is rotated at a low speed. The applied glass is spread over the entire surface of the substrate to be applied in a state where the increase in the fluidity is smaller than the magnitude of the force with which the increase in the fluidity is smaller, and then the rotation speed of the spinner is increased to reduce the increase in the fluidity. This is a method of forming a coating film in which the fluidity is suppressed by setting the state to a strong state, thereby completely filling the underlying step, thereby achieving flattening. The second invention of the present invention is the method of the first invention. A method of manufacturing a semiconductor device for forming an insulating film using the method of forming the fabric layer, whereby, in which so as to form a thin and high flatness degree film.

〔従来の技術〕[Conventional technology]

従来より、例えば電子材料(半導体装置等)におい
て、基体上に塗布ガラスを塗布し、これにより例えば絶
縁膜を形成することが行われている。かかる塗布ガラス
は、半導体装置の分野などにおいては、下地段差を埋め
る平坦化膜としても用いられる。
2. Description of the Related Art Conventionally, for example, in an electronic material (semiconductor device or the like), a coating glass is applied on a base, thereby forming, for example, an insulating film. Such a coated glass is also used as a flattening film that fills an underlying step in the field of semiconductor devices and the like.

近年、半導体装置についてその微細化・集積化の要請
が更に強まり、これに伴い絶縁膜の平坦化に対する要求
も、一層大きくなっている。例えば、LSIについてもそ
の微細化は進向の一途をたどっているが、かかるLSIの
層間絶縁膜の平坦化に対する要求は、配線が微細になる
程強くなる。これは下地の段差が激しいと、後のリソグ
ラフィー工程において、線幅のコントロールが困難にな
るからである。従って層間絶縁膜による下地段差の平坦
化は必須であり、しかもその平坦化度を更に高めること
が要求される。
In recent years, the demand for miniaturization and integration of semiconductor devices has further increased, and accordingly, the demand for flattening an insulating film has further increased. For example, the miniaturization of LSIs is steadily progressing, but the demand for flattening the interlayer insulating film of such LSIs becomes stronger as the wiring becomes finer. This is because, if the step of the underlayer is large, it is difficult to control the line width in the subsequent lithography process. Therefore, it is indispensable to flatten the underlying step by the interlayer insulating film, and furthermore, it is required to further increase the flattening degree.

従来の平坦化の手段として一般的なのは、減圧CVDに
よるSiO2膜の形成、あるいはSOG(Spin On Glass)法と
称される手法によりSiO2膜の形成である。
As a conventional flattening method, a general method is to form an SiO 2 film by low-pressure CVD or to form an SiO 2 film by a technique called SOG (Spin On Glass) method.

しかしながら、減圧CVDによるSiO2膜のみでは、下地
が高段差である場合、これを十分に埋めこんで平坦化す
ることは不可能に近く、普通はSOG法と併用している。
あるいは、SOG法単独で使用されている。
However, it is almost impossible to sufficiently bury this and flatten it when the underlayer has a high step by using only the SiO 2 film formed by the low pressure CVD, and the SOG method is usually used in combination.
Alternatively, the SOG method is used alone.

ここで、SOGとは、ケイ素化合物を有機溶剤等の溶剤
に溶解して塗布ガラスとしたものを称し、これを塗布・
焼成することいよってSiO2(二酸化ケイ素)を主成分と
する膜が形成される。SOG溶液は一般に、ケイ素化合物
(一般にRnSi(OH)4-n)及び必要により有機バインダ
ー、ガラス質形成剤及びP、B、As等の拡散用不純物源
等を有機溶剤に溶解したものである。通常、このSOG溶
液を被塗布基体上にスピンナーを用いて回転塗布し、そ
の後熱処理を施し、これにより、溶剤の蒸発、脱水・重
合反応等を進行させ、無機質のSiO2膜を形成する。(従
来のSOG膜形成手段については、例えばプレスジャーナ
ル社「月刊Semiconductor World」1988年7月、49〜54
頁参照)。
Here, SOG refers to a material obtained by dissolving a silicon compound in a solvent such as an organic solvent to obtain a coated glass.
By firing, a film containing SiO 2 (silicon dioxide) as a main component is formed. The SOG solution is generally a solution in which a silicon compound (generally RnSi (OH) 4-n ) and, if necessary, an organic binder, a vitreous forming agent, and a diffusion impurity source such as P, B and As are dissolved in an organic solvent. Usually, this SOG solution is spin-coated on a substrate to be coated using a spinner, and then subjected to a heat treatment, whereby the evaporation of the solvent, dehydration / polymerization reaction, and the like proceed, thereby forming an inorganic SiO 2 film. (For conventional SOG film forming means, see, for example, Press Journal, “Semiconductor World”, July 1988, 49-54.
Page).

SOGの塗布による従来の絶縁膜形成手段においては、S
OGは、上記のように、レジストと同様なスピンコートに
よってその塗布が行われる。
In the conventional insulating film forming means by applying SOG,
As described above, the OG is applied by the same spin coating as the resist.

ところが従来技術にあっては、SOGの1回塗布では、
第4図に略示するように、SOG膜に凹凸が残り、十分な
平坦化が達成されない。よって第5図に示す如く、SOG
を2回塗布することが行われるが、そうするとSOG膜の
全膜厚が大変厚くなり、後の熱工程等により、クラック
発生の問題が生じたりするおそれがあり、信頼性上の問
題がある。このため実際には、SOG膜のエッチバック等
により、SOG膜を薄くしているのが現状である。なお第
4図、第5図中、1は半導体基板である基体であり、1a
は金属配線であって、これにより段差が生じているもの
で、2aは1層目のSOG膜、2bはその上層の2層目のSOG膜
である。
However, in the prior art, in one application of SOG,
As schematically shown in FIG. 4, irregularities remain on the SOG film, and sufficient planarization cannot be achieved. Therefore, as shown in FIG.
Is applied twice, but if this is done, the total thickness of the SOG film becomes very thick, and there is a risk that cracks may occur due to a subsequent heating step or the like, and there is a problem in reliability. Therefore, in reality, the SOG film is currently thinned by etch back of the SOG film or the like. 4 and 5, reference numeral 1 denotes a base which is a semiconductor substrate, and 1a
Is a metal wiring, and a step is caused by this. 2a is a first-layer SOG film, and 2b is a second-layer SOG film thereon.

また凹パターンの埋め込みの場合は、第6図に示すよ
うに、特にスペース部1bが大きい場合、凹パターン1c
は、SOG膜2cによっては十分に埋め込むことはできなか
った。
In the case of embedding a concave pattern, as shown in FIG. 6, especially when the space portion 1b is large, the concave pattern 1c
Could not be buried sufficiently by the SOG film 2c.

本発明は、上記問題点を解決して、薄く形成できしか
もその場合でも十分な平坦化が達成され、かつクラック
などが生じにくい塗布膜を形成できる塗布膜の形成方法
を提供すること、及び、薄くかつ十分に平坦化されかつ
クラックなどが生じにくい絶縁膜を有する半導体装置の
製造方法を提供することを目的とする。
The present invention has been made to solve the above problems, and to provide a method for forming a coating film that can be formed thin and that achieves sufficient planarization even in that case, and that can form a coating film in which cracks and the like are unlikely to occur, and It is an object of the present invention to provide a method for manufacturing a semiconductor device having an insulating film which is thin and sufficiently flattened and in which a crack or the like is unlikely to occur.

〔問題点を解決するための手段〕[Means for solving the problem]

本出願の請求項1の発明は、 塗布ガラスに微粉末充填剤を含有させ、加える力に対
するその流動性を調べることにより、加える力が大きく
なると流動性の増加が小さくなる流動特性(以下本明細
書において、かかる流動特性を「ダイラタンシー流動特
性」と称する)を示す塗布ガラスを得るとともに、該流
動性の増加が小さくなる力の大きさを調べておき、該塗
布ガラスを、下地に段差を有する被塗布基体に塗布して
スピナーで塗布する際、低速でスピナーを回転させて上
記流動性の増加が小さくなる力の大きさよりも力の弱い
状態で塗布ガラスを被塗布基体全面に行きわたらせ、次
いでスピナーの回転数を上げて上記流動性の増加が小さ
くなる力の大きさよりも力の強い状態にしてその流動性
を抑え、これにより下地段差を完全に埋めて、平坦化を
達成させる ことを特徴とする塗布膜の形成方法 であり、この構成によって、上記目的を達成したもので
ある。
The invention of claim 1 of the present application is based on a flow characteristic (hereinafter referred to as “the present specification”) in which a fine powder filler is contained in a coated glass and the fluidity with respect to the applied force is examined. In this document, such flow characteristics are referred to as “dilatancy flow characteristics”), and the magnitude of the force at which the increase in the flowability is reduced is checked, and the coated glass has a step on the base. When applying to the substrate to be applied and applying with a spinner, the spinner is rotated at a low speed to spread the applied glass over the entire surface of the substrate to be applied in a state of a weaker force than the force at which the increase in the fluidity is reduced, and then By increasing the rotation speed of the spinner, the fluidity is suppressed to a state in which the increase in the fluidity is smaller than the magnitude of the force that reduces the increase in the fluidity, thereby completely filling the base step, This is a method for forming a coating film characterized by achieving planarization, and the above-mentioned object has been achieved by this configuration.

本出願の請求項2の発明は、 下地に段差を有する半導体基板上に塗布ガラスを塗布
して該段差を埋める工程を備える半導体装置の製造方法
であって、 塗布ガラスに微粉末充填剤を含有させ、加える力に対
するその流動性を調べることにより、加える力が大きく
なると流動性の増加が小さくなる流動特性を示す塗布ガ
ラスを得るとともに、該流動性の増加が小さくなる力の
大きさを調べておき、該塗布ガラスを、下地に段差を有
する被塗布半導体基板に塗布してスピナーで塗布する
際、低速でスピナーを回転させて上記流動性の増加が小
さくなる力の大きさよりも力の弱い状態で塗布ガラスを
被塗布半導体基板全面に行きわたらせ、次いでスピナー
の回転数を上げて上記流動性の増加が小さくなる力の大
きさよりも力の強い状態にしてその流動性を抑え、これ
により下地段差を完全に埋めて、平坦化した絶縁膜を形
成する ことを特徴とする半導体装置の製造方法 であり、この構成によって、上記目的に達成したもので
ある。
The invention according to claim 2 of the present application is a method for manufacturing a semiconductor device comprising a step of applying a coating glass on a semiconductor substrate having a step on a base to fill the step, wherein the coating glass contains a fine powder filler. Let, by examining its fluidity with respect to the force to be applied, to obtain a coated glass exhibiting flow characteristics that the increase in fluidity decreases as the force applied increases, and to examine the magnitude of the force in which the increase in fluidity decreases When the coated glass is applied to a semiconductor substrate to be coated having a step on a base and applied by a spinner, the spinner is rotated at a low speed and the fluidity is weaker than the force at which the increase in fluidity is reduced. To spread the coated glass over the entire surface of the semiconductor substrate to be coated, and then increase the rotation speed of the spinner to make the flow stronger than the force at which the increase in fluidity is reduced. Suppressing sex, thereby the underlayer level completely filled, a method of manufacturing a semiconductor device and forming a planarized insulating film, this configuration is obtained by achieving the above objects.

本発明において、ダイラタンシー流動特性とは、普通
の流体が流すニュートニアン流動特性とは異なり、力を
加えない時は流れるが、力を加えると流れなくなる流動
を示すものである。水にぬれた砂の如きものの示す特性
として、O.Reynoldsによって命名されたと言われる。即
ち、ダリラタンシー特性を示す流体は、力がない時には
普通より良く流れるが、力を加えると、通常より流れな
くなってしまう流動を示す流体である。第1図に示すよ
うに、加わる力と流動性との関係が、符号IIで示すニュ
ートニアン流動であると両者がほぼリニアな関係になる
が、ダイラタンシー流動では、符号Iで示す如く、力が
大きくなると流動性は小さくなる傾向を示す。かかる流
体は一般に、流動速度が増加すると見かけの粘性率が増
大するものである。
In the present invention, the dilatancy flow characteristic is different from the Newtonian flow characteristic in which a normal fluid flows, and indicates a flow that flows when no force is applied but stops flowing when a force is applied. It is said to have been named by O. Reynolds as a characteristic of something like sand wet in water. That is, the fluid exhibiting the darilatancy characteristic is a fluid exhibiting a flow that flows better than normal when there is no force, but becomes less flowing than usual when a force is applied. As shown in FIG. 1, when the relationship between the applied force and the fluidity is a Newtonian flow indicated by reference symbol II, the two have a substantially linear relationship. However, in the dilatancy flow, the force is reduced as indicated by reference symbol I. As the size increases, the fluidity tends to decrease. Such fluids generally are those whose apparent viscosity increases with increasing flow velocity.

本発明において、塗布ガラスにダイラタンシー流動特
性を付与するには、微粉末充填剤を含有させる手段によ
る。例えば、SOGを用い、SOGに微粉末シリカ、例えば好
ましくは粒径0.1μm以下の微粉末シリカを与えること
により、ダイラタンシー流動特性を与えることができ
る。充填剤を含有させる量、所望のダイラタンシー特性
が得られる量でよく、特に限定はないが、SOGに微粉末
シリカを加える場合は、一般に、SOG中のケイ素化合物
(SOG固形分)の数wt%程度がよく、好ましくは5wt%以
下程度を加えたものがよい。このとき、SOGには、P、
B、Asその他の不純物が含有されていてもよい。そのほ
か、ダイラタンシー流動性を付与するために用い得る充
填剤としては、無機充填剤としてはシリカのほか、炭酸
カルシウム、けいそう土、タルク、酸化チタン、硫酸バ
リウム、カオリン、カオリンクレー、ジークライト、沸
石、ケイ酸アルミニウム、活性白土、亜鉛華、酸化チタ
ン、チタン雲母箔、炭酸ナトリウム、酸化マグネシウム
等を用いることができ、これを微細粉末にして使用する
ことが好ましい。また、樹脂微粉末などの有機充填剤も
用いることができる。
In the present invention, in order to impart dilatancy flow characteristics to the coated glass, a means for incorporating a fine powder filler is used. For example, dilatancy flow characteristics can be imparted by using SOG and providing the SOG with finely divided silica, preferably finely divided silica having a particle size of 0.1 μm or less. The amount of the filler and the amount of the desired dilatancy characteristic may be obtained. There is no particular limitation. When adding fine powdered silica to SOG, generally, several wt% of the silicon compound (SOG solid content) in SOG is used. The degree is good, and preferably, about 5% by weight or less is added. At this time, P,
B, As and other impurities may be contained. In addition, as a filler that can be used for imparting dilatancy fluidity, in addition to silica as an inorganic filler, calcium carbonate, diatomaceous earth, talc, titanium oxide, barium sulfate, kaolin, kaolin clay, zeeklite, zeolite , Aluminum silicate, activated clay, zinc white, titanium oxide, titanium mica foil, sodium carbonate, magnesium oxide, and the like, which are preferably used in the form of fine powder. Further, an organic filler such as resin fine powder can also be used.

上記充填剤は、ダイラタンシー特性を付与するために
は粒径0.1μm以下の微粉末で用いることが好ましい
が、必ずしもダイラタンシー特性を与える範囲外でも、
即ち例えばダイラタンシー特性を与える量以外で用いて
も、本出願の請求項2の発明に使用することができる。
The filler is preferably used in the form of fine powder having a particle diameter of 0.1 μm or less in order to impart dilatancy characteristics, but even outside the range for imparting dilatancy characteristics,
That is, for example, even if it is used in an amount other than that which gives dilatancy characteristics, it can be used in the invention of claim 2 of the present application.

〔作用〕[Action]

本出願の請求項1に係る塗布膜の形成方法は、塗布ガ
ラスに微粉末充填剤を含有させ、加える力に対するその
流動性を調べることにより、加える力が大きくなると流
動性の増加が小さくなる流動特性を示す塗布ガラスを
得、かつ、該流動性の増加が小さくなる力の大きさを調
べておき、該塗布ガラスを、下地に段差を有する被塗布
基体に塗布してスピナーで塗布する際、低速でスピナー
を回転させて上記流動性の増加が小さくなる力の大きさ
よりも力の弱い状態で塗布ガラスを被塗布基体全面に行
きわたらせ、次いでスピナーの回転数を上げて上記流動
性の増加が小さくなる力の大きさよりも力の強い状態に
してその流動性に抑え、これにより下地段差を完全に埋
めて、平坦化を達成させるので、これにより、薄い膜
で、しかも十分な平坦度の塗布膜を得ることができる。
According to the method for forming a coating film according to claim 1 of the present application, a method in which a fine powder filler is contained in a coating glass and its fluidity with respect to an applied force is examined. Obtain a coated glass exhibiting properties, and examine the magnitude of the force at which the increase in fluidity is small, when applying the coated glass to a substrate to be coated having a step on the underlayer and applying it with a spinner, By rotating the spinner at a low speed, the applied glass is spread over the entire surface of the substrate to be applied in a state of a weaker force than the force at which the increase in the fluidity is reduced, and then the increase in the fluidity is increased by increasing the rotation speed of the spinner. Since the fluidity is reduced to a state where the force is stronger than the magnitude of the force to be reduced, thereby completely filling the base step and achieving flattening, a thin film and sufficient flatness are thereby obtained. It is possible to obtain a coating film.

本出願の請求項2に係る半導体装置の製造方法は、請
求項1の方法により絶縁膜を形成するので、薄く、かつ
十分に平坦な絶縁膜を有する半導体装置を得ることがで
きる。
In the method of manufacturing a semiconductor device according to claim 2 of the present application, since the insulating film is formed by the method of claim 1, a semiconductor device having a thin and sufficiently flat insulating film can be obtained.

〔実施例〕〔Example〕

次に実施例について説明する。但し当然のことである
が、本発明は以下の実施例により限定されるものではな
い。
Next, examples will be described. However, needless to say, the present invention is not limited by the following examples.

実施例−1 本実施例では、ダイラタンシー流動特性を有する塗布
ガラスとして、SOGに微粉末シリカを添加した塗布ガラ
スを製造した。
Example 1 In this example, a coated glass in which fine powder silica was added to SOG was manufactured as a coated glass having dilatancy flow characteristics.

即ち本発明では、SOG溶液中に、粒径0.1μm以下の微
粉末シリカを、SOG溶液の固形分の数%(2〜3wt%)加
えて、十分な分散状態にし、塗布ガラスとした。なお、
場合によっては、界面活性剤等の分散剤を加えることが
必要になる場合があるが、本実施例では、特に必須とい
うわけではなかったが、十分な分散性を確保すべく、界
面活性剤を加えた。
That is, in the present invention, fine powdered silica having a particle size of 0.1 μm or less is added to the SOG solution by several percent (2 to 3 wt%) of the solid content of the SOG solution to obtain a sufficiently dispersed state to obtain a coated glass. In addition,
In some cases, it may be necessary to add a dispersant such as a surfactant, but in this example, this was not particularly essential, but in order to ensure sufficient dispersibility, the surfactant was added. added.

得られた塗布ガラスについて、その流動特性を調べた
所、ダイラタンシー流動特性を有するものであった。
When the flow characteristics of the obtained coated glass were examined, the glass had dilatancy flow characteristics.

実施例−2 本実施例では、実施例−1で得た塗布ガラスを用い
て、半導体装置を製造した。特に、実施例−1の塗布ガ
ラスを層間絶縁膜として用いて、LSIを製造する場合に
適用したものである。
Example 2 In this example, a semiconductor device was manufactured using the coated glass obtained in Example 1. In particular, the present invention is applied to a case where an LSI is manufactured using the coated glass of Example-1 as an interlayer insulating film.

本実施例では、第2図に示すように、基体である半導
体基板(ウエハ)上に、上記塗布ガラスを塗布して塗布
膜2とし、これを絶縁膜にするようにした。
In the present embodiment, as shown in FIG. 2, the above-mentioned coated glass was applied on a semiconductor substrate (wafer) as a base to form a coating film 2, which was used as an insulating film.

即ち本発明においては、まず段差を有する半導体基板
1上に、ダイラタンシー特性をもつSOGである実施例−
1の塗布液をディスペンスする。本例では、半導体基板
1上に金属配線(下部配線)1aが形成されていることに
より、段差が発生している。
That is, in the present invention, first, an SOG having dilatancy characteristics is formed on a semiconductor substrate 1 having a step.
Dispense 1 coating solution. In this example, the metal wiring (lower wiring) 1a is formed on the semiconductor substrate 1, so that a level difference occurs.

次に、低速で回転して塗布液を半導体基板1の全面に
行きわたらせる。これは、塗布液に加わる力が弱い状態
であるので、流動性は良く、塗布液は容易に半導体基板
1の全面に行きわたる。
Next, the coating liquid is rotated at a low speed to spread over the entire surface of the semiconductor substrate 1. Since the force applied to the coating solution is weak, the fluidity is good and the coating solution easily spreads over the entire surface of the semiconductor substrate 1.

次に回転数を上げて流動を抑えることで、段差内を完
全に埋め込む。回転時には、凸の所で塗布液に更に力が
加わり、流動が抑えられる。このようにして、平坦化状
態にする。この状態で、溶剤を蒸発させて固まらせる。
Next, the inside of the step is completely embedded by suppressing the flow by increasing the rotation speed. At the time of rotation, a force is further applied to the coating liquid at the convex portion, and the flow is suppressed. In this way, a flattened state is obtained. In this state, the solvent is evaporated and solidified.

後は、熱処理を行い、通常のSOG熱工程と同様にし
て、塗布液をSiO2化し、絶縁膜としての塗布膜2を形成
する。十分平坦で、薄く、かつクラックのない良好な絶
縁膜が得られた。
After the heat treatment is performed in the same manner as conventional SOG thermal process, a coating liquid SiO 2 However, to form a coating film 2 as an insulating film. A good insulating film which was sufficiently flat, thin, and free from cracks was obtained.

上記のように、本実施例では、塗布液であるSOGにダ
イラタンシー特性を付与し、塗布時にて流動特性を変え
ることで、配線1a上のコーティング時に薄くてしかも十
分な平坦度の平坦化膜を形成でき、かつ十分な埋め込み
を達成したものである。即ち、塗布液はダイラタンシー
流動特性を有するので、スピンナー回転数のコントロー
ルのみで、薄い(即ち第2図のlの小さい)、かつ平坦
な膜を形成できた。
As described above, in the present embodiment, a dilatancy property is given to SOG which is a coating solution, and a flow property is changed at the time of coating, so that a flattening film which is thin and has sufficient flatness at the time of coating on the wiring 1a can be obtained. It can be formed and achieves sufficient embedding. That is, since the coating liquid has dilatancy flow characteristics, a thin (ie, small l in FIG. 2) and flat film could be formed only by controlling the spinner rotation speed.

実施例−3 本実施例では、第3図に示すように、凹部1c(スペー
ス部)の幅1bが広い場合の半導体基板1について、実施
例−2と同様に実施した。用いた塗布液は、同じく実施
例−1で得たものである。
Example 3 In this example, as shown in FIG. 3, the semiconductor substrate 1 in the case where the width 1b of the concave portion 1c (space portion) was large was carried out in the same manner as in Example-2. The coating solution used was the same as that obtained in Example 1.

この結果、第3図に示すように、凹部1cも完全に埋め
込まれて、信頼性の高い絶縁膜(塗布膜)2が得られ
た。
As a result, as shown in FIG. 3, the recess 1c was completely filled, and a highly reliable insulating film (coating film) 2 was obtained.

〔発明の効果〕〔The invention's effect〕

上述の如く、本出願に係る発明によれば、薄く形成で
きしかも十分な平坦化が達成され、かつクラックなどが
生じにくい塗布膜の形成方法を提供することができ、ま
た、薄くかつ十分に平坦化されかつクラックなどが生じ
にくい絶縁膜を有する半導体装置が得られる半導体装置
の製造方法を提供することができる。
As described above, according to the invention of the present application, it is possible to provide a method of forming a coating film that can be formed thin and achieve sufficient planarization, and is less likely to cause cracks and the like. A method for manufacturing a semiconductor device can be provided in which a semiconductor device having an insulating film which is formed into a crack and hardly causes cracks or the like can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明におけるダイラタンシー流動を説明する
ための図である。第2図及び第3図は、各々実施例を説
明するための断面図である。第4図ないし第6図は各々
従来技術を示す。 I……ダイラタンシー流動、II……ニュートニアン流
動。 1……基体(半導体基板)、2……塗布膜(絶縁膜)。
FIG. 1 is a diagram for explaining dilatancy flow in the present invention. FIG. 2 and FIG. 3 are cross-sectional views for explaining each embodiment. 4 to 6 each show the prior art. I: Dilatancy flow, II: Newtonian flow. 1 ... Base (semiconductor substrate) 2 ... Coating film (insulating film)

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 21/316 H01L 21/3205 H01L 21/768──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 6 , DB name) H01L 21/316 H01L 21/3205 H01L 21/768

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】塗布ガラスに微粉末充填剤を含有させ、加
える力に対するその流動性を調べることにより、加える
力が大きくなると流動性の増加が小さくなる流動特性を
示す塗布ガラスを得るとともに、該流動性の増加が小さ
くなる力の大きさを調べておき、該塗布ガラスを、下地
に段差を有する被塗布基体に塗布してスピナーで塗布す
る際、低速でスピナーを回転させて上記流動性の増加が
小さくなる力の大きさよりも力の弱い状態で塗布ガラス
を被塗布基体全面に行きわたらせ、次いでスピナーの回
転数を上げて上記流動性の増加が小さくなる力の大きさ
よりも力の強い状態にしてその流動性を抑え、これによ
り下地段差を完全に埋めて、平坦化を達成させる ことを特徴とする塗布膜の形成方法。
1. A coated glass containing a fine powder filler and examining its fluidity with respect to an applied force to obtain a coated glass exhibiting a flow characteristic in which the increase in the fluidity is reduced as the applied force is increased. The magnitude of the force at which the increase in fluidity is small is examined, and when the coated glass is applied to a substrate to be coated having a step on an underlayer and applied by a spinner, the spinner is rotated at a low speed and the fluidity is increased. A state in which the applied glass is spread over the entire surface of the substrate to be applied in a state in which the increase is smaller than the magnitude of the force in which the increase is small. A method for forming a coating film, characterized in that the fluidity of the coating film is suppressed, thereby completely filling the step of the base and achieving flattening.
【請求項2】下地に段差を有する半導体基板上に塗布ガ
ラスを塗布して該段差を埋める工程を備える半導体装置
の製造方法であって、 塗布ガラスに微粉末充填剤を含有させ、加える力に対す
るその流動性を調べることにより、加える力が大きくな
ると流動性の増加が小さくなる流動特性を示す塗布ガラ
スを得るとともに、該流動性の増加が小さくなる力の大
きさを調べておき、該塗布ガラスを、下地に段差を有す
る被塗布半導体基板に塗布してスピナーで塗布する際、
低速でスピナーを回転させて上記流動性の増加が小さく
なる力の大きさよりも力の弱い状態で塗布ガラスを被塗
布半導体基板全面に行きわたらせ、次いでスピナーの回
転数を上げて上記流動性の増加が小さくなる力の大きさ
よりも力の強い状態にしてその流動性を抑え、これによ
り下地段差を完全に埋めて、平坦化した絶縁膜を形成す
る ことを特徴とする半導体装置の製造方法。
2. A method of manufacturing a semiconductor device comprising a step of applying a coating glass on a semiconductor substrate having a step on an underlayer to fill the step, wherein the coating glass contains a fine powder filler, and the applied force is reduced. By examining the fluidity, it is possible to obtain a coated glass exhibiting fluidity characteristics in which the increase in fluidity is reduced when the applied force is increased, and to examine the magnitude of the force in which the increase in fluidity is reduced, and Is applied to a semiconductor substrate to be coated having a step on the underlayer and applied by a spinner.
By rotating the spinner at a low speed, the applied glass is spread over the entire surface of the semiconductor substrate to be applied in a state where the force is smaller than the magnitude of the force at which the increase in the fluidity is reduced, and then the fluidity is increased by increasing the rotation speed of the spinner. A method for manufacturing a semiconductor device, comprising: forming a flattened insulating film by making the state stronger than the magnitude of the force to reduce the fluidity thereof, thereby completely filling the underlying steps.
JP1159343A 1989-06-21 1989-06-21 Method for forming coating film and method for manufacturing semiconductor device Expired - Fee Related JP2847768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1159343A JP2847768B2 (en) 1989-06-21 1989-06-21 Method for forming coating film and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1159343A JP2847768B2 (en) 1989-06-21 1989-06-21 Method for forming coating film and method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0324726A JPH0324726A (en) 1991-02-01
JP2847768B2 true JP2847768B2 (en) 1999-01-20

Family

ID=15691768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1159343A Expired - Fee Related JP2847768B2 (en) 1989-06-21 1989-06-21 Method for forming coating film and method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2847768B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3420590B2 (en) 1996-11-11 2003-06-23 触媒化成工業株式会社 Substrate flattening method, coated substrate and semiconductor device manufacturing method
JPWO2010073947A1 (en) * 2008-12-25 2012-06-14 国立大学法人東北大学 Semiconductor device and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235738A (en) * 1986-04-07 1987-10-15 Matsushita Electric Ind Co Ltd Formation of insulating film on semiconductor sub-strate
JPS6365630A (en) * 1986-09-05 1988-03-24 Hitachi Ltd Manufacture of semiconductor device
JPS6441246A (en) * 1987-08-07 1989-02-13 Nec Corp Coating solution for forming interlayer insulating film and its manufacture

Also Published As

Publication number Publication date
JPH0324726A (en) 1991-02-01

Similar Documents

Publication Publication Date Title
JP2004312028A (en) Method of forming interconnect channel on semiconductor substrate
TW201701402A (en) Semiconductor device and method for making the same
JP2847768B2 (en) Method for forming coating film and method for manufacturing semiconductor device
CN104112734B (en) Double-nested copper interconnection structure and fabrication method thereof
JPS5893255A (en) Manufacture of semiconductor device
WO2001084610A1 (en) Method of manufacturing integrated circuit, and substrate with integrated circuit formed by the method of manufacturing integrated circuit
KR100349680B1 (en) Method for forming dual damascene interconnection
US5958798A (en) Borderless vias without degradation of HSQ gap fill layers
JP3077990B2 (en) Method for manufacturing semiconductor device
KR100559562B1 (en) Material for low dielectric constant film, low dielectric constant film, method for fabricating low dielectric constant film and semiconductor device
CN101740473B (en) Interlayer dielectric layer, interconnection structure and manufacturing method thereof
CN102738076A (en) Through hole propriety copper interconnection manufacturing method
JPH1098039A (en) Manufacture of semiconductor device
JPH0697298A (en) Forming method of semiconductor device insulating film
JPS6360539B2 (en)
JPH06177127A (en) Formation of wiring
JPH11243071A (en) Manufacture of semiconductor device
TWI414020B (en) Semiconductor device including barrier metal and coating film and method for manufacturing same
JP3199942B2 (en) Method for manufacturing semiconductor device
JPH03160746A (en) Flattening material for semiconductor element
JPS61260638A (en) Manufacture of semiconductor device
KR100562321B1 (en) Formation method of sog film in semiconductor device
JPS6132554A (en) Formation of multilayer interconnection structure
JP2002093798A (en) Method of forming multilayer wiring
JPS63137433A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees