JP2847018B2 - Carbon dioxide reduction reaction catalyst - Google Patents

Carbon dioxide reduction reaction catalyst

Info

Publication number
JP2847018B2
JP2847018B2 JP5261904A JP26190493A JP2847018B2 JP 2847018 B2 JP2847018 B2 JP 2847018B2 JP 5261904 A JP5261904 A JP 5261904A JP 26190493 A JP26190493 A JP 26190493A JP 2847018 B2 JP2847018 B2 JP 2847018B2
Authority
JP
Japan
Prior art keywords
catalyst
zinc oxide
carbon dioxide
reduction reaction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5261904A
Other languages
Japanese (ja)
Other versions
JPH0768171A (en
Inventor
彦一 岩波
隆 吉澤
崇 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOSUMO SEKYU KK
KOSUMO SOGO KENKYUSHO KK
Original Assignee
KOSUMO SEKYU KK
KOSUMO SOGO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOSUMO SEKYU KK, KOSUMO SOGO KENKYUSHO KK filed Critical KOSUMO SEKYU KK
Priority to JP5261904A priority Critical patent/JP2847018B2/en
Priority to CA002126502A priority patent/CA2126502C/en
Priority to GB9412673A priority patent/GB2279583B/en
Priority to DE4422227A priority patent/DE4422227C2/en
Publication of JPH0768171A publication Critical patent/JPH0768171A/en
Priority to US08/571,431 priority patent/US5911964A/en
Application granted granted Critical
Publication of JP2847018B2 publication Critical patent/JP2847018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/15Preparation of carboxylic acids or their salts, halides or anhydrides by reaction of organic compounds with carbon dioxide, e.g. Kolbe-Schmitt synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、二酸化炭素を水素によ
り還元させて一酸化炭素を得ることのできる二酸化炭素
還元反応触媒に関し、特に、原料ガスにHSなどの硫
黄化合物や多量の一酸化炭素が存在していても好ましく
適用できる二酸化炭素還元反応触媒に関する。
BACKGROUND OF THE INVENTION This invention, carbon dioxide is reduced by hydrogen in respect of carbon dioxide reduction catalyst capable of obtaining carbon monoxide, in particular, sulfur compounds such as H 2 S in the raw material gas and a large amount one The present invention relates to a carbon dioxide reduction reaction catalyst which can be preferably applied even when carbon oxide is present.

【0002】[0002]

【従来の技術】従来、二酸化炭素を水素により水素化す
る反応は、Ru,Rhの貴金属系触媒あるいはNi系触
媒を用い、化1に示すように、炭化水素を製造する方法
として工業化され、公知となっている。この反応によれ
ば、高選択率でメタンを製造することができ、COは殆
ど生成されない。
2. Description of the Related Art Conventionally, the reaction of hydrogenating carbon dioxide with hydrogen has been industrialized as a method for producing hydrocarbons as shown in Chemical formula 1 using a noble metal catalyst such as Ru or Rh or a Ni catalyst. It has become. According to this reaction, methane can be produced with high selectivity, and CO is hardly generated.

【0003】[0003]

【化1】 Embedded image

【0004】一方、一酸化炭素は、単独で、あるいは水
素と等モルで混合されて、メタノール合成、アクリル酸
合成、ギ酸合成、脂肪酸合成、酢酸合成、オキソ合成、
カルボニル合成などの原料として有用である。この一酸
化炭素の製造法は、一般に、軽質炭化水素のスチームリ
フォーミング法などにより行われている。スチームリフ
ォーミング法では、先ず、メタンなどの軽質炭化水素、
水および二酸化炭素を、触媒存在下で反応させて、H
/CO/COを含有するガスに変え、次いで、このガ
ス中のCOをアミン液などで吸収し、HとCOとの
混合気体を得るか、さらに深度冷却してCOを分離して
得る。
On the other hand, carbon monoxide is used alone or in an equimolar mixture with hydrogen to produce methanol, acrylic acid, formic acid, fatty acid, acetic acid, oxo,
It is useful as a raw material for carbonyl synthesis and the like. The method for producing carbon monoxide is generally performed by a steam reforming method of light hydrocarbons. In the steam reforming method, first, light hydrocarbons such as methane,
Water and carbon dioxide are reacted in the presence of a catalyst to form H 2
/ CO 2 / CO is converted into a gas containing CO. Then, CO 2 in this gas is absorbed by an amine solution or the like, and a mixed gas of H 2 and CO is obtained, or CO is separated by further deep cooling. obtain.

【0005】また、一酸化炭素の製造法として、近年、
地球環境保全の観点からCOの固定化・資源化の研究
が活発に行われるようになり、これに伴い二酸化炭素を
原料として水素による還元反応を行い、化2に示す反応
により、COを高選択率で生成することのできる触媒の
開発が行われている。
In recent years, as a method for producing carbon monoxide,
From the viewpoint of global environmental conservation, research on the fixation and recycling of CO 2 has been actively conducted, and along with this, a reduction reaction with hydrogen using carbon dioxide as a raw material has been carried out. Catalysts that can be produced with selectivity are being developed.

【0006】[0006]

【化2】 Embedded image

【0007】化2の反応は、炭化水素を生成することな
く、選択的にCOを生成する反応である。この反応に用
いられる触媒は、その活性として平衡転化率までの転化
率を有することが求められるために、シビアーな触媒設
計がなされている。したがって、原料ガス中にHSな
どの硫黄化合物があると、触媒は硫黄化合物により被毒
される。
The reaction of Chemical Formula 2 is a reaction for selectively producing CO without producing hydrocarbons. Since the catalyst used in this reaction is required to have a conversion up to an equilibrium conversion as its activity, a severe catalyst is designed. Therefore, if there is a sulfur compound such as H 2 S in the source gas, the catalyst is poisoned by the sulfur compound.

【0008】これを改良した触媒として、硫化タングス
テン触媒や硫化モリブデン触媒などが公知となっている
(特願平3−233665号明細書など参照)。これら
の触媒は、テトラチオタングステン酸アンモニウム
〔(NHWS〕やテトラチオモリブデン酸アン
モニウム〔(NHMoS〕を、H気流中、温
度300〜400℃で前処理を行い、WS、MoS
として調製した触媒である。
As an improved catalyst, a tungsten sulfide catalyst and a molybdenum sulfide catalyst have been known (see Japanese Patent Application No. 3-233665). These catalysts are prepared by pretreating ammonium tetrathiotungstate [(NH 4 ) 2 WS 4 ] or ammonium tetrathiomolybdate [(NH 4 ) 2 MoS 4 ] in a H 2 stream at a temperature of 300 to 400 ° C. Do, WS 2 , MoS 2
The catalyst was prepared as

【0009】また、TiO、Al、SiO
どを担体とし、これら担体を上記のアンモニウム硫化物
塩水溶液にアンモニア水を加えた液中に浸潰して、担持
させ、乾燥後、前処理を行い、調製した触媒MoS
TiO、MoS/Alなどもある。
Further, TiO 2 , Al 2 O 3 , SiO 2 and the like are used as carriers, and these carriers are immersed in a solution obtained by adding aqueous ammonia to the above-mentioned aqueous solution of ammonium sulfide salt, carried, dried, and dried. After the treatment, the prepared catalyst MoS 2 /
There are also TiO 2 and MoS 2 / Al 2 O 3 .

【0010】これらの触媒は、金属硫化物を触媒活性成
分としているため、硫黄化合物によっては被毒されない
という特長がある。
[0010] These catalysts have a feature that they are not poisoned by sulfur compounds because metal sulfide is used as a catalytically active component.

【0011】また、これらの触媒は、二酸化炭素と水素
の混合気体を使用する二酸化炭素の還元反応において、
炭化水素を生成することなく、高選択率でCOを生成さ
せ得ることが知られている。しかも、上記のように、硫
黄化合物による被毒作用を受けないため、上記の混合気
体(原料ガス)の前処理においてHSなどの硫黄化合
物の除去を必要としないという利点もある。
These catalysts are used in a reduction reaction of carbon dioxide using a mixed gas of carbon dioxide and hydrogen.
It is known that CO can be produced with high selectivity without producing hydrocarbons. In addition, since there is no poisoning effect by the sulfur compound as described above, there is an advantage that it is not necessary to remove a sulfur compound such as H 2 S in the pretreatment of the mixed gas (source gas).

【0012】[0012]

【発明が解決しようとする課題】しかしながら、原料ガ
ス中にCOを多く含む場合には、化3に示すように、炭
化水素の生成や、炭素の析出が著しくなるばかりか、C
Oによる触媒の被毒が起こることも、一般に知られてい
る。
However, when the raw material gas contains a large amount of CO, as shown in Chemical formula 3, not only the generation of hydrocarbons and the precipitation of carbon become remarkable, but also
It is also generally known that catalyst poisoning by O occurs.

【0013】[0013]

【化3】 Embedded image

【0014】また、原料ガス中に硫黄化合物が微量含ま
れている場合であっても、含まれていない場合であって
も、二酸化炭素と水素との反応中に、触媒活性成分であ
る金属硫化物が水素により還元されてHSを生成し、
このHSが二酸化炭素と水素との反応生成物中に移行
して触媒活性を低下させる。
[0014] Regardless of whether or not a trace amount of a sulfur compound is contained in the raw material gas, during the reaction between carbon dioxide and hydrogen, metal sulfide, which is a catalytically active component, is produced. Is reduced by hydrogen to produce H 2 S,
This H 2 S migrates into the reaction product of carbon dioxide and hydrogen and lowers the catalytic activity.

【0015】しかも、この反応生成物中に移行したH
Sのために、原料ガス中の硫黄化合物(HSなど)の
有無にかかわらず、HS除去を目的とした後処理が必
要となる。
In addition, the H 2 transferred into the reaction product
For S, post-treatment for the purpose of removing H 2 S is required regardless of the presence or absence of a sulfur compound (such as H 2 S) in the source gas.

【0016】一方、スチームリフォーミング法によるオ
キソガス(CO/H=1)の製造過程、およびこれを
深度冷却することによるCOの分離過程においては、反
応ガスを、大量の未反応COの分離操作の後に、濃縮
して、循環させている。したがって、硫化物触媒に見ら
れるように、触媒の還元により、HSなどの硫黄化合
物がスリップすると、COの分離、濃縮の過程で、硫
黄化合物も同時に濃縮され、リフォーミング反応器内に
導入され、リフォーミング用触媒の被毒を引き起こし、
好ましくない。また、未反応のCO量を如何に減少さ
せるかが、この方法におけるコスト低減の鍵となってい
る。このためには、CO、CO、Hを含むリフォー
ミングガスを逆シフト反応させて、該ガス中のCO
を減ずることが不可欠である。
On the other hand, in the process of producing oxo gas (CO / H 2 = 1) by the steam reforming method and the process of separating CO by deep cooling, the reaction gas is separated into a large amount of unreacted CO 2 . After the operation, it is concentrated and circulated. Therefore, when a sulfur compound such as H 2 S slips due to the reduction of the catalyst as seen in the sulfide catalyst, the sulfur compound is also simultaneously concentrated in the process of separating and concentrating CO 2 , and the sulfur compound is introduced into the reforming reactor. Introduced, causing poisoning of the reforming catalyst,
Not preferred. Also, how to reduce the amount of unreacted CO 2 is the key to cost reduction in this method. For this purpose, it is essential to reduce the amount of CO 2 in the reforming gas containing CO, CO 2 , and H 2 by performing a reverse shift reaction on the gas.

【0017】なお、一般には、COが存在すると、触媒
の被毒、炭素の析出、炭化水素の生成などが顕著にな
る。
In general, when CO is present, poisoning of the catalyst, precipitation of carbon, generation of hydrocarbons, and the like become remarkable.

【0018】以上のようなことから、本発明では、CO
を多く含むCOとHとの混合気体を使用する場合で
あっても、該ガス中のCOを選択的にCOへ水素還元
し得ると同時に、耐硫黄被毒性をも持ち合わせた二酸化
炭素還元触媒の開発を目的とする。
From the above, according to the present invention, CO 2
Even if a mixed gas of CO 2 and H 2 containing a large amount of CO 2 is used, CO 2 in the gas can be selectively hydrogen reduced to CO, and carbon dioxide having sulfur poisoning resistance The purpose is to develop a reduction catalyst.

【0019】[0019]

【問題を解決するための手段】本発明者らは、二酸化炭
素を水素で還元する反応により一酸化炭素を得るための
二酸化炭素還元触媒を研究・開発中に、中軽質油の深度
脱硫用として開発されている触媒を含め、酸化亜鉛単独
または酸化亜鉛を含有する周期律表第IIIb族、IV
a族から選ばれる金属酸化物またはそれらの複合体に遷
移金属を担持した触媒であれば、(1)原料ガス中にH
Sなどの硫黄化合物が混在していても、被毒されるこ
となく、触媒寿命が延長し、しかも生成物中にHSが
混在せず、したがってHS除去処理を必要としないこ
と、(2)特に、酸化亜鉛と酸化チタニウムや酸化アル
ミニウムとの複合体を担体とする場合は、原料ガス中の
COと同程度のCOが含まれていても、触媒の被毒
や、炭素の析出、あるいは炭化水素の生成などの副反応
を伴わずに、選択的なCOのCOへの水素化反応が起
こること、を見出し、本発明を完成するに至った。
[Means for Solving the Problems] The present inventors have been researching and developing a carbon dioxide reduction catalyst for obtaining carbon monoxide by a reaction of reducing carbon dioxide with hydrogen. Groups IIIb, IV of the periodic table containing zinc oxide alone or containing zinc oxide, including the catalyst being developed
In the case of a catalyst in which a transition metal is supported on a metal oxide selected from group a or a composite thereof, (1) H
Even if sulfur compounds such as 2 S are mixed, the catalyst life is prolonged without being poisoned, and H 2 S is not mixed in the product, so that H 2 S removal treatment is not required. (2) In particular, when a composite of zinc oxide and titanium oxide or aluminum oxide is used as a carrier, even if the raw material gas contains CO at about the same level as CO 2 , catalyst poisoning and carbon It has been found that a selective hydrogenation reaction of CO 2 to CO occurs without a side reaction such as precipitation of hydrocarbons or generation of hydrocarbons, and the present invention has been completed.

【0020】すなわち、本発明は、酸化亜鉛単独、また
は酸化亜鉛を含有する周期律表第IIIb族、IVa族
から選ばれる金属酸化物のいずれか一方または双方の複
合体に、遷移金属を担持してなることを特徴とする二酸
化炭素還元反応触媒を要旨とする。
That is, the present invention provides a method in which a transition metal is supported on zinc oxide alone or on a complex of one or both of metal oxides selected from Group IIIb and IVa of the periodic table containing zinc oxide. The gist of the present invention is a carbon dioxide reduction reaction catalyst characterized by the following.

【0021】本発明の触媒は、二酸化炭素を水素で還元
して一酸化炭素を得る反応において使用されるものであ
って、二酸化炭素および水素の混合ガス中にHSなど
の硫黄化合物が含有されている場合であっても、被毒さ
れることなく、一酸化炭素を高選択率で得ることができ
るものである。
The catalyst of the present invention is used in a reaction for reducing carbon dioxide with hydrogen to obtain carbon monoxide, and contains a sulfur compound such as H 2 S in a mixed gas of carbon dioxide and hydrogen. In this case, carbon monoxide can be obtained at a high selectivity without being poisoned.

【0022】本発明の触媒は、担体として、酸化亜鉛単
独、または酸化亜鉛を含有する周期律表第IIIb族、
IVa族から選ばれる金属酸化物、例えばAl、Ga、
Ti、Zrなどの金属酸化物、またはこれらの複合体
(例えば、酸化亜鉛と酸化チタニウムとの複合体、酸化
亜鉛と酸化アルミニウムとの複合体、または酸化亜鉛と
酸化チタニウムと酸化アルミニウムとの複合体)を使用
する。特に、本発明の触媒が、酸化亜鉛と酸化チタニウ
ムや酸化アルミニウムとの複合体を担体とする場合に
は、上記の混合ガス中に、HSなどの硫黄化合物の他
に、COが大量に含まれていても、これら硫黄化合物や
COによって被毒されることはない。
The catalyst of the present invention comprises, as a carrier, zinc oxide alone or a group IIIb of the periodic table containing zinc oxide,
A metal oxide selected from the group IVa, such as Al, Ga,
Metal oxides such as Ti and Zr or composites thereof (for example, a composite of zinc oxide and titanium oxide, a composite of zinc oxide and aluminum oxide, or a composite of zinc oxide, titanium oxide and aluminum oxide ). In particular, when the catalyst of the present invention uses a complex of zinc oxide and titanium oxide or aluminum oxide as a carrier, the above mixed gas contains a large amount of CO in addition to sulfur compounds such as H 2 S. Even if contained, they are not poisoned by these sulfur compounds or CO.

【0023】担体における酸化亜鉛の量は、一般には、
約20〜100重量%とする。酸化亜鉛の量があまり少
ないと、触媒寿命において充分な延長効果が得られな
い。すなわち、原料ガス中のHSなどの硫黄化合物
は、その殆どが担体の酸化亜鉛に吸収される。これによ
り、活性成分は、被毒されず、寿命が延びると考えられ
る。したがって、酸化亜鉛を含有しない場合は、この効
果が発現せず、酸化亜鉛の量が少ない場合は、この効果
が充分でなくなり、触媒寿命が短くなる。
The amount of zinc oxide in the carrier is generally
About 20 to 100% by weight. When the amount of zinc oxide is too small, a sufficient prolonging effect on the catalyst life cannot be obtained. That is, most of the sulfur compounds such as H 2 S in the source gas are absorbed by the zinc oxide of the carrier. Thereby, it is considered that the active ingredient is not poisoned and the life is extended. Therefore, when zinc oxide is not contained, this effect is not exhibited, and when the amount of zinc oxide is small, this effect is not sufficient, and the catalyst life is shortened.

【0024】また、複合体の場合は、いずれも触媒の機
械的強度を向上させる効果の他に、特に酸化チタニウム
と酸化アルミニウムを含有するものにあっては、実施例
に示すように、亜鉛単独の場合に比して、一酸化炭素の
選択率の向上、耐CO被毒性、耐コーク生成性の効果が
ある。これらの担体成分の含有量は、少なすぎれば、含
有効果がなく、多すぎると相対的に上記の酸化亜鉛の量
が少なくなりすぎて、上記のHS吸収効果が減少して
しまうため、いずれも約40〜80重量%の範囲内とす
ることが好ましい。なお、酸化チタニウムと酸化アルミ
ニウムとを併用する場合の両者の併用割合は、特に限定
されず、両者の合計量が約40〜80重量%の範囲内と
なっていればよい。
Further, in the case of composites, in addition to the effect of improving the mechanical strength of the catalyst, in particular, those containing titanium oxide and aluminum oxide, as shown in the examples, As compared with the case of (1), there are effects of improving the selectivity of carbon monoxide, resistance to CO poisoning, and resistance to coke formation. If the content of these carrier components is too small, there is no content effect, and if it is too large, the amount of the zinc oxide is relatively too small, and the H 2 S absorption effect is reduced. In any case, it is preferable to be within a range of about 40 to 80% by weight. In addition, when titanium oxide and aluminum oxide are used in combination, the combination ratio of both is not particularly limited as long as the total amount of both is in the range of about 40 to 80% by weight.

【0025】さらに、活性成分である遷移金属は、どの
ような遷移金属でもよいが、特に、周期律表第VIII
族(特に、Ni、Fe、Co、Ru、Rh、Pt、P
d)やVIa族(特に、Mo、W)が好ましい。これら
の遷移金属は、それぞれ単独でもよいし、2種以上の金
属を混合して使用することもできる。
Further, the transition metal which is the active ingredient may be any transition metal.
Group (in particular, Ni, Fe, Co, Ru, Rh, Pt, P
d) and VIa group (especially Mo, W) are preferred. These transition metals may be used alone or as a mixture of two or more metals.

【0026】遷移金属の担持量(2種以上を混合して使
用する場合は、合計の担持量)は、特に制限されない
が、一般には、約5〜20重量%とすることが好まし
い。遷移金属の量があまり少ないと、二酸化炭素を水素
で還元して高選択率で一酸化炭素を生成する効果はもと
より、上記の原料ガス中のHSなどの硫黄化合物を酸
化亜鉛に吸収され易い形にする効果が充分でなくなる。
逆に、遷移金属の量があまり多くても、このような効果
は飽和してしまい、多くする技術的意義がなく、不経済
となる。
The amount of the transition metal carried (when two or more kinds are mixed and used, the total amount carried) is not particularly limited, but is generally preferably about 5 to 20% by weight. If the amount of the transition metal is too small, not only the effect of reducing carbon dioxide with hydrogen to generate carbon monoxide with high selectivity, but also sulfur compounds such as H 2 S in the above-mentioned raw material gas are absorbed by zinc oxide. The effect of making the shape easy is not sufficient.
Conversely, if the amount of the transition metal is too large, such an effect is saturated, and there is no technical significance to increase the amount, which is uneconomical.

【0027】本発明の触媒は、例えば、亜鉛化合物単
独、またはアルミニウム化合物やチタニウム化合物など
の周期律表第IIIb族、IVa族から選ばれる金属酸
化物の一方または双方と亜鉛化合物とを用いて担体を調
製した後、得られた担体に遷移金属を、常法により、含
浸、乾燥、焼成させて調製される。
[0027] The catalyst of the present invention can be prepared, for example, by using a zinc compound alone or a zinc compound with one or both of a metal oxide selected from the group IIIb and IVa of the periodic table such as an aluminum compound and a titanium compound. Is prepared by impregnating, drying and calcining the obtained carrier with a transition metal by a conventional method.

【0028】亜鉛化合物、およびアルミニウム化合物や
チタニウム化合物などの周期律表第IIIb族、IVa
族から選ばれる金属酸化物としては、これらの元素の水
酸化物、塩化物、酸化物などが用いられる。遷移金属の
原料としては、遷移金属の水酸化物、硝酸塩、酢酸塩、
塩化物などが用いられる。
Groups IIIb and IVa of the periodic table such as zinc compounds, aluminum compounds and titanium compounds
As metal oxides selected from the group, hydroxides, chlorides, oxides and the like of these elements are used. Transition metal raw materials include transition metal hydroxides, nitrates, acetates,
Chloride is used.

【0029】担体の調製は、酸化亜鉛単独の担体の場
合、金属亜鉛を空気中で焼成するか、無機亜鉛塩(硝酸
亜鉛、ホウ酸亜鉛、塩基性炭酸亜鉛など)または有機亜
鉛(安息香酸亜鉛、クエン酸亜鉛、乳酸亜鉛など)を加
熱分解することにより行われている。
In the case of a carrier consisting of zinc oxide alone, the carrier is prepared by calcining zinc metal in the air, or by using an inorganic zinc salt (zinc nitrate, zinc borate, basic zinc carbonate, etc.) or an organic zinc (zinc benzoate). , Zinc citrate, zinc lactate, etc.).

【0030】また、酸化亜鉛を含有する周期律表第II
Ib族、IVa族から選ばれる金属酸化物の一方または
双方の複合体の担体の場合は、水酸化チタニウムや水酸
化アルミニウムなど、あるいはこれらの混合物に、水酸
化亜鉛を混合するか、これら水酸化物以外のチタニウム
化合物やアルミニウム化合物など、あるいはこれらの混
合物に、亜鉛化合物を加えてアルカリで共沈させた後、
常法により、洗浄、乾燥、成型、焼成すればよい。
Further, the periodic table II containing zinc oxide
In the case of a support of a composite of one or both of metal oxides selected from the group Ib and group IVa, zinc hydroxide is mixed with titanium hydroxide, aluminum hydroxide, or the like, or a mixture thereof. After adding a zinc compound and coprecipitating with an alkali, such as a titanium compound or an aluminum compound other than the product, or a mixture thereof,
Cleaning, drying, molding, and baking may be performed by a conventional method.

【0031】なお、酸化亜鉛と周期律表第IIIb族、
IVa族から選ばれる金属酸化物との複合体を得る場合
の上記各化合物(水酸化物を含む)の混合順序は、特に
制限されず、例えば、上記のようにチタニウム化合物と
アルミニウム化合物とを混合したものに亜鉛化合物を混
合してもよいし、チタニウム化合物,アルミニウム化合
物のいずれか一方と亜鉛化合物とを混合したものに、チ
タニウム化合物,アルミニウム化合物の他方を混合して
もよい。
Zinc oxide and Group IIIb of the periodic table
The order of mixing the above compounds (including hydroxides) in the case of obtaining a complex with a metal oxide selected from Group IVa is not particularly limited. For example, as described above, a titanium compound and an aluminum compound are mixed. The mixture may be mixed with a zinc compound, or a mixture of one of a titanium compound and an aluminum compound and a zinc compound may be mixed with the other of a titanium compound and an aluminum compound.

【0032】あるいは、酸化亜鉛、酸化チタニウム、酸
化アルミニウムなどの粉末を所定量混合するのみでも、
上記した所期の目的を達成し得る本発明の触媒の担体を
調製することができる。
Alternatively, mixing only a predetermined amount of powder such as zinc oxide, titanium oxide, aluminum oxide, etc.
It is possible to prepare a support for the catalyst of the present invention which can achieve the above-mentioned intended purpose.

【0033】上記の担体に、遷移金属を担持する方法と
しては、含浸法、共沈法などの公知の方法を用いること
ができる。一例を挙げると、酸化亜鉛単独の担体に、遷
移金属としてNiを担持する場合は、先ず、酸化亜鉛を
秤量し、これに水を徐々に滴下して、酸化亜鉛の内部に
吸水させる。この吸水は、酸化亜鉛の内部において飽和
されるまで行うことが好ましい。次いで、この飽和吸水
量と既知の酸化亜鉛量とから、必要なNi量を算出し、
このNi量に基づいて、適宜の濃度に調製したNi塩
(硝酸塩、酢酸塩、塩化物など)の水溶液を、酸化亜鉛
に飽和吸収させ、洗浄、乾燥、成型、焼成すればよい。
As a method for supporting the transition metal on the carrier, known methods such as an impregnation method and a coprecipitation method can be used. As an example, when Ni is supported as a transition metal on a carrier of zinc oxide alone, first, zinc oxide is weighed, and water is gradually dropped on the zinc oxide to absorb water into the zinc oxide. This water absorption is preferably performed until the inside of the zinc oxide is saturated. Next, a necessary Ni amount is calculated from the saturated water absorption amount and the known zinc oxide amount,
Based on the amount of Ni, an aqueous solution of Ni salt (nitrate, acetate, chloride, etc.) adjusted to an appropriate concentration may be saturatedly absorbed in zinc oxide, washed, dried, molded, and fired.

【0034】複合体の担体の場合、あるいは2種以上の
遷移金属を担持させる場合も同様で、先ず、複合体の内
部まで吸水させておき、次いで、飽和吸水量と複合体の
酸化亜鉛量とから必要な遷移金属量(2種以上の遷移金
属の合計量)を算出し、この遷移金属量に基づいて、適
宜の濃度に調製した遷移金属塩の水溶液を、飽和吸収さ
せた後、上記のような洗浄などの工程を行えばよい。
The same applies to the case of the carrier of the composite or the case of supporting two or more transition metals. First, water is absorbed to the inside of the composite, and then the saturated water absorption and the zinc oxide content of the composite are determined. The required transition metal amount (total amount of two or more transition metals) is calculated from the above, and based on this transition metal amount, the aqueous solution of the transition metal salt adjusted to an appropriate concentration is saturated and absorbed, Such a washing step may be performed.

【0035】本発明の触媒を使用して二酸化炭素を水素
により還元反応させて一酸化炭素を得る場合、原料ガス
中にHSなどの硫黄化合物が混在していても、また特
に酸化亜鉛と酸化チタニウムや酸化アルミニウムとの複
合体を担体とする場合には、該原料ガス中にCOが大量
に含まれていても、好ましい一酸化炭素の製造を行うこ
とができる。この反応において、温度は、約400℃以
上、好ましくは約500〜600℃、圧力は、約20k
g/cm以下、好ましくは常圧〜約5kg/cm
GHSVは、約1000〜30000h−1が適してい
る。
In the case where carbon monoxide is obtained by reducing carbon dioxide with hydrogen using the catalyst of the present invention, even if a sulfur compound such as H 2 S is mixed in the raw material gas, it is particularly preferable to use zinc oxide and zinc oxide. When a complex with titanium oxide or aluminum oxide is used as a carrier, preferable production of carbon monoxide can be performed even if a large amount of CO is contained in the raw material gas. In this reaction, the temperature is about 400 ° C. or more, preferably about 500 to 600 ° C., and the pressure is about 20 kC.
g / cm 2 or less, preferably from normal pressure to about 5 kg / cm 2 ,
A GHSV of about 1,000 to 30,000 h -1 is suitable.

【0036】[0036]

【実施例】以下の実施例において、生成物(ガス)の分
析は、SUS製のカラムI.D.(Inner Dia
meter)3φ×2mmに、活性炭素60/80me
shを充填し、熱伝導検出器(TCD)付のガスクロマ
トグラフにより行い、HSの検出は、ガス検知管(北
川式)で行った。
EXAMPLES In the following examples, the analysis of the product (gas) was carried out using a column I.S. D. (Inner Dia
meter) 3φ × 2mm, activated carbon 60 / 80me
The sample was filled with sh, and the gas chromatography was performed with a heat conduction detector (TCD), and the detection of H 2 S was performed with a gas detection tube (Kitakawa formula).

【0037】実施例1 酸化チタニウム粉末9.8g、酸化亜鉛粉末5.7g、
酸化アルミニウム粉末4.5gを混合して調製した担体
20gを、硝酸ニッケル〔Ni(NO・6H
O〕9.91gを20ccの水に溶解した硝酸ニッケ
ル水溶液に1時間浸潰し、残液を除去した後、120℃
で12時間乾燥し、600℃で3時間焼成して、Ni
O;12.4wt%、ZnO;21.2wt%、残りT
iOおよびAlの触媒を調製した。
Example 1 9.8 g of titanium oxide powder, 5.7 g of zinc oxide powder,
The carrier 20g, prepared by mixing aluminum oxide powder 4.5 g, nickel nitrate [Ni (NO 3) 2 · 6H
2 O] 9.91g crush immersed for 1 hour in an aqueous solution of nickel nitrate dissolved in water of 20 cc, after removal of the residual solution, 120 ° C.
For 12 hours, and calcined at 600 ° C. for 3 hours.
O: 12.4 wt%, ZnO: 21.2 wt%, remaining T
iO 2 and Al 2 O 3 catalysts were prepared.

【0038】この触媒を内径16mmの円筒反応管に8
cc充填し、常圧、350℃で、6時間にわたって、H
を50cc/minで通気させた。次いで、常圧、6
00℃、GHSV=3000h−1の条件で、H:C
=1:1の混合ガスを原料ガスとしてCOのH
による還元反応を行った。結果を、表1に示す。
This catalyst was placed in a cylindrical reaction tube having an inner diameter of 16 mm.
cc and filled with H under normal pressure at 350 ° C. for 6 hours.
2 was aerated at 50 cc / min. Then, at normal pressure, 6
Under conditions of 00 ° C. and GHSV = 3000 h −1 , H 2 : C
O 2 = 1: H 2 of the CO 2 gas mixture of 1 as a raw material gas
Was carried out. Table 1 shows the results.

【0039】実施例2 実施例1と同様にして調製した担体20gを、硝酸コバ
ルト〔Co(NO・6HO〕9.88gを20
ccの水に溶解した硝酸コバルト水溶液に1時間浸潰
し、残液を除去した後、120℃で12時間乾燥し、6
00℃で3時間焼成して、CoO;12.7wt%、Z
nO;21.5wt%、残りTiOおよびAl
の触媒を調製した。この触媒を用い、実施例1と同様に
して還元反応を行った。結果を表1に示す。
Example 2 20 g of the carrier prepared in the same manner as in Example 1 was mixed with 9.88 g of cobalt nitrate [Co (NO 3 ) 2 .6H 2 O].
cc for 1 hour in an aqueous solution of cobalt nitrate dissolved in water to remove residual liquid, and then dried at 120 ° C. for 12 hours.
Baking at 00 ° C. for 3 hours, CoO: 12.7 wt%, Z
nO: 21.5 wt%, balance TiO 2 and Al 2 O 3
Was prepared. Using this catalyst, a reduction reaction was carried out in the same manner as in Example 1. Table 1 shows the results.

【0040】実施例3 実施例1と同様にして調製した担体20gを、パラモリ
ブデン酸アンモニウム〔(NHMo24・4
O〕5.2gを20ccの水に溶解し、これにアン
モニア水を滴下したパラモリブデン酸アンモニウム水溶
液に1時間浸潰し、残液を除去した後、120℃で12
時間乾燥し、600℃で3時間焼成して、MoO;1
5wt%、ZnO;21.3wt%、残りTiOおよ
びAlの触媒を調製した。この触媒を用い、実施
例1と同様にして還元反応を行った。結果を表1に示
す。
[0040] The carrier 20g, prepared in the same manner as in Example 3 Example 1, ammonium paramolybdate [(NH 4) 6 Mo 7 O 24 · 4
H 2 O] was dissolved in 20 cc of water, immersed in an aqueous solution of ammonium paramolybdate to which aqueous ammonia was added dropwise for 1 hour, and the remaining liquid was removed.
Dried at 600 ° C. for 3 hours to obtain MoO 3 ; 1
A catalyst of 5 wt%, ZnO; 21.3 wt%, and the remaining TiO 2 and Al 2 O 3 was prepared. Using this catalyst, a reduction reaction was carried out in the same manner as in Example 1. Table 1 shows the results.

【0041】実施例4 酸化亜鉛単独の担体(ガードラ社製商品名“G−72”
成型品)20gと、硝酸ニッケル〔Ni(NO
6HO〕19.86gを20ccの水に溶解した硝酸
ニッケル水溶液とを用いた以外は、実施例1と同様にし
て、NiO;19.1wt%、ZnO;70.0wt%
の触媒を調製した。この触媒を用い、実施例1と同様に
して還元反応を行った。結果を表1に示す。
Example 4 A carrier of zinc oxide alone (trade name "G-72" manufactured by Gardla Co., Ltd.)
20 g of molded product) and nickel nitrate [Ni (NO 3 ) 2.
6H 2 O] NiO: 19.1 wt%, ZnO: 70.0 wt% in the same manner as in Example 1 except that an aqueous nickel nitrate solution obtained by dissolving 19.86 g of water in 20 cc of water was used.
Was prepared. Using this catalyst, a reduction reaction was carried out in the same manner as in Example 1. Table 1 shows the results.

【0042】比較例1 酸化チタニウム粉末10gと酸化アルミニウム粉末10
gを混合した担体20gを用いた以外は、実施例1と同
様にして、NiO;12.4wt%、残りTiOおよ
びAlの触媒を調製した。この触媒を用い、実施
例1と同様にして還元反応を行った。結果を表1に示
す。
Comparative Example 1 10 g of titanium oxide powder and 10 g of aluminum oxide powder
Except for using 20 g of the carrier mixed with g, a catalyst of NiO; 12.4 wt%, and remaining TiO 2 and Al 2 O 3 was prepared in the same manner as in Example 1. Using this catalyst, a reduction reaction was carried out in the same manner as in Example 1. Table 1 shows the results.

【0043】[0043]

【表1】 [Table 1]

【0044】なお、表1中の転化率と選択率は、それぞ
れ数1と数2に示す通りであり、平衡転化率は理論上の
転化率を意味し、これらは表2,3において同じであ
る。
The conversion and selectivity in Table 1 are as shown in Equations 1 and 2, respectively. The equilibrium conversion means the theoretical conversion, which is the same in Tables 2 and 3. is there.

【0045】[0045]

【数1】 (Equation 1)

【0046】[0046]

【数2】 (Equation 2)

【0047】実施例5 実施例4で調製した触媒を用い、原料ガスとしてH
を200ppm含有するH:CO=1:1の混合ガ
スを用いる以外は実施例1と同様にして還元反応を行っ
た。結果を表2に示す。
Example 5 Using the catalyst prepared in Example 4, H 2 S was used as a raw material gas.
Was reduced in the same manner as in Example 1 except that a mixed gas containing 200 ppm of H 2 : CO 2 = 1: 1 was used. Table 2 shows the results.

【0048】比較例2 比較例1で調製した触媒を用い、原料ガスとして実施例
5と同じHS含有混合ガスを用いる以外は実施例1と
同様にして還元反応を行った。結果を表3に示す。
Comparative Example 2 A reduction reaction was carried out in the same manner as in Example 1 except that the catalyst prepared in Comparative Example 1 was used and the same H 2 S-containing mixed gas as in Example 5 was used as a raw material gas. Table 3 shows the results.

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【表3】 [Table 3]

【0051】表1および表2〜表3から明らかなよう
に、触媒の担体における酸化亜鉛の有無にかかわらず、
原料ガスにHSなどの硫黄化合物が混在しなければ、
高転化率が得られるが、原料ガスにHSなどの硫黄化
合物が混在すると、担体に酸化亜鉛を含有していない触
媒では、HSはそのまま通過して生成ガス中に現れ、
また触媒がHSなどの硫黄化合物により被毒され、転
化率が低下し、かつ触媒寿命が短いことが判る。本発明
の触媒では、生成ガス物中にHSは確認されず、しか
も触媒寿命が長いことから、被毒されていないことがわ
かる。
As is clear from Table 1 and Tables 2 and 3, regardless of the presence or absence of zinc oxide in the catalyst carrier,
If sulfur compounds such as H 2 S are not mixed in the raw material gas,
Although a high conversion rate is obtained, when a sulfur compound such as H 2 S is mixed in the raw material gas, in a catalyst containing no zinc oxide in the carrier, H 2 S passes through as it is and appears in the product gas,
Further, it can be seen that the catalyst is poisoned by a sulfur compound such as H 2 S, the conversion is reduced, and the catalyst life is short. In the catalyst of the present invention, H 2 S was not confirmed in the product gas, and the catalyst life was long, indicating that the catalyst was not poisoned.

【0052】比較例3 市販の二硫化モリブデンを内径16mmの円筒反応管に
8cc充填し、常圧、600℃、GHSV=3000h
−1の条件で、H:CO=1:1の混合ガスを用
い、COのHによる還元反応を行い、反応時間の経
過による転化率の変化と、生成ガス中のHS濃度の変
化とを測定した。結果を図1に示す。
Comparative Example 3 A commercially available molybdenum disulfide was filled into a cylindrical reaction tube having an inner diameter of 16 mm in an amount of 8 cc, and was subjected to normal pressure, 600 ° C. and GHSV = 3000 h.
Under a condition of -1 , a reduction reaction of CO 2 with H 2 is performed using a mixed gas of H 2 : CO 2 = 1: 1, a change in a conversion rate with a lapse of reaction time, and a change in H 2 S The change in concentration was measured. The results are shown in FIG.

【0053】図1から明らかなように、金属硫化物を触
媒としたものは、原料ガス中にHSなどの硫黄化合物
が混在していなくとも、反応中に触媒成分である硫化物
が水素により還元されてHSとなり、これが生成ガス
中に移行して触媒活性を低下させることが判る。
As is clear from FIG. 1, in the case of using a metal sulfide as a catalyst, even when a sulfur compound such as H 2 S is not mixed in the raw material gas, the sulfide as a catalyst component is hydrogen during the reaction. It is found that H 2 S is reduced by the reaction to H 2 S, which migrates into the product gas and lowers the catalytic activity.

【0054】実施例6 実施例1で調製した触媒を用い、原料ガスとしてH
を200ppm含有するH(49.7vol%)、C
O(28.4vol%)、CO(21.8vol%)
およびCH(0.1vol%)の混合ガスを用いる以
外は、実施例1と同様にして還元反応を連続して行い、
24時間経過後と、200時間経過後の結果を、表4に
示す。
Example 6 Using the catalyst prepared in Example 1, H 2 S was used as a source gas.
The containing 200ppm H 2 (49.7vol%), C
O (28.4 vol%), CO 2 (21.8 vol%)
A reduction reaction was continuously performed in the same manner as in Example 1 except that a mixed gas of CH 4 and CH 4 (0.1 vol%) was used.
Table 4 shows the results after 24 hours and 200 hours.

【0055】実施例7 実施例1と同様にして調製した担体20gを、硝酸鉄9
水和物〔Fe(NO・9HO〕26.15gを
溶解した水溶液20ccに浸漬し、残液を除去し、12
0℃で12時間乾燥し、600℃で3時間焼成して、F
;20.5wt%、ZnO;21.2wt%、
残りTiOおよびAlの触媒を調製した。この
触媒を用いる以外は、実施例6と同様にして還元反応を
行い、結果を表4に示す。
Example 7 20 g of the carrier prepared in the same manner as in Example 1 was replaced with iron nitrate 9
The hydrate [Fe (NO 3 ) 3 .9H 2 O] was immersed in 20 cc of an aqueous solution in which 26.15 g was dissolved, and the remaining liquid was removed.
Dry at 0 ° C for 12 hours, bake at 600 ° C for 3 hours,
e 2 O 3 ; 20.5 wt%, ZnO: 21.2 wt%,
Catalysts for the remaining TiO 2 and Al 2 O 3 were prepared. A reduction reaction was carried out in the same manner as in Example 6 except that this catalyst was used, and the results are shown in Table 4.

【0056】実施例8 実施例3で調製した触媒を用いる以外は、実施例6と同
様にして還元反応を行い、結果を表4に示す。
Example 8 A reduction reaction was carried out in the same manner as in Example 6 except that the catalyst prepared in Example 3 was used. The results are shown in Table 4.

【0057】[0057]

【表4】 [Table 4]

【0058】なお、表4中の転化率と選択率は、それぞ
れ数3と数4に示す通りであり、C−バランスは、原系
と生成系の物質収支であり、この値が低いと言うこと
は、それだけ触媒上でカーボンが析出したことを意味す
る。
The conversion and selectivity in Table 4 are as shown in Equations 3 and 4, respectively. The C-balance is the material balance between the original system and the production system, and it is said that this value is low. This means that carbon was deposited on the catalyst.

【0059】[0059]

【数3】 (Equation 3)

【0060】[0060]

【数4】 (Equation 4)

【0061】表4から明らかなように、本発明の触媒、
特に酸化亜鉛と酸化チタニウムや酸化アルミニウムの複
合体を担体とする触媒では、原料ガス中にCOを大量に
含んでいても、反応時間の経過とともに転化率、選択率
が低下することはなく、原料ガス中のCOによって、被
毒されたり、あるいは炭素バランスが低下することがな
いことが判る。また、原料ガス中にCOを大量に含む場
合には、特にこの複合体に酸化モリブデンを担持した触
媒が好ましいことが判る。
As is clear from Table 4, the catalyst of the present invention,
In particular, in the case of a catalyst using a composite of zinc oxide and titanium oxide or aluminum oxide as a carrier, even if a large amount of CO is contained in the raw material gas, the conversion and the selectivity do not decrease with the lapse of reaction time. It can be seen that CO in the gas does not poison or lower the carbon balance. In addition, when a large amount of CO is contained in the raw material gas, it is found that a catalyst in which molybdenum oxide is supported on this complex is particularly preferable.

【0062】[0062]

【発明の効果】本発明の触媒によれば、次のような効果
を奏することができる。 (1)二酸化炭素を水素により還元反応させて一酸化炭
素を得る際の原料ガス中に、HSなどの硫黄化合物が
混在していても、触媒は被毒されず、触媒寿命が長くな
る。 (2)上記の還元反応による生成物中にHSが混在し
ないことから、HSの除去工程を必要としない。 (3)特に、酸化亜鉛と酸化チタニウムや酸化アルミニ
ウムの複合体を担体とする場合には、上記の原料中に、
二酸化炭素と同程度の一酸化炭素が含まれていても、触
媒の被毒、炭素の析出、あるいは軽質炭化水素の生成を
伴うことがないため、上記の還元反応を良好に進行させ
ることができる。 (4)このような還元反応により、高転化率、高選択率
で、一酸化炭素を製造することができる。
According to the catalyst of the present invention, the following effects can be obtained. (1) Even if a sulfur compound such as H 2 S is mixed in a raw material gas for obtaining a carbon monoxide by performing a reduction reaction of carbon dioxide with hydrogen, the catalyst is not poisoned and the catalyst life is extended. . (2) Since H 2 S is not mixed in the product of the above reduction reaction, a step of removing H 2 S is not required. (3) In particular, when a composite of zinc oxide and titanium oxide or aluminum oxide is used as a carrier,
Even if carbon monoxide equivalent to carbon dioxide is contained, the above-described reduction reaction can be favorably progressed without poisoning of the catalyst, precipitation of carbon, or generation of light hydrocarbons. . (4) By such a reduction reaction, carbon monoxide can be produced with high conversion and high selectivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の効果を実証するために挙げた比較例の
データを示す図である。
FIG. 1 is a diagram showing data of a comparative example given to demonstrate the effect of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 崇 埼玉県幸手市権現堂1134−2 株式会社 コスモ総合研究所 研究開発センター内 (56)参考文献 特開 平4−270104(JP,A) 特開 平6−279012(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01J 23/00 C01B 31/18────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takashi Suzuki 1134-2 Gongendo, Satte City, Saitama Prefecture Cosmo Research Institute, Inc. R & D Center (56) References JP-A-4-270104 (JP, A) Kaihei 6-279012 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) B01J 23/00 C01B 31/18

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化亜鉛単独、または酸化亜鉛を含有す
る周期律表第IIIb族、IVa族から選ばれる金属酸
化物のいずれか一方または双方の複合体に、遷移金属を
担持してなることを特徴とする二酸化炭素還元反応触
媒。
1. A method in which a transition metal is supported on zinc oxide alone or a complex of one or both of metal oxides selected from Group IIIb and Group IVa containing zinc oxide. Characteristic catalyst for carbon dioxide reduction reaction.
【請求項2】 遷移金属が、周期律表第VIII族金属
のNi,Fe,Co,Ru,Rh,Pt,Pd、VIa
族金属のMo,Wのうちの少なくとも1つであることを
特徴とする請求項1記載の二酸化炭素還元反応触媒。
2. The transition metal is selected from the group VIII metals of the periodic table: Ni, Fe, Co, Ru, Rh, Pt, Pd, and VIa.
The carbon dioxide reduction reaction catalyst according to claim 1, wherein the catalyst is at least one of group metals Mo and W.
JP5261904A 1993-06-25 1993-09-23 Carbon dioxide reduction reaction catalyst Expired - Fee Related JP2847018B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5261904A JP2847018B2 (en) 1993-06-25 1993-09-23 Carbon dioxide reduction reaction catalyst
CA002126502A CA2126502C (en) 1993-06-25 1994-06-22 Catalyst for reduction of carbon dioxide
GB9412673A GB2279583B (en) 1993-06-25 1994-06-23 Catalyst for reduction of carbon dioxide
DE4422227A DE4422227C2 (en) 1993-06-25 1994-06-24 Catalyst for the reduction of carbon dioxide
US08/571,431 US5911964A (en) 1993-06-25 1995-12-13 Method for reducing carbon dioxide using a catalyst for reduction of carbon dioxide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-180780 1993-06-25
JP18078093 1993-06-25
JP5261904A JP2847018B2 (en) 1993-06-25 1993-09-23 Carbon dioxide reduction reaction catalyst

Publications (2)

Publication Number Publication Date
JPH0768171A JPH0768171A (en) 1995-03-14
JP2847018B2 true JP2847018B2 (en) 1999-01-13

Family

ID=26500177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5261904A Expired - Fee Related JP2847018B2 (en) 1993-06-25 1993-09-23 Carbon dioxide reduction reaction catalyst

Country Status (4)

Country Link
JP (1) JP2847018B2 (en)
CA (1) CA2126502C (en)
DE (1) DE4422227C2 (en)
GB (1) GB2279583B (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2806073B1 (en) * 2000-03-07 2002-06-07 Air Liquide PROCESS FOR PRODUCING CARBON MONOXIDE BY REVERSE RETROCONVERSION WITH AN ADAPTED CATALYST
EP1554037B1 (en) * 2002-09-23 2007-04-11 Shell Internationale Researchmaatschappij B.V. Catalyst particles and its use in desulphurisation
US20090062110A1 (en) 2006-02-08 2009-03-05 Sumitomo Chemical Company Limited Metal complex and use thereof
EP2152409B1 (en) 2007-04-27 2016-06-29 Saudi Basic Industries Corporation Catalytic hydrogenation of carbon dioxide into syngas mixture
CN101687633A (en) 2007-06-25 2010-03-31 沙特基础工业公司 Catalytic hydrogenation of carbon dioxide is become syngas mixture
JP5533862B2 (en) * 2009-05-15 2014-06-25 富士通株式会社 Gas generating apparatus and gas generating method
WO2010131363A1 (en) * 2009-05-15 2010-11-18 富士通株式会社 Carbon monoxide gas generator and method of generating carbon monoxide gas
CA2810530C (en) 2010-09-13 2020-02-18 Phillips 66 Company Low temperature sulfur tolerant tar and sulfur removal with concomitant synthesis gas conditioning
WO2012153762A1 (en) * 2011-05-11 2012-11-15 株式会社村田製作所 Reverse shift reaction catalyst, and method for producing synthetic gas using same
US8962702B2 (en) 2011-12-08 2015-02-24 Saudi Basic Industries Corporation Mixed oxide based catalyst for the conversion of carbon dioxide to syngas and method of preparation and use
US8551434B1 (en) * 2012-06-29 2013-10-08 Saudi Basic Industries Corporation Method of forming a syngas mixture
CN105683141A (en) 2013-10-29 2016-06-15 沙特基础工业公司 Method for carbon dioxide hydrogenation of syngas and the integration of the process with syngas conversion processes
WO2015103592A1 (en) 2014-01-06 2015-07-09 Saudi Basic Industries Corporation Method for carbon dioxide hydrogenation of syngas
CN106133118B (en) 2014-04-03 2018-03-23 沙特基础工业公司 Use CO2The method for converting methane steam reforming synthesis gas
RU2632701C1 (en) * 2016-06-21 2017-10-09 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН) Method of producing synthesis gas from co2
WO2019230855A1 (en) * 2018-05-29 2019-12-05 積水化学工業株式会社 Catalyst, method for reducing carbon dioxide, and apparatus for reducing carbon dioxide
CN109647373B (en) * 2018-11-28 2021-03-23 天津大学 Black indium oxide ultrathin nanosheet and preparation method and photo-thermal catalysis application thereof
EP3887038A1 (en) 2018-11-29 2021-10-06 Jawaharlal Nehru Centre For Advanced Scientific Research Catalyst, its process of preparation, and applications towards carbon dioxide to chemicals
US11498886B2 (en) 2020-05-04 2022-11-15 Infinium Technology, Llc Catalysts and processes for the direct production of liquid fuels from carbon dioxide and hydrogen
CA3204926A1 (en) 2020-05-04 2021-11-11 Infinium Technology, Llc Process for conversion of carbon dioxide and power into fuels and chemicals
US11560343B2 (en) 2020-05-04 2023-01-24 Infinium Technology, Llc Process for capture of carbon dioxide from air and the direct conversion of carbon dioxide into fuels and chemicals
WO2021225643A1 (en) 2020-05-04 2021-11-11 Infinium Technology, Llc Reverse water gas shift catalytic reactor systems
JPWO2022210832A1 (en) * 2021-03-31 2022-10-06

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE963980C (en) * 1953-05-19 1957-05-16 Standard Oil Dev Co Process for the production of highly active reforming catalysts
US2846365A (en) * 1954-12-29 1958-08-05 Exxon Research Engineering Co Hydroforming catalyst containing a group vi metal oxide supported on a zinc-zirconium aluminate spinel
FR1340206A (en) * 1962-06-29 1963-10-18 Azote Office Nat Ind Industrial gas and vapor desulfurization catalysts
US3798156A (en) * 1971-09-22 1974-03-19 Standard Oil Co Hydroprocessing catalyst and process
DE2657598A1 (en) * 1976-12-18 1978-06-22 Krupp Koppers Gmbh METHOD FOR PRODUCING A CARBON-MONOXY-THICK GAS
FR2441420A1 (en) * 1978-11-17 1980-06-13 Catalyse Soc Prod Francais CATALYST CONTAINING COPPER OXIDE, ZINC OXIDE AND RARE EARTH, ITS PREPARATION AND ITS USE IN CARBON MONOXIDE CONVERSION REACTIONS
US4389305A (en) * 1980-02-18 1983-06-21 Phillips Petroleum Company Catalytic hydrodenitrogenation of organic compounds employing promoted zinc titanate
DE3610698A1 (en) * 1986-03-29 1987-10-01 Henkel Kgaa CATALYST AND METHOD FOR THE CATALYTIC HYDRATION OF FATTY ACID METHYL ESTERS IN THE FIXED BED
EP0397650B1 (en) * 1987-08-03 1993-10-27 Eastman Chemical Company Low pressure catalytic hydrogenation of carbonyl-containing compounds and catalysts therefor
GB9225372D0 (en) * 1992-12-04 1993-01-27 British Petroleum Co Plc Oxide compositions

Also Published As

Publication number Publication date
DE4422227A1 (en) 1995-01-05
CA2126502A1 (en) 1994-12-26
CA2126502C (en) 2003-12-30
DE4422227C2 (en) 2003-10-02
JPH0768171A (en) 1995-03-14
GB9412673D0 (en) 1994-08-10
GB2279583A (en) 1995-01-11
GB2279583B (en) 1997-09-24

Similar Documents

Publication Publication Date Title
JP2847018B2 (en) Carbon dioxide reduction reaction catalyst
RU2259988C2 (en) Catalyst and method for preparing hydrocarbons
CA1045145A (en) Process for preparing ethylene oxide
JP2021130100A (en) Ammonia decomposition catalyst
CN111229213A (en) Preparation method of ruthenium-based catalyst
JPH0130814B2 (en)
JP2009254981A (en) Ammonia decomposing catalyst and method of decomposing ammonia
US2747970A (en) Purification of commercial hydrogen
JPH0647563B2 (en) Method for producing alcohol from synthesis gas
JP3632071B2 (en) Carbon monoxide hydrogenation using sulfide catalyst
US5911964A (en) Method for reducing carbon dioxide using a catalyst for reduction of carbon dioxide
JPS5929633B2 (en) Low-temperature steam reforming method for hydrocarbons
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP3837520B2 (en) Catalyst for CO shift reaction
JP2012223768A (en) Catalyst and method for decomposing ammonia
JP2012223769A (en) Method for producing ammonia decomposition catalyst
RU2538088C1 (en) Method of preparing catalyst of converting synthesis-gas into hydrocarbons and catalyst
JPH0371174B2 (en)
WO2022249616A1 (en) Oxidative dehydrogenation catalyst
EP0526974A1 (en) Process for the preparation of acetic acid
JP2004330106A (en) Catalyst for modifying carbon monoxide and method for modifying carbon monoxide using it
JPS58225078A (en) Catalyst for preparation of morpholine
JPS6032724A (en) Production of oxygen-containing compound
JPS60137434A (en) Catalyst for reforming methanol
JPS62250948A (en) Catalyst for steam reforming of methanol

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees