JP2840741B2 - Variable delay line device - Google Patents

Variable delay line device

Info

Publication number
JP2840741B2
JP2840741B2 JP62317141A JP31714187A JP2840741B2 JP 2840741 B2 JP2840741 B2 JP 2840741B2 JP 62317141 A JP62317141 A JP 62317141A JP 31714187 A JP31714187 A JP 31714187A JP 2840741 B2 JP2840741 B2 JP 2840741B2
Authority
JP
Japan
Prior art keywords
substrate
delay line
conductive
fixed contact
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62317141A
Other languages
Japanese (ja)
Other versions
JPH01158802A (en
Inventor
一雄 亀谷
勍 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Erumetsuku Kk
Original Assignee
Erumetsuku Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erumetsuku Kk filed Critical Erumetsuku Kk
Priority to JP62317141A priority Critical patent/JP2840741B2/en
Publication of JPH01158802A publication Critical patent/JPH01158802A/en
Application granted granted Critical
Publication of JP2840741B2 publication Critical patent/JP2840741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は可変遅延線装置に係り、特に、分布定数型の
遅延線素子を用いた可変遅延線装置の改良に関する。 〔従来の技術〕 従来、分布定数型の遅延線素子を用いた可変遅延線装
置としては、内部に接地電極を埋設した棒状の誘電体ボ
ビンの外周の導線路を単層ソレノイド状に形成した遅延
線素子や、片面に接地電極を形成した誘電体板の対向面
に折れ曲がり導線路を形成した遅延線素子を用い、それ
ら遅延線素子の導線路に固定接点を直線状に形成し、そ
れら固定接点上を切り換え接触しながら可動接点ばねを
スライド可能に配置し、その可動接点ばねに信号を印加
したりその可動接点ばねから出力する構成が知られてい
る。 〔発明が解決しようとする問題点〕 しかしながら、このような可変遅延線装置は、可動接
点ばねを直線的にスライドさせて遅延時間を切り換える
構成であるから、遅延時間の切り換え数が多くなると、
可動接点ばねのスライド量が長くなり、全体形状の小型
化に限界が生じている。 また、外部回路と可動接点ばね間の線路長が各固定接
点毎に異なるから、可動接点ばねをスライドさせて遅延
時間を切り換えると、その線路のインダクタンスが変わ
って遅延特性が一定となり難くなる心配がある。 本発明はこのような状況の下になされたものである。 本発明の第1の目的は超小型の可変遅延線装置を提供
するものである。 本発明の第2の目的は遅延時間の可変範囲において遅
延特性の安定した可変遅延線装置の提供にある。 本発明の第3の目的は製造組立が簡単な可変遅延線装
置の提供にある。 本発明の第4の目的は機械的な可変範囲が正確かつ安
定した可変遅延線装置の提供にある。 〔問題点を解決するための手段〕 このような問題点を解決して上述した目的を達成する
ために本発明は、第1図〜第4図に示すように、誘電体
からなる基板17に円弧状の導線路29を形成し、この基板
17を挟んでその導線路29と対向するように接地電極13を
その基板17に形成し、その基板17の片面側でその導線路
29の一部を固定接点33として円弧状に配列し、この固定
接点33側にてその基板17に取付電極45、47、49を設けて
遅延線素子1を形成し、この遅延線素子1のその固定接
点33側に僅かの間隔を置いて導電板7を並行に配置して
その取付電極45、47、49に接続し、その遅延線素子1と
導電板7間においてその固定接点33の円弧中心部に相当
する位置を回転軸としてホルダー3をその導電板7に回
転自在に支持させ、このホルダー3から先端が遅延線素
子1の固定接点33より外側へ位置するよう支持部69を突
出させ、それら固定接点33と導電板7の双方に弾性的に
圧接するとともに導電板7に圧接したままその固定接点
33上をスライドする可動接点ばね5をそのホルダー3の
支持部69に支持させた構成を有している。 〔作用〕 このような手段を備えた本発明は、導電板7に支持さ
れたホルダー3を回転させると、ホルダー3に支持され
た可動接点ばね5が円弧状に配列された固定接点33を円
弧状にスライドして固定接点33を選択するから、基板17
の取付電極45、47、49を介して導電板7に印加されたパ
ルス信号は、可動接点ばね5で選択された固定接点33か
ら出力部間の距離に応じた遅延時間を伴って切り換え出
力される。 〔実施例〕 以下本発明の実施例を説明する。 第1図および第2図は本発明に係る可変遅延線装置の
一実施例を示す縦半断面図(第2図中U−U間断面、一
部全断面で示す)および横半断面図(第1図中V−V間
断面、一部平面で示す)である。 本発明の可変遅延線装置は、概略的には遅延線素子1
と、ホルダー3と、このホルダー3に保持されて遅延線
素子1の遅延時間を切り換える可動接点ばね5と、その
ホルダー3を支持するとともにその可動接点ばね5に当
接してこの可動接点ばね5を外部回路と接続する導電板
7と、ホルダー3を回転させる回転体9とを具備して構
成されており、実際にはこれらがケース11内に収納され
商品化されている。 遅延線素子1は、第3図および第4図に示すように、
環状の接地電極13を挟んで2枚の誘電体板15a、15bを接
合した基板17と、この基板17の上側に形成された上部導
線路19と下側に形成された下部導線路21をスルーホール
23、25、27にて直列接続したトロイダル状の導線路29と
を有した構成となっている。 すなわち、基板17は、誘電体板15a、15bを接合して一
体化するとともに環状の接地電極13を埋設した正方形に
なっており、その基板17の中央部には接地端子取付用ス
ルーホール31が貫通形成されている。もっとも、接地電
極13は環状に限定されるものではない。 なお、第4図中の断面部分は第3図中における接地端
子取付用スルーホール31と符号Yを結ぶ線上の断面であ
り、第1図中の断面部分はそのスルーホール31と符号
Y′を結ぶ線上の断面である。 基板17の上面には、接地端子取付用スルーホール31近
傍から接地電極13を横切るように放射状に延びる上部導
線路19が複数円弧状に並列配列されており、各上部導線
路19の両端には下部導線路21と接続するスルーホール2
3、25、27が貫通形成されている。 スルーホール23は接地電極13の外側に形成され、スル
ーホール25、27はその内側に位置している。各上部導線
路19の外側先端部を通るスルーホール23は全て同一円弧
上に配置されるように基板17に形成されているが、各上
部導線路19の内側先端部を通るスルーホール25、27は、
隣合う上部導線路19毎に交互に直径D2の円弧上と直径D1
の円弧上に位置するように分散形成されている。 スルーホール23と25間、スルーホール23と27間におい
て各上部導線路19の中央部は各々隣合う上部導線路19方
向に互いに突出して幅広になって固定接点33となってい
る。 基板17の下面には、一の上部導線路19における内側の
スルーホール25もしくは27とこれに隣合う上部導線路19
における外側のスルーホール23を連結するような下部導
線路21が、接地電極13を横切るように併列的に形成され
ており、上部導線路19と同じ円弧状に配列されている。 そのため、上部導線路19および下部導線路21が単位導
線路としてスルーホール23、25、27によって直列接続さ
れてトロイダル状にスペース巻きされた導線路29を形成
し、誘電体板15a、15bを介して接地電極13と導線路29間
で分布容量が生じ、分布定数型の遅延線素子1が円弧状
に形成されている。 円弧状に配列された上部導線路19のうち、導線路29の
両端に位置する上部導線路19のうちの一方19aは、基板1
7の一端部まで導出されて出力端子取付用スルーホール3
5を介して基板17の下面に導出されている。 また、他方の上部導線路19bは内側のスルーホール25
を介して基板17の下面に形成された高電位側の取付電極
37aに接続されている。 基板17の下面において、両上部導線路19a、19bの間に
相当する部分は上部導線路1や両下部導線路21が形成さ
れないスペース39となっており、このスペース39には低
電位側の取付電極37bが形成され、この取付電極37bを通
るようなスルーホール41が基板17に貫通形成されてい
る。 第3図中の接地端子取付用スルーホール31と符号Y′
を結ぶ線上において、基板17の誘電体板15a、15bの接合
部には、接地電極13の一部が接地電極接続導体42とし
て、第1図に示すように、スルーホール41から中央部の
接地端子取付用スルーホール31にまで延びて連結されて
いる。取付電極37a、37b間には内部終端抵抗43が半田付
け接続されて導線路29が終端されている。 基板17の四辺の一辺にあって上面側のスペース39付近
には、導電板取付電極45が形成されている。この導電板
取付電極45を頂点とする三角形の残りの角部に相当する
ような基板17の角部には各々導電板取付電極47、49が形
成され、一方の導電板取付電極47には入力端子取付用ス
ルーホール51が形成されている。 このように導線路29を有する基板17は、従来公知の三
層プリント基板と同様な製造プロセスによって製造可能
である。 例えば、両面に導体層を有する誘電体板15aの片面導
体をエッチング加工して円弧状の接地電極13を形成した
後、片面に導体層を形成した別の誘電体板15bを誘電体
板の上に接合して接地電極13を間に挟んだ両面基板を形
成し、この両面基板にスルーホール用の貫通孔を形成
し、その貫通孔の内壁に銅メッキを施して両面側の導体
を接続するスルーホール23、25、27、31、35、41、51を
形成した後、両面導体をエッチング等で上部導線路19、
下部導線路21、取付電極37a、37b、導電板取付電極45、
47、49を形成すればよい。なお、プリント基板は三層に
限定されない。 なお、このように多層プリント基板を用いて遅延線素
子11を形成する場合には、接地電極13を任意の形状、例
えば隣合うスルーホール23の間から導線路29の外側へ接
地電極13を延ばして、電子機器の回路基板の接地電極と
連結体を形成するように構成することも簡単である。 基板17と略同形状の正方形の導電板7は、第5図のよ
うに中心孔53を有し、四辺のうちの一辺中央部に一対の
狭い間隔の仕込みを入れて形成した小片を下方にL字型
に折り曲げて脚部55を有している。また、脚部55から遠
い方の角にも切込みを入れて小片を形成し、この小片を
各々L字型に下方に折り曲げて脚部57、59を有してい
る。 これら脚部55、57、59は、基板17に形成された導電板
取付電極45、47、49と揃う位置に形成されており、導電
板取付電極45、47、49上に脚部55、57、59を重ねて半田
付け接続することにより、導電板7が第1図のように基
板17に狭い間隔で並行に固定されている。 回転体9は絶縁性材料を円筒状に成形してなり、その
外側中央に中心孔53より大径のフランジ61を有するとと
もに、フランジ61から下側には一対の嵌合凸部63を対角
位置に有している。なお、符号65は回転体9の上端面に
形成したドライバー溝である。 この回転体9は、フランジ61から下を導電板7の中心
孔53に通してリング状の絶縁性ホルダー3の中空部内に
嵌め、導電板7が回転体9とホルダー3に挟まれた状態
となっており、ホルダー3が導電板7に支持されてい
る。ホルダー3の中空部に臨む内側にも嵌合凹部67が形
成されて回転体9の嵌合凸部63と嵌合され、回転体9の
回転に伴ってホルダー3が一体的に回転されるようにな
っている。 ホルダー3の外周からは、途中を連結した箱型の枠部
69が一体に突出形成されており、枠部69内には略逆W型
に湾曲形成された弾力性の良好な可動接点ばね5が、そ
の中央山部5aを下側遅延線素子1に向けて収納されてい
る。すなわち、枠部69が可動接点ばね5の支持部となっ
ている。 枠部69の先端は遅延線素子1の固定接点33より外側へ
突出され、収納された可動接点ばね5が固定接点33に当
接する位置、すなわち回転体9の回転軸から固定接点33
上にまで偏心した位置に配置されている。 従って、基板17に導電板7を固定した状態では、可動
接点ばね5が導線路29の固定接点33に弾力的に当接する
とともに、可動接点ばね5の両端山部5bが導電板7に弾
力的に当接した状態となり、回転体9を回転させること
によって可動接点ばね5が各固定接点33上を円弧状にス
ライドして入力端子取付用スルーホール51が任意の固定
接点33に選択的に接続される。 なお、導電路29の隣合う固定接点33間の間隔を適当に
設定すれば、可動接点ばね5の中央山部5aが隣合う固定
接点33間にある場合に、隣合う固定接点33両方に接触し
て複接触状態となり、一の固定接点33上にあるときには
単接触状態となり、回転体9を回転させることによって
複接触と単接触を交互に選択できる。 基板17に形成された接地端子取付用スルーホール31、
入力端子取付用スルーホール51および出力端子取付用ス
ルーホール35には、第1図に示すように、接地端子75、
各々入力端子71、出力端子73(第1図中見えない)が挿
入されて半田付け接続されている。なお、基板17から突
出した接地端子75、各々入力端子71、出力端子73は水平
部を経てクランク状に折れ曲がって垂下している。 そして、入力端子71、出力端子73、接地端子75を半割
状のケース部材11aの底部を挿通させるとともに、ケー
ス部材11a上にケース部材11bを被せて可変遅延線装置が
収納されており、それらケース部材11a、11bが一体化さ
れてケース11となっている。 基板17の下部には下部導線路21や内部終端抵抗43が配
置されているので、それらを保護しかつ接地端子75の水
平部と下部導線路21との間隔を一定に保つために、基板
17の下側には絶縁性のスペーサ77を介在させる方が好ま
しい。このスペーサ77は、内部終端抵抗43や各端子71、
73、75の配置に支障がないように仕込み等が形成されて
いる。 また、符号79は回転体9のフランジ61から上側に配置
された環状のパッキングであり、回転体9とケース部材
11b間を密封するもので、ケース11に組立てから洗浄す
る際に洗浄液がケース11内に流入するのを防ぐものであ
る。 なお、各入出力端子71、73、接地端子75等は当初リー
ドフレーム等で一体的に形成し、基板17の各スルーホー
ル31、51、35に挿入半田付けして固定した後、リードフ
レームから切断分離して製造すると簡単である。 第6図は本発明の可変遅延線装置に係る等価回路図で
ある。 このような可変遅延線装置は、入力端子71にパルス信
号を入力すると、導電板7を介して可動接点ばね5から
導線路29の固定接点33に信号が入力され、可動接点ばね
5で選択された固定接点33から出力端子73間の距離に応
じた遅延時間を伴って信号が出力される。 そして、回転体9を回転することによって可動接点ば
ね5が固定接点33を選択するから、任意の遅延時間を切
り換えできる。 このように構成された本発明は、固定接点33が円弧状
に配列され、回転中心軸から偏心した位置に配置された
可動接点ばね5が円弧状にスライドし、直線的に可動接
点ばね5をスライドする構成に比べて超小型に構成する
ことが可能となるし、遅延線素子1の基板17の取付電極
45、47、49に導電板7を接続し、これをその遅延線素子
1と僅かの間隔で並行配置したから、この点からも超小
型にすることが可能となる。 例えば、本発明者らの実験によれば、遅延時間を0〜
1nsで変化させる出力パルス信号の立ち上がり時間が250
psの超高速性を有する可変遅延線装置について、ケース
11における平面方向の一辺寸法を14.4mm、ケース11から
突出した端子部分71、73、75を除く高さ方向の寸法を8m
mの超小型に構成できた。 また、導電板7が正方形であってインダクタンスが小
さく、可動接点ばね5がどの位置にあっても入力端子71
から可動接点ばね5までの距離が略同じでかつ極めて小
さいインダクタンス状態となり、遅延特性が良好かつ安
定で、超高速信号の歪を小さく抑えることができる。 さらに、上方から見て回転体9を反時計方向に廻しき
ると、ホルダー3の枠部69側面が導電板7の脚部55に当
接して止まって最小遅延時間が得られ、回転体9を時計
方向に廻しきると、ホルダー3の枠部69の他方の側面が
導電板7の脚部55に当接して止まり、最大遅延時間が得
られる。 すなわち、脚部55が枠部69の当接部となり、枠部69と
脚部55によって回転体9の回転範囲の規制機構が構成さ
れ、回転体9がエンドレスで回転するのを規制し、最大
遅延時間から最小遅延時間まで任意の遅延時間を安定か
つ確実に選択できる。 そして、可動接点ばね5と枠部69側面が接近している
から、回転範囲の決定要素の寸法的な算出が容易である
し、製品化した場合の各部品の寸法的ばらつきが少なく
なって回転範囲にずれが生じ難い。この点は回転範囲を
規制する脚部55の基板17への取付け位置についても同様
であり、第3図に示すように、導電板取付電極45がスペ
ース39に臨む固定接点33とも接近しているので、同様に
ばらつきが少ない。 また、上部導線路19と下部導線路21を接続するスルー
ホール25、27が、各々直径の異なる2個の円弧上に交互
に配置されているので、上部導線路19および下部導電線
路21の数を多くしても高密度に形成可能となる利点があ
る。 この点、内側のスルーホール25、27の同一の円弧上に
配置するように構成すると、各スルーホール25、27の内
径が極端に小さくなり、スルーホール用に孔自体が形成
困難となるうえ、孔内に導体メッキを形成し難くなって
上部導線路19と下部導線路21の接続不良が生じる心配が
ある。 さらにまた、各上部導線路19の途中を突出させて固定
接点33を形成すると、固定接点33によって単接触と複接
触とを安定した状態で形成できる。 もっとも、導線路29の固定接点33では接地電極13に対
して静電容量が増加して他の部分よりも局部的に特性イ
ンピーダンスが低下するが、遅延線素子1の静電容量は
全体の平均値で決定され、実用上全く問題とならない。 また、所望の遅延特性を得るために幅の広い導線路29
を形成する場合には、上述した実施例のように導線路29
の途中の幅を拡げて固定接点33とする必要はなく、導線
路29の一部の幅を広げないで固定接点として機能させれ
ばよい。 そして、基板17にあって導線路29の形成されていない
スペース39に内部終端抵抗43を配置したから、内部終端
抵抗43が導線路29に最短距離で接続され、特性が安定す
る利点がある。 第7図および第8図は本発明の他の実施例を示す図で
ある。 すなわち、上述した実施例における遅延線素子1は、
基板17にトロイダル状の導線路29を形成して構成されて
いたが、本発明はこれに限定されない。 例えば、第7図および第8図のように、一枚の誘電体
板からなる基板83の片面に矩形の折れ曲がり線路85から
なる導線路87を円弧状に形成し、基板83の他面に接地電
極89を形成して遅延線素子81を構成することも可能であ
る。 このような構成では、単層の両面プリント基板にて形
成可能であり、より製造が簡単で安価となる。 なお、本発明に係る可変遅延線装置では、基板17、83
への導電板7の固定構造、ケース11の形状、回転体9や
ホルダー3の形状、入力端子71、出力端子73、接地端子
75の形状等は上述した構成に限定されない。 〔発明の効果〕 以上説明したように本発明の可変遅延線装置は、全体
構成が超小型で、回転体を回転させて遅延時間を変化さ
せてもその可変範囲において安定した遅延特性が得られ
るし、製造組立も簡単である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable delay line device, and more particularly to an improvement of a variable delay line device using a distributed constant type delay line element. [Prior Art] Conventionally, as a variable delay line device using a distributed constant type delay line element, a delay line is formed by forming a conductor line around a rod-shaped dielectric bobbin having a ground electrode embedded therein in a single-layer solenoid shape. Using a line element or a delay line element having a bent conductive line formed on the opposite surface of a dielectric plate having a ground electrode formed on one side, fixed contacts are formed linearly on the conductive lines of these delay line elements, and these fixed contacts are formed. There is known a configuration in which a movable contact spring is slidably arranged while switching contact with the upper side, and a signal is applied to the movable contact spring or output from the movable contact spring. [Problems to be Solved by the Invention] However, such a variable delay line device has a configuration in which the movable contact spring is linearly slid to switch the delay time.
The amount of sliding of the movable contact spring is long, and there is a limit to miniaturization of the overall shape. Also, since the line length between the external circuit and the movable contact spring differs for each fixed contact, switching the delay time by sliding the movable contact spring changes the inductance of the line, making it difficult for the delay characteristics to become constant. is there. The present invention has been made under such circumstances. A first object of the present invention is to provide a very small variable delay line device. A second object of the present invention is to provide a variable delay line device having stable delay characteristics in a variable range of delay time. A third object of the present invention is to provide a variable delay line device which is easy to manufacture and assemble. A fourth object of the present invention is to provide a variable delay line device whose mechanical variable range is accurate and stable. [Means for Solving the Problems] In order to solve the above problems and achieve the above-mentioned object, the present invention relates to a method of manufacturing a substrate 17 made of a dielectric material, as shown in FIGS. An arc-shaped conductive line 29 is formed on this substrate.
The ground electrode 13 is formed on the substrate 17 so as to face the conductive line 29 with the conductive line 17 interposed therebetween, and the conductive line is formed on one side of the substrate 17.
A part of 29 is arranged in an arc shape as a fixed contact 33, and mounting electrodes 45, 47, and 49 are provided on the substrate 17 on the fixed contact 33 side to form a delay line element 1. The conductive plates 7 are arranged in parallel at a slight interval on the fixed contact 33 side and connected to the mounting electrodes 45, 47, 49, and the arc of the fixed contact 33 is provided between the delay line element 1 and the conductive plate 7. The holder 3 is rotatably supported on the conductive plate 7 with the position corresponding to the center portion as a rotation axis, and the support portion 69 is projected from the holder 3 so that the tip is located outside the fixed contact 33 of the delay line element 1. The fixed contact 33 is elastically pressed against both the fixed contact 33 and the conductive plate 7 and the fixed contact is kept pressed against the conductive plate 7.
The movable contact spring 5 that slides on the support 33 is supported by a support portion 69 of the holder 3. [Operation] According to the present invention provided with such means, when the holder 3 supported by the conductive plate 7 is rotated, the movable contact springs 5 supported by the holder 3 are fixed to the fixed contacts 33 arranged in an arc shape. Since the fixed contact 33 is selected by sliding in an arc, the board 17
The pulse signal applied to the conductive plate 7 via the mounting electrodes 45, 47, and 49 is switched and output from the fixed contact 33 selected by the movable contact spring 5 with a delay time corresponding to the distance between the output portions. You. Examples Examples of the present invention will be described below. FIG. 1 and FIG. 2 are a longitudinal half sectional view (a sectional view between U and U and a partial full sectional view in FIG. 2) and a transverse half sectional view showing an embodiment of the variable delay line device according to the present invention. FIG. 1 is a cross section taken along line V-V in FIG. The variable delay line device according to the present invention generally includes a delay line element 1
A movable contact spring 5 which is held by the holder 3 and switches the delay time of the delay line element 1; and a movable contact spring 5 which supports the holder 3 and abuts on the movable contact spring 5 to contact the movable contact spring 5. It comprises a conductive plate 7 connected to an external circuit and a rotating body 9 for rotating the holder 3, and these are actually housed in a case 11 and commercialized. As shown in FIG. 3 and FIG.
The substrate 17 in which the two dielectric plates 15a and 15b are joined with the annular ground electrode 13 interposed therebetween, the upper conductive line 19 formed on the upper side of the substrate 17 and the lower conductive line 21 formed on the lower side are passed through. hole
23, 25, and 27, and a toroidal conductive line 29 connected in series. That is, the substrate 17 has a square shape in which the dielectric plates 15a and 15b are joined and integrated and the annular ground electrode 13 is buried, and a ground terminal mounting through hole 31 is provided at the center of the substrate 17. It is formed through. However, the ground electrode 13 is not limited to a ring. The cross section in FIG. 4 is a cross section on a line connecting the ground terminal mounting through-hole 31 and the symbol Y in FIG. 3, and the cross section in FIG. 1 is the through hole 31 and the symbol Y '. It is a cross section on a connecting line. On the upper surface of the substrate 17, a plurality of upper conductive lines 19 extending radially from the vicinity of the ground terminal mounting through hole 31 so as to cross the ground electrode 13 are arranged in parallel in a plurality of arcs, and at both ends of each upper conductive line 19 Through hole 2 connected to lower conductive line 21
3, 25 and 27 are formed through. The through hole 23 is formed outside the ground electrode 13, and the through holes 25 and 27 are located inside the ground electrode 13. The through holes 23 passing through the outer tip of each upper conductive line 19 are all formed in the substrate 17 so as to be arranged on the same arc, but the through holes 25 and 27 passing through the inner leading end of each upper conductive line 19 are provided. Is
Alternately on an arc of diameter D2 and diameter D1
Are formed so as to be located on the arc of the circle. Between the through holes 23 and 25, and between the through holes 23 and 27, the central portions of the respective upper conductive lines 19 project toward each other in the direction of the adjacent upper conductive line 19 and become wider to form fixed contacts 33. On the lower surface of the substrate 17, the inner through hole 25 or 27 in one upper conductive line 19 and the upper conductive line 19 adjacent thereto are formed.
The lower conductive lines 21 connecting the outer through holes 23 are formed in parallel so as to cross the ground electrode 13, and are arranged in the same arc shape as the upper conductive line 19. Therefore, the upper conductive line 19 and the lower conductive line 21 are connected in series by through holes 23, 25, and 27 as unit conductive lines to form a conductive line 29 that is space-wound in a toroidal shape, and is formed via the dielectric plates 15a and 15b. Thus, a distributed capacitance is generated between the ground electrode 13 and the conductive line 29, and the distributed constant type delay line element 1 is formed in an arc shape. One of the upper conductive lines 19 located at both ends of the conductive line 29 among the upper conductive lines 19 arranged in an arc shape is a substrate 1
7 to one end, through hole 3 for output terminal mounting
5 is led out to the lower surface of the substrate 17. The other upper conductive line 19b is connected to the inner through hole 25.
High-potential side mounting electrode formed on the lower surface of substrate 17 through
Connected to 37a. On the lower surface of the substrate 17, a portion between the upper conductive lines 19a and 19b is a space 39 in which the upper conductive line 1 and the lower conductive lines 21 are not formed. An electrode 37b is formed, and a through hole 41 passing through the mounting electrode 37b is formed through the substrate 17. The ground terminal mounting through hole 31 in FIG.
In the joint between the dielectric plates 15a and 15b of the substrate 17, a part of the ground electrode 13 serves as a ground electrode connecting conductor 42 as shown in FIG. It extends to and is connected to the through hole 31 for terminal attachment. An internal terminating resistor 43 is connected between the mounting electrodes 37a and 37b by soldering, and the conductive line 29 is terminated. A conductive plate mounting electrode 45 is formed near one of the four sides of the substrate 17 near the space 39 on the upper surface side. Conductive plate mounting electrodes 47 and 49 are formed at the corners of the substrate 17 corresponding to the remaining corners of the triangle having the conductive plate mounting electrode 45 as the apex. A terminal mounting through hole 51 is formed. Thus, the substrate 17 having the conductive line 29 can be manufactured by the same manufacturing process as a conventionally known three-layer printed circuit board. For example, after etching a single-sided conductor of a dielectric plate 15a having a conductor layer on both sides to form an arc-shaped ground electrode 13, another dielectric plate 15b having a conductor layer formed on one side is placed on the dielectric plate. To form a double-sided substrate with the ground electrode 13 interposed between them, form a through-hole for this through-hole in this double-sided substrate, apply copper plating to the inner wall of the through-hole, and connect the conductors on both sides. After forming the through holes 23, 25, 27, 31, 35, 41, 51, the upper conductor 19, by etching the double-sided conductor, etc.
Lower conductive line 21, mounting electrodes 37a and 37b, conductive plate mounting electrode 45,
47 and 49 may be formed. The printed circuit board is not limited to three layers. When the delay line element 11 is formed using a multilayer printed board as described above, the ground electrode 13 may be formed in an arbitrary shape, for example, by extending the ground electrode 13 from between adjacent through holes 23 to outside the conductive line 29. Thus, it is also easy to form a structure that forms a connection with the ground electrode of the circuit board of the electronic device. A square conductive plate 7 having substantially the same shape as the substrate 17 has a center hole 53 as shown in FIG. 5, and a small piece formed by inserting a pair of narrow spaces at the center of one of the four sides is formed downward. It is bent into an L-shape and has a leg 55. In addition, a small piece is formed by making a cut at a corner farther from the leg 55, and each of the small pieces is bent downward in an L-shape to have the legs 57 and 59. These legs 55, 57, 59 are formed at positions aligned with the conductive plate mounting electrodes 45, 47, 49 formed on the substrate 17, and the legs 55, 57, 57 are provided on the conductive plate mounting electrodes 45, 47, 49. , 59 are overlapped and connected by soldering, so that the conductive plate 7 is fixed to the substrate 17 in parallel at a narrow interval as shown in FIG. The rotating body 9 is formed by molding an insulating material into a cylindrical shape, has a flange 61 having a diameter larger than the center hole 53 at the outer center, and a pair of fitting projections 63 diagonally below the flange 61. Have in position. Reference numeral 65 denotes a driver groove formed on the upper end surface of the rotating body 9. This rotating body 9 is fitted into the hollow portion of the ring-shaped insulating holder 3 through the center hole 53 of the conductive plate 7 from below the flange 61, and the conductive plate 7 is sandwiched between the rotating body 9 and the holder 3. The holder 3 is supported by the conductive plate 7. A fitting recess 67 is also formed on the inner side facing the hollow part of the holder 3 so as to be fitted with the fitting projection 63 of the rotating body 9, and the holder 3 is integrally rotated with the rotation of the rotating body 9. It has become. From the outer periphery of the holder 3, a box-shaped frame part connected in the middle
A movable contact spring 5 having good elasticity, which is formed in a substantially inverted W shape in the frame portion 69, has its central mountain portion 5a directed toward the lower delay line element 1. Stored. That is, the frame 69 serves as a support for the movable contact spring 5. The front end of the frame portion 69 protrudes outward from the fixed contact 33 of the delay line element 1, and a position where the stored movable contact spring 5 contacts the fixed contact 33, that is, from the rotation axis of the rotating body 9 to the fixed contact 33.
It is arranged at a position eccentric to the top. Therefore, when the conductive plate 7 is fixed to the substrate 17, the movable contact spring 5 elastically abuts the fixed contact 33 of the conductive line 29, and the both end ridges 5 b of the movable contact spring 5 elastically contact the conductive plate 7. When the rotating body 9 is rotated, the movable contact spring 5 slides on each fixed contact 33 in an arc shape to selectively connect the input terminal mounting through hole 51 to an arbitrary fixed contact 33. Is done. If the distance between the adjacent fixed contacts 33 of the conductive path 29 is appropriately set, when the central peak portion 5a of the movable contact spring 5 is located between the adjacent fixed contacts 33, it contacts both the adjacent fixed contacts 33. As a result, a double contact state is established, and a single contact state is established when it is on one fixed contact 33. By rotating the rotating body 9, double contact and single contact can be alternately selected. Ground terminal mounting through hole 31, formed on substrate 17,
As shown in FIG. 1, a ground terminal 75, a through-hole 51 for attaching an input terminal, and a through-hole 35 for attaching an output terminal
An input terminal 71 and an output terminal 73 (not visible in FIG. 1) are inserted and connected by soldering. Note that the ground terminal 75, the input terminal 71, and the output terminal 73, which protrude from the substrate 17, are bent in a crank shape via a horizontal portion, and hang down. Then, the input terminal 71, the output terminal 73, and the ground terminal 75 are inserted through the bottom of the half-shaped case member 11a, and the variable delay line device is housed by covering the case member 11b on the case member 11a. The case 11 is formed by integrating the case members 11a and 11b. Since the lower conductive line 21 and the internal terminating resistor 43 are arranged at the lower part of the substrate 17, in order to protect them and keep the distance between the horizontal part of the ground terminal 75 and the lower conductive line 21 constant,
It is preferable to interpose an insulating spacer 77 below 17. The spacer 77 is provided with the internal terminating resistor 43, each terminal 71,
Preparations and the like are formed so as not to hinder the arrangement of 73 and 75. Reference numeral 79 denotes an annular packing disposed above the flange 61 of the rotating body 9, and includes a rotating member 9 and a case member.
This seals the space between 11b, and prevents the cleaning liquid from flowing into the case 11 when cleaning after assembling the case 11. The input / output terminals 71, 73, the ground terminal 75, etc. are initially formed integrally with a lead frame or the like, and are inserted into the through holes 31, 51, 35 of the board 17 and fixed by soldering. It is easy to cut and manufacture. FIG. 6 is an equivalent circuit diagram according to the variable delay line device of the present invention. In such a variable delay line device, when a pulse signal is input to the input terminal 71, a signal is input from the movable contact spring 5 to the fixed contact 33 of the conductive line 29 via the conductive plate 7, and is selected by the movable contact spring 5. A signal is output with a delay time corresponding to the distance between the fixed contact 33 and the output terminal 73. Since the movable contact spring 5 selects the fixed contact 33 by rotating the rotating body 9, an arbitrary delay time can be switched. In the present invention thus configured, the fixed contacts 33 are arranged in an arc shape, and the movable contact spring 5 arranged at a position eccentric from the rotation center axis slides in an arc shape to linearly move the movable contact spring 5. It becomes possible to make it ultra-small as compared with a sliding configuration, and the mounting electrode of the substrate 17 of the delay line element 1
Since the conductive plates 7 are connected to 45, 47, and 49 and are arranged in parallel with the delay line element 1 at a small interval, it is possible to make the device ultra-small from this point as well. For example, according to the experiments of the present inventors, the delay time is set to 0 to
The rise time of the output pulse signal that changes in 1 ns is 250
A case of a variable delay line device with ultra-high speed of ps
The dimension of one side in the plane direction in 11 is 14.4 mm, and the dimension in the height direction excluding the terminal parts 71, 73, 75 protruding from the case 11 is 8 m
m was made very small. Also, the conductive plate 7 is square and has a small inductance, and the input terminal 71
In this state, the distance from the movable contact spring 5 to the movable contact spring 5 is substantially the same, and the inductance state is extremely small. Further, when the rotating body 9 is fully turned counterclockwise when viewed from above, the side surface of the frame portion 69 of the holder 3 comes into contact with the leg 55 of the conductive plate 7 and stops, thereby obtaining a minimum delay time. When the holder is fully turned, the other side surface of the frame 69 of the holder 3 comes into contact with the leg 55 of the conductive plate 7 and stops, so that the maximum delay time can be obtained. That is, the leg 55 serves as an abutting portion of the frame 69, and the frame 69 and the leg 55 constitute a mechanism for restricting the rotation range of the rotating body 9, which restricts the rotating body 9 from rotating endlessly. Any delay time from the delay time to the minimum delay time can be selected stably and reliably. Since the movable contact spring 5 and the side surface of the frame portion 69 are close to each other, it is easy to calculate the dimension of the rotation range determining element, and the dimensional variation of each component when the product is commercialized is reduced and the rotation is reduced. It is unlikely that the range will shift. The same applies to the mounting position of the leg portion 55 for restricting the rotation range to the substrate 17, and the conductive plate mounting electrode 45 is also close to the fixed contact 33 facing the space 39 as shown in FIG. Therefore, the variation is similarly small. Also, since the through holes 25 and 27 connecting the upper and lower conductive lines 19 and 21 are alternately arranged on two arcs having different diameters, the number of the upper and lower conductive lines 19 and 21 is smaller. There is an advantage that the formation can be performed at a high density even if the number is increased. In this respect, when the inner through holes 25 and 27 are arranged on the same arc, the inner diameter of each through hole 25 and 27 becomes extremely small, and the hole itself becomes difficult to form for the through hole. It is difficult to form conductor plating in the hole, and there is a concern that poor connection between the upper and lower conductive lines 19 and 21 may occur. Furthermore, when the fixed contact 33 is formed by protruding the middle of each upper conductive line 19, the single contact and the multiple contact can be formed in a stable state by the fixed contact 33. However, at the fixed contact 33 of the conducting line 29, the capacitance is increased with respect to the ground electrode 13 and the characteristic impedance is locally reduced as compared with other portions. However, the capacitance of the delay line element 1 is the average of the whole. It is determined by the value, and there is no practical problem at all. Further, in order to obtain a desired delay characteristic, a wide conductive line 29 is required.
Is formed, the conductive line 29 is formed as in the above-described embodiment.
It is not necessary to increase the width in the middle to form the fixed contact 33, and the conductive line 29 may function as a fixed contact without increasing a part of the width. Since the internal terminating resistor 43 is arranged in the space 39 where the conducting line 29 is not formed on the substrate 17, the internal terminating resistor 43 is connected to the conducting line 29 at the shortest distance, and there is an advantage that the characteristics are stabilized. 7 and 8 are views showing another embodiment of the present invention. That is, the delay line element 1 in the above-described embodiment is
Although the toroidal conductive line 29 is formed on the substrate 17, the present invention is not limited to this. For example, as shown in FIGS. 7 and 8, a conductive line 87 made of a rectangular bent line 85 is formed in an arc shape on one surface of a substrate 83 made of a single dielectric plate, and grounded on the other surface of the substrate 83. It is also possible to form the delay line element 81 by forming the electrode 89. Such a configuration can be formed on a single-layer double-sided printed circuit board, and is simpler and cheaper to manufacture. In the variable delay line device according to the present invention, the substrates 17, 83
Structure of the conductive plate 7, the shape of the case 11, the shape of the rotating body 9 and the holder 3, the input terminal 71, the output terminal 73, and the ground terminal
The shape and the like of 75 are not limited to the configuration described above. [Effects of the Invention] As described above, the variable delay line device of the present invention has an ultra-small overall configuration, and a stable delay characteristic can be obtained in the variable range even when the delay time is changed by rotating the rotating body. Also, manufacturing and assembly are simple.

【図面の簡単な説明】 第1図および第2図は本発明に係る可変遅延線装置の一
実施例を示す縦半断面図(第2図中のU−U間断面であ
り、一部全断面で示す)および横半断面図(第1図中の
V−V間半断面であり、一部平面で示す)、第3図およ
び第4図は第1図中の遅延線素子の平面図(一部破断し
て示す)および半断面図(第3図中のY−Y′間の半断
面)、第5図は第1図の可変遅延線装置の要部分解斜視
図、第6図は第1図の可変遅延線装置の等価回路図、第
7図および第8図は本発明に用いる遅延線素子の他の例
を示す部分平面図および要部断面図である。 1、81……遅延線素子 3……ホルダー 5……可動接点ばね 7……導電板 9……回転体 11……ケース 13、89……接地電極 15a、15b……誘電体板 17、83……基板 19……単位導線路(上部導線路) 21……単位導線路(下部導線路) 23、25、27、31、35、41、51……スルーホール 29、85……導線路 33……固定接点 39……スペース 37a、37b……取付電極 43……内部終端抵抗 45、47、49……導電板取付電極 53……中心孔 55、57、59……脚部 63……嵌合凸部 67……嵌合凹部 69……枠部 71……入力端子 73……出力端子 75……接地端子 77……スペーサ
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 are longitudinal half sectional views showing one embodiment of the variable delay line device according to the present invention (a sectional view taken along the line U--U in FIG. 3 and FIG. 4 are plan views of the delay line element in FIG. 1. FIG. 3 and FIG. 4 are plan views of the delay line element in FIG. FIG. 5 is an exploded perspective view of a main part of the variable delay line device shown in FIG. 1, and FIG. 6 is a half sectional view (half sectional view taken along line YY 'in FIG. 3). 7 is an equivalent circuit diagram of the variable delay line device shown in FIG. 1, and FIGS. 7 and 8 are a partial plan view and a main part sectional view showing another example of the delay line element used in the present invention. 1, 81 delay line element 3 holder 5 movable contact spring 7 conductive plate 9 rotating body 11 case 13, 89 ground electrodes 15a, 15b dielectric plates 17, 83 …… Substrate 19 …… Unit lead (upper lead) 21 …… Unit lead (lower lead) 23, 25, 27, 31, 35, 41, 51… Through holes 29, 85 …… Lead 33 ... Fixed contacts 39 ... Spaces 37a, 37b ... Mounting electrodes 43 ... Internal termination resistors 45, 47, 49 ... Conductive plate mounting electrodes 53 ... Center holes 55, 57, 59 ... Legs 63 ... Fittings Projecting part 67 Fitting concave part 69 Frame part 71 Input terminal 73 Output terminal 75 Ground terminal 77 Spacer

フロントページの続き (56)参考文献 特開 昭60−149201(JP,A) 特開 昭63−56910(JP,A) 特開 昭63−28106(JP,A) 実開 昭61−128806(JP,U) 実開 昭60−134321(JP,U) 実開 昭49−144144(JP,U) 実開 昭61−44929(JP,U) 実開 昭61−126606(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01P 9/00 H01P 1/18 H03H 7/30 H03H 7/20Continuation of the front page (56) References JP-A-60-149201 (JP, A) JP-A-63-56910 (JP, A) JP-A-63-28106 (JP, A) JP-A-61-128806 (JP) , U) Fully open sho 60-134321 (JP, U) Fully open sho 49-144144 (JP, U) Fully open sho 61-44929 (JP, U) Really open sho 61-126606 (JP, U) (58) Field surveyed (Int.Cl. 6 , DB name) H01P 9/00 H01P 1/18 H03H 7/30 H03H 7/20

Claims (1)

(57)【特許請求の範囲】 1.誘電体からなる基板と、この基板に円弧状に形成さ
れた導線路と、前記基板を挟んで前記導線路と対向する
ように前記基板に形成された接地電極と、前記導線路の
一部であって前記基板の片面側で円弧状に配列された複
数の固定接点と、この固定接点側にて前記基板に成形さ
れた取付電極とを有する遅延線素子と、 この遅延線素子の前記固定接点側に間隔を置いて並行に
配置されるとともに前記取付電極に接続された導電板
と、 前記遅延線素子と前記導電板間にあって前記固定接点の
円弧中心部に相当する位置を回転軸として前記導電板に
回転自在に支持されたホルダーであって、これから先端
が前記遅延線素子の固定接点より外側へ突出した支持部
を有するホルダーと、 前記固定接点に相当する位置において前記ホルダーの支
持部に支持され、前記固定接点と前記導電板双方に弾性
的に圧接されるとともに前記導電板に圧接したまま前記
固定接点上をスライドする可動接点ばねと、 を具備してなることを特徴とする可変遅延線装置。 2.前記遅延線素子が、接地電極を埋設した基板と、こ
の基板の両対向面に各々併列的かつ両対向面側で同じ円
弧状に形成された複数の単位導線路を、前記基板に形成
されたスルーホールによって前記両対向面側交互に直列
接続されてトロイダル状に形成された導線路とを有し、
前記遅延線素子に形成された前記固定接点が、前記導線
路の一部を円弧方向に突出して幅広に形成されたもので
ある特許請求の範囲第1項記載の可変遅延線装置。 3.前記遅延線素子が、前記基板の片面に円弧状に形成
された折れ曲がり導線路と、この折れ曲がり導線路と対
向するように前記基板の他方の面に形成された接地電極
とを有し、前記遅延線素子に形成された前記固定接点
が、前記導線路の一部を円弧方向に突出して幅広に形成
されたものである特許請求の範囲第1項記載の可変遅延
線装置。
(57) [Claims] A substrate made of a dielectric, a conductive line formed in an arc shape on the substrate, a ground electrode formed on the substrate so as to face the conductive line across the substrate, and a part of the conductive line. A delay line element having a plurality of fixed contacts arranged in an arc shape on one side of the substrate, and a mounting electrode formed on the substrate at the fixed contact side; and the fixed contact of the delay line element. A conductive plate connected in parallel to the mounting electrode at an interval on the side, and a conductive axis between the delay line element and the conductive plate, the position corresponding to the arc center of the fixed contact being a rotation axis. A holder rotatably supported by a plate, the holder having a support portion whose tip projects outward from the fixed contact of the delay line element; and a holder supported by the support portion of the holder at a position corresponding to the fixed contact. A movable contact spring that is elastically pressed against both the fixed contact and the conductive plate and slides on the fixed contact while being pressed against the conductive plate. apparatus. 2. The delay line element is formed on a substrate having a ground electrode embedded therein, and a plurality of unit conductor lines formed in parallel on both opposing surfaces of the substrate and in the same arc shape on both opposing surfaces. A conductive line formed in a toroidal shape, being alternately connected in series with the two facing surfaces by through holes,
2. The variable delay line device according to claim 1, wherein the fixed contact formed on the delay line element is formed by widening a part of the conductive line so as to protrude in an arc direction. 3. The delay line element has a bent conductive line formed in an arc shape on one surface of the substrate, and a ground electrode formed on the other surface of the substrate so as to face the bent conductive line. 2. The variable delay line device according to claim 1, wherein the fixed contact formed on the line element is formed by widening a part of the conductive line so as to protrude in an arc direction.
JP62317141A 1987-12-15 1987-12-15 Variable delay line device Expired - Lifetime JP2840741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62317141A JP2840741B2 (en) 1987-12-15 1987-12-15 Variable delay line device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62317141A JP2840741B2 (en) 1987-12-15 1987-12-15 Variable delay line device

Publications (2)

Publication Number Publication Date
JPH01158802A JPH01158802A (en) 1989-06-21
JP2840741B2 true JP2840741B2 (en) 1998-12-24

Family

ID=18084902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62317141A Expired - Lifetime JP2840741B2 (en) 1987-12-15 1987-12-15 Variable delay line device

Country Status (1)

Country Link
JP (1) JP2840741B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2574470B2 (en) * 1989-08-01 1997-01-22 浜松ホトニクス株式会社 Electric delay element
KR100291438B1 (en) * 1996-08-08 2001-06-01 세구찌 류이찌 Hydrulic control system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134321U (en) * 1984-02-20 1985-09-06 エルメック株式会社 variable delay line
JPS61128806U (en) * 1985-01-30 1986-08-12

Also Published As

Publication number Publication date
JPH01158802A (en) 1989-06-21

Similar Documents

Publication Publication Date Title
KR100232974B1 (en) Non-reversible circuit components
US5448445A (en) Three-terminal capacitor and assembly
JP2840741B2 (en) Variable delay line device
US6741478B2 (en) Compact electronic circuit unit having circulator, manufactured with high productivity
JPH1140459A (en) Composite electronic parts
JP3230586B2 (en) Central conductor for non-reciprocal circuit device and non-reciprocal circuit device
US5528465A (en) Assembly for removing jamming signals
JP3852373B2 (en) Two-port nonreciprocal circuit device and communication device
US4608467A (en) Switch device
JP2003188608A (en) Nonreciprocal circuit elements
JP3779532B2 (en) Electronic circuit unit with circulator
JPH0323692Y2 (en)
JP3660315B2 (en) Surface mount type nonreciprocal circuit device
JP2004350164A (en) Nonreversible circuit element, manufacturing method of nonreversible circuit element and communication device
JPS5810301Y2 (en) terminal board
JP3660316B2 (en) Non-reciprocal circuit element
JP2003209409A (en) Non-reciprocal circuit device
JP3717384B2 (en) Circulator
JP2534049Y2 (en) Dielectric filter
JPH04253122A (en) Switch
JPH09260116A (en) Variable resistor
JP2003204208A (en) Non-reciprocal circuit element
JP2004312625A (en) Nonreciprocal circuit element
JP2003243906A (en) Nonreciprocal circuit element
JPH07283678A (en) Chip type three-terminal filter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10