JP2835542B2 - Heat treatment method for synthetic quartz glass molded article for optical - Google Patents

Heat treatment method for synthetic quartz glass molded article for optical

Info

Publication number
JP2835542B2
JP2835542B2 JP3280895A JP28089591A JP2835542B2 JP 2835542 B2 JP2835542 B2 JP 2835542B2 JP 3280895 A JP3280895 A JP 3280895A JP 28089591 A JP28089591 A JP 28089591A JP 2835542 B2 JP2835542 B2 JP 2835542B2
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
glass molded
optical
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3280895A
Other languages
Japanese (ja)
Other versions
JPH05170466A (en
Inventor
龍弘 佐藤
朗 藤ノ木
明彦 須釜
政彦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP3280895A priority Critical patent/JP2835542B2/en
Publication of JPH05170466A publication Critical patent/JPH05170466A/en
Application granted granted Critical
Publication of JP2835542B2 publication Critical patent/JP2835542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光学用途に用いる合成
石英ガラス母材の製造方法に関し、特に合成石英ガラス
から、歪を取り除き、屈折率分布を一様に設定された光
学部材用の合成石英ガラス成形体の熱処理方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a synthetic quartz glass base material used for optical applications, and more particularly to a method for removing an optical strain from a synthetic quartz glass and having a uniform refractive index distribution. The present invention relates to a method for heat treating a quartz glass molded body.

【0002】[0002]

【従来技術の問題点】従来、合成石英ガラス製の光学部
材を製造する際には、少なくとも一方向に脈理が存在し
ない合成石英ガラスを、1500℃以上の温度で、円柱
状、ブロック状に成形し、溶融表面となった光学用合成
石英ガラス成形体を、熱処理炉内に置いて、大気中で、
約1150℃以上の温度に一定時間加熱保持し、その
後、徐冷を行って、光学用合成石英ガラス成形体の歪の
除去と光学用合成石英ガラス成形体における屈折率分布
の平坦化を行ってきた。しかし、近年、リソグラフィ分
野で必要とされる光学用レンズは、大口径、肉厚化の一
途を辿っており、そのため、要求される光学用合成石英
ガラス成形体も、大口径、肉厚化する必要が生じてい
る。そのような光学用合成石英ガラス成形体では、従来
と同様の条件、即ち800℃乃至1300℃の範囲内の
温度でアニール処理を行っても、光透過面上における屈
折率分布が悪化し、重大な問題となってきた。本発明
は、以上のようなアニール処理に伴う屈折率分布の問題
点を解決することを目的としている。
2. Description of the Related Art Conventionally, when manufacturing an optical member made of synthetic quartz glass, synthetic quartz glass having no striae in at least one direction is formed into a columnar shape or a block shape at a temperature of 1500 ° C. or more. The formed synthetic quartz glass for optics that has been molded and becomes a fused surface is placed in a heat treatment furnace,
After heating and holding at a temperature of about 1150 ° C. or more for a certain period of time, cooling is performed to remove the distortion of the synthetic quartz glass article for optical use and to flatten the refractive index distribution in the synthetic quartz glass article for optical use. Was. However, in recent years, optical lenses required in the field of lithography have been steadily increasing in diameter and thickness, and therefore, the required optical synthetic quartz glass moldings have also increased in diameter and thickness. There is a need. In such a synthetic quartz glass molded article for optical use, even if the annealing treatment is performed under the same conditions as in the past, that is, at a temperature in the range of 800 ° C. to 1300 ° C., the refractive index distribution on the light transmitting surface is deteriorated, and Has become a serious problem. An object of the present invention is to solve the problem of the refractive index distribution accompanying the above-described annealing.

【0003】[0003]

【問題を解決する為の手段】本発明者らは、従来法によ
りアニール処理して得られた光透過面となる側の面にお
いて、屈折率分布の悪い円柱状又はブロック状の光学用
合成石英ガラス成形体に対して、光透過面となる側の面
を除いて、保温材として、石英ガラス、炭化ケイ素又は
アルミナ等の円筒管で覆って、800℃乃至1300℃
の範囲内の温度に一定時間加熱保持したのち、徐冷を行
うことにより、光学用合成石英ガラス成形体の光透過面
となる側の面における屈折率の分布が、平坦になること
を発見し、本発明に至った。本発明は、光透過面の屈折
率の分布が平坦な合成石英ガラス光学部材を得ることが
できる、光学用合成石英ガラス成形体の熱処理方法を提
供することを目的としている。
Means for Solving the Problems The inventors of the present invention have made a cylindrical or block-shaped synthetic quartz for optical use having a poor refractive index distribution on the side which becomes the light transmitting surface obtained by annealing according to the conventional method. The glass molded body is covered with a cylindrical tube made of quartz glass, silicon carbide, alumina, or the like as a heat insulating material, except for the surface on the side that becomes a light transmitting surface, and has a temperature of 800 ° C. to 1300 ° C.
After heating and holding for a certain period of time at a temperature within the range, it was found that the distribution of the refractive index on the surface on the side that becomes the light transmitting surface of the synthetic quartz glass for optical use became flat by performing slow cooling. This has led to the present invention. An object of the present invention is to provide a method for heat-treating a synthetic quartz glass molded article for optical use, which can provide a synthetic quartz glass optical member having a flat refractive index distribution on a light transmitting surface.

【0004】即ち、本発明は、少なくとも光透過方向に
脈理が存在しない光学用合成石英ガラス成形体の熱処理
方法において、光学用合成石英ガラス成形体を、被覆体
内に、該被覆体の開口に該光透過面を向けて配置し、8
00℃乃至1300℃の範囲内の温度に加熱保持した
後、15℃/時間以下の降温速度で徐冷することを特徴
とする光学用合成石英ガラス成形体の熱処理方法にあ
る。
That is, the present invention relates to a method for heat-treating an optical synthetic quartz glass molded article having no striae at least in the light transmission direction. 8 with the light transmitting surface facing
A heat treatment method for a synthetic quartz glass molded article for optical use, characterized in that after heating and holding at a temperature in the range of 00 ° C. to 1300 ° C., it is gradually cooled at a temperature lowering rate of 15 ° C./hour or less.

【0005】本発明において、被覆体は、アニール熱処
理時、特に徐冷時に、光学用合成石英ガラス成形体の周
囲に配置されるものであり、光学用合成石英ガラス成形
体の熱処理の際に、光透過面となる側の面と光透過面と
ならない側の面の保温性を相違させることを目的として
設けられるものである。本発明において、被覆体は、例
えば、主として、円筒形状、半割等を含むブロック形状
等が使用され、その他ウール状物、紐状物も使用するこ
とができる。ブロック形状、ウール状物、紐状物を使用
する場合は、光透過面を除く側の面を除いて、即ち被覆
体の開口を形成して、光学用合成石英ガラス成形体を被
覆する。
In the present invention, the coating is disposed around the optical synthetic quartz glass molded body during annealing heat treatment, particularly during slow cooling. It is provided for the purpose of making the heat-retaining properties of the surface on the side that becomes the light-transmitting surface different from that on the side that is not the light-transmitting surface. In the present invention, for example, the cover is mainly used in a cylindrical shape, a block shape including half-split, and the like, and other wool-like materials and cord-like materials can also be used. When a block shape, a wool-like material, or a string-like material is used, the surface of the side excluding the light transmitting surface is removed, that is, the opening of the cover is formed, and the synthetic quartz glass molded body for optics is covered.

【0006】被覆体の種類によっては、アニール熱処理
に先立って空焼きが行われる。この空焼きは、アニール
の保持温度よりも50℃以上の高い温度で、100時間
以上、空焼きしたものがよい。この空焼き雰囲気として
は、大気の他に、還元雰囲気ガス、真空などがある。こ
の空焼きにより、該円筒管から合成石英ガラス成形体へ
の不純物の拡散が防止され、合成石英ガラス成形体の不
純物による汚染が防止される。
[0006] Depending on the type of coating, baking is performed prior to annealing heat treatment. This baking is preferably performed by baking at a temperature higher than the annealing holding temperature by 50 ° C. or more for 100 hours or more. Examples of the air-burning atmosphere include a reducing atmosphere gas and a vacuum in addition to the air. This baking prevents diffusion of impurities from the cylindrical tube into the synthetic quartz glass molded body, thereby preventing contamination of the synthetic quartz glass molded body with impurities.

【0007】本発明において、被覆体として、例えば円
筒管を使用する場合は、円筒管の外表面は滑らかとし、
円筒管の管壁の厚さをできるだけ厚くして、合成石英ガ
ラス成形体の外周面と円筒管内面との間に形成される隙
間を、できるだけ狭くする方が、光透過面となる側の面
における屈折率の分布を平坦化する上で好ましい。本発
明において、光学用合成石英ガラス成形体の光学部材の
光透過面となる側の面を、研削等により摺面に形成する
と、滑らかな場合に比して、光透過面となる側の面にお
ける屈折率の分布の平坦化を向上させることができるの
で好ましい。本発明において、光学用合成石英ガラス成
形体のアニール熱処理は、熱拡散係数の大きいヘリウム
ガスや、水素ガスの雰囲気下で行われるのが、光透過面
における屈折率の分布の平坦化が更に向上できるので好
ましく、また雰囲気ガスは流動させるのが好ましい。熱
処理炉として、水冷炉を使用して処理を行った場合は、
より良い効果を得ることができる。
In the present invention, for example, when a cylindrical tube is used as the coating, the outer surface of the cylindrical tube is made smooth,
It is better to increase the thickness of the tube wall of the cylindrical tube as much as possible so that the gap formed between the outer peripheral surface of the synthetic quartz glass molded body and the inner surface of the cylindrical tube is as narrow as possible. Is preferable for flattening the distribution of the refractive index in the above. In the present invention, when the surface of the optical member of the optical synthetic quartz glass molded body that is to be the light transmitting surface is formed on a sliding surface by grinding or the like, the surface of the optical member that is to be the light transmitting surface, as compared to a smooth case. Is preferable because the flattening of the refractive index distribution can be improved. In the present invention, the annealing heat treatment of the optical synthetic quartz glass molded body is performed in an atmosphere of helium gas or hydrogen gas having a large thermal diffusion coefficient, so that the flattening of the refractive index distribution on the light transmitting surface is further improved. It is preferable because it can be performed, and it is preferable to flow the atmospheric gas. When a water-cooled furnace is used as the heat treatment furnace,
A better effect can be obtained.

【0008】本発明においては、以上のように、加熱に
よる熱処理によって、光学用合成石英ガラス成形体の光
学部材の光透過面となる面における屈折率分布の平坦化
を向上させることができる。このようにアニール熱処理
を行う場合、加熱温度から所定の温度に至る冷却時に、
光学用合成石英ガラス成形体内の温度変化が急激である
と、該合成石英ガラス成形体内に熱応力の不均衡が発生
して、歪みを生じ易いので、この歪みの発生を極力防止
するために、本発明においては、冷却時の温度の降温速
度を15℃/時間以下とするのが好ましい。
In the present invention, as described above, the flattening of the refractive index distribution on the light transmitting surface of the optical member of the optical synthetic quartz glass molded article can be improved by the heat treatment by heating. When performing the annealing heat treatment in this manner, at the time of cooling from a heating temperature to a predetermined temperature,
If the temperature change in the optical synthetic quartz glass molded body is abrupt, thermal stress imbalance occurs in the synthetic quartz glass molded body, and distortion is likely to occur.In order to prevent the occurrence of this distortion as much as possible, In the present invention, it is preferable that the rate of temperature decrease during cooling is 15 ° C./hour or less.

【0009】[0009]

【作用】本発明においては、光学用合成石英ガラス成形
体のアニール処理時に、該光学用合成石英ガラス成形体
の、光学部材の光透過面となる側の面を、被覆体の開口
に向けて配置させて、800℃乃至1300℃の範囲内
の温度に、光学用合成石英ガラス成形体を加熱保持した
後、15℃/時間以下の降温速度で徐7冷することによ
り、合成石英ガラス成形体の、光学部材の光透過面とな
る側の面における屈折率分布が、被覆体を配置させない
でアニール処理した場合に比べて、大幅に改善すること
ができる。また該屈折率分布が、例えば3×10−6
上である、大口径で、肉厚な光学用合成石英ガラス成形
体について、被覆体を配置してアニール処理を行うこと
により、屈折率分布が、1×10−6以下の平坦なつま
り一様な屈折率分布を有する合成石英ガラス成形体に変
えることが可能となった。しかも、本発明は、この簡単
なアニール熱処理を行うことによって、光学部材の光透
過面となる側の面の屈折率分布の一様な即ち平坦な光学
用合成石英ガラス成形体を高い歩留まりで製造すること
ができる。
According to the present invention, the surface of the optical synthetic quartz glass molded body, which is to be the light transmitting surface, of the optical synthetic quartz glass molded body is oriented toward the opening of the coating during the annealing treatment of the optical synthetic quartz glass molded article. After the synthetic quartz glass molded article for optics is heated and held at a temperature in the range of 800 ° C. to 1300 ° C., and then gradually cooled at a temperature lowering rate of 15 ° C./hour or less, the synthetic quartz glass molded article is obtained. The refractive index distribution on the surface of the optical member on the side that becomes the light transmitting surface can be significantly improved as compared with the case where the annealing treatment is performed without disposing the coating. In addition, for a large-diameter and thick optical synthetic quartz glass molded body having a large diameter and a refractive index distribution of, for example, 3 × 10 −6 or more, the coating is disposed and annealing treatment is performed, whereby the refractive index distribution is reduced. It has become possible to change to a synthetic quartz glass molded article having a flat or uniform refractive index distribution of 1 × 10 −6 or less. In addition, the present invention provides a high-yield optical synthetic quartz glass molded article having a uniform refractive index distribution, that is, a flat surface, on the side serving as the light transmitting surface of the optical member by performing this simple annealing heat treatment. can do.

【0010】[0010]

【実施例1】以下に本発明の実施の態様にいて、例を挙
げて説明するが、本発明は、以下の説明及び例示によっ
て、何等制限されるものではない。 実施例1.四塩化珪素を酸水素火炎により火炎加水分解
し、生成する微粒子シリカを回転している耐熱性基体上
に堆積、溶融ガラス化させて棒状の合成石英ガラスを製
造した。該棒状合成石英ガラスの両端部に石英ガラス支
持棒を取り付け旋盤に固定し、ガスバーナーにて石英ガ
ラスの軟化点以上に加熱しながら回転させ均質化を行っ
た。均質化を施された合成石英ガラスには三方向に脈理
が観察されなかった。引き続いて、この得られた合成石
英ガラスをグラファイトの鋳型中に配置し、1700℃
以上の温度で窒素中で自重で成形を行い、外径230m
m、厚さ120mmの脈理の存在しない円盤状の合成石
英ガラス成形体を得た。得られた成形体を、半分に切
り、外径230mm、厚さ60mmの円盤状の成形体を
二つ作製した。
[Embodiment 1] Embodiments of the present invention will be described below with examples, but the present invention is not limited by the following description and illustrations. Embodiment 1 FIG. Silicon tetrachloride was flame-hydrolyzed with an oxyhydrogen flame, and the resulting fine-particle silica was deposited on a rotating heat-resistant substrate and melted and vitrified to produce a rod-shaped synthetic quartz glass. Quartz glass support rods were attached to both ends of the rod-shaped synthetic quartz glass, fixed to a lathe, and rotated while heating at a temperature higher than the softening point of the quartz glass with a gas burner to homogenize. No striae were observed in three directions in the homogenized synthetic quartz glass. Subsequently, the obtained synthetic quartz glass was placed in a graphite mold,
Forming by its own weight in nitrogen at the above temperature, outer diameter 230m
A disc-shaped synthetic quartz glass molded article having a thickness of 120 mm and a thickness of 120 mm without stria was obtained. The obtained molded body was cut in half to produce two disk-shaped molded bodies having an outer diameter of 230 mm and a thickness of 60 mm.

【0011】この得られた円盤状の合成石英ガラス成形
体の一つを、例えば図1に示されるように、外径245
mm、内径230mm、長さ100mmの合成石英ガラ
スリング(1)内に、円盤状の合成石英ガラス成形体
(2)の両端面(3)をリングの開口(4)側に向けて
配置する。本例において、合成石英ガラス成形体の両端
面(3)は、光透過方向(5)に対して垂直に作られて
いる。合成石英ガラス成形体(2)は、合成石英ガラス
リング(1)の開口(4)に、その両端面(3)を向け
て配置したままで、電気炉(6)内にセットして、加熱
し、1150℃の温度で50時間加熱保持した後、5℃
/時間の降温速度で900℃まで冷却して、炉の通電を
停止し、そのまま室温まで冷却した。得られた光学用石
英ガラス成形体の円状の両端面を光透過面として、全表
面を研削後、フィゾー干渉計を用い、オイルオンプレー
ト法でヘリウム−ネオンレーザー光(波長633nm)
を用いて、光透過面における屈折率分布を測定したとこ
ろ、合成石英ガラス成形体の厚さ1cmあたりの屈折率
の最大値と最小値の差(Δn)は、Δn=1×10−6
であった(図2参照)。また、該合成石英ガラス成形体
を歪み測定器で歪み測定を行ったところ2nm/cm以
下であった。本例において、合成石英ガラスリングは、
台(7)の上に配置されているが、電気炉(6)の底部
壁面に配置することができる。
One of the obtained disk-shaped synthetic quartz glass compacts is, for example, as shown in FIG.
In a synthetic quartz glass ring (1) having a diameter of 230 mm, an inner diameter of 230 mm and a length of 100 mm, both end faces (3) of a disc-shaped synthetic quartz glass molded body (2) are arranged facing the opening (4) of the ring. In this example, both end surfaces (3) of the synthetic quartz glass molded body are formed perpendicular to the light transmission direction (5). The synthetic quartz glass molded body (2) is set in an electric furnace (6) with the both ends (3) facing the opening (4) of the synthetic quartz glass ring (1) and heated. And heated and maintained at a temperature of 1150 ° C. for 50 hours, then 5 ° C.
The temperature was lowered to 900 ° C. at a cooling rate of / hour, the power supply to the furnace was stopped, and the furnace was cooled to room temperature. After grinding the entire surface of the obtained quartz glass molded body for optics with both circular end surfaces as light transmitting surfaces, using a Fizeau interferometer, helium-neon laser light (wavelength 633 nm) by an oil-on-plate method.
Was used to measure the refractive index distribution on the light transmitting surface. The difference (Δn) between the maximum value and the minimum value of the refractive index per 1 cm thickness of the synthetic quartz glass molded article was Δn = 1 × 10 −6.
(See FIG. 2). When the strain of the synthetic quartz glass compact was measured with a strain gauge, the strain was 2 nm / cm or less. In this example, the synthetic quartz glass ring is
It is arranged on the table (7) but can be arranged on the bottom wall of the electric furnace (6).

【0012】比較例 もう一方の円盤状合成石英ガラス成形体について、上記
例において、合成石英ガラスリングを使用しない以外は
全く同様の処理を行ったところ、合成石英ガラス成形体
の厚さ1cmあたりの屈折率の最大値と最小値の差(Δ
n)は、Δn=3×10−6であった。したがって、厚
さ80mmのものでは、光学部材として要求される十分
な屈折率の分布が、得られていないことがわかる。(図
3参照)
Comparative Example The other disk-shaped synthetic quartz glass molded body was subjected to exactly the same treatment as in the above example except that the synthetic quartz glass ring was not used. The difference between the maximum and minimum refractive index (Δ
n) was Δn = 3 × 10 −6 . Therefore, it can be seen that with a thickness of 80 mm, a sufficient distribution of refractive index required as an optical member is not obtained. (See Fig. 3)

【0013】実施例2 比較例で得られたΔnが3×10−6の合成石英ガラス
成形体を、実施例1と同様に石英ガラスリング内に配置
し、電気炉内で1050℃に50時間保持後10℃/時
間の降温速度で600℃まで徐冷を行った後、炉の通電
を停止し、そのまま室温まで冷却した。得られた合成石
英ガラス成形体について、合成石英ガラス成形体1cm
あたりの屈折率の最大値と最小値の差(Δn)を測定し
たところ、Δn=1×10−6であり、Δnは改善され
た。また、この合成石英ガラス成形体について、実施例
1と同様に、歪測定器で歪測定を行ったところ歪みは2
nm/cm以下であった。
Example 2 The synthetic quartz glass molded body having a Δn of 3 × 10 −6 obtained in the comparative example was placed in a quartz glass ring in the same manner as in Example 1, and was heated to 1050 ° C. for 50 hours in an electric furnace. After the holding, the furnace was gradually cooled to 600 ° C. at a cooling rate of 10 ° C./hour, then the power supply to the furnace was stopped, and the furnace was cooled to room temperature. About the obtained synthetic quartz glass molded body, the synthetic quartz glass molded body 1 cm
When the difference (Δn) between the maximum value and the minimum value of the refractive index per unit was measured, Δn = 1 × 10 −6 and Δn was improved. Further, the synthetic quartz glass molded body was subjected to strain measurement using a strain measuring device in the same manner as in Example 1, and it was found that the strain was 2%.
nm / cm or less.

【0014】[0014]

【発明の効果】本発明においては、光学用合成石英ガラ
ス成形体アニール処理時に、光学用合成石英ガラス成形
体の光透過面となる側の面を、被覆体の開口に向けて配
置させて、800℃乃至1300℃の範囲内の温度に、
光学用合成石英ガラス成形体を加熱保持した後、15℃
/時間以下の降温速度で徐冷することにより、合成石英
ガラス成形体の、光学部材の光透過面となる側の面にお
ける屈折率分布が、従来法に比べて、大幅に改善するこ
とができる。
According to the present invention, during the annealing treatment of the synthetic quartz glass article for optics, the surface of the synthetic quartz glass article for optics, which is to be the light transmitting surface, is arranged facing the opening of the covering. At a temperature in the range of 800 ° C to 1300 ° C,
After heating and holding the synthetic quartz glass compact for optics,
By slow cooling at a temperature lowering rate of not more than / hour, the refractive index distribution on the surface of the synthetic quartz glass molded body on the side of the optical member that becomes the light transmitting surface can be significantly improved as compared with the conventional method. .

【0015】従来、アニール後得られた光透過面におけ
る屈折率分布が3×10−6以上と一様でない大口径、
肉厚な光学用合成石英ガラスについて、光透過面の屈折
率分布の矯正は困難であったが、本発明においては、光
学用合成石英ガラス成形体について、光学用合成石英ガ
ラス成形体の光学部材の光透過面となる側の面を開放状
態とし、その側面周囲に接近乃至接触させて、被覆体を
配置させて、800℃乃至1300℃の範囲内の温度で
一定時間加熱し、15℃/時間以下の降温速度で徐冷す
ることにより、光透過面における屈折率分布を、1×1
−6以下に矯正することができる。
Conventionally, the refractive index distribution on the light transmitting surface obtained after annealing is not uniform at 3 × 10 −6 or more.
For thick optical synthetic quartz glass, it was difficult to correct the refractive index distribution of the light transmitting surface. However, in the present invention, the optical synthetic quartz glass molded article is an optical member of the optical synthetic quartz glass molded article. The surface on the side that becomes the light transmitting surface of the above is opened, approached or brought into contact with the periphery of the side surface, the covering is disposed, and heated at a temperature in the range of 800 ° C. to 1300 ° C. for a certain time, By slow cooling at a temperature lowering rate of not more than an hour, the refractive index distribution on the light transmitting surface becomes 1 × 1
0 -6 can be corrected as follows.

【0016】したがって、本願発明は、従来法に比し
て、例えば光透過面となる側の面の屈折率分布の一様で
ない大口径、肉厚な光学用合成石英ガラス成形体につい
ても、簡単な熱処理によって、光学部材の光透過面とな
る側の面において屈折率分布が一様な光学用合成石英ガ
ラス成形体を製造することができ、光学部材の光透過面
となる側の面の屈折率分布の一様な合成石英ガラス成形
体の歩留まりを、従来法に比して高めることができるこ
ととなり、光透過面の屈折率の一様な合成石英ガラス光
学部材の製造コストを低減することができる。
Therefore, the present invention can be applied to a large-diameter and thick optical synthetic quartz glass molded article having a non-uniform refractive index distribution on the surface serving as a light transmitting surface, for example, as compared with the conventional method. By performing an appropriate heat treatment, it is possible to manufacture a synthetic quartz glass molded article for optical use having a uniform refractive index distribution on the surface of the optical member on the side of the light transmitting surface, and the refraction of the surface on the side of the optical member on the side of the light transmitting surface. The yield of a synthetic quartz glass molded article having a uniform refractive index distribution can be increased as compared with the conventional method, and the manufacturing cost of a synthetic quartz glass optical member having a uniform refractive index on a light transmitting surface can be reduced. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の一実施例の加熱処理における光学用
合成石英ガラス成形体の配置関係を示す説明図である。
FIG. 1 is an explanatory view showing an arrangement relationship of a synthetic quartz glass for optical use in a heat treatment according to one embodiment of the present invention.

【図2】本願発明の一実施例における、光学部材の光透
過面となる側の面の屈折率の分布が、厚さ1cmあたり
の屈折率の最大値と最小値の差(Δn)で、Δn=1×
10−6と平坦で良好な合成石英ガラス成形体光学部材
についての測定縞模様を示す説明図である。
FIG. 2 is a graph showing the difference between the maximum value and the minimum value (Δn) of the refractive index per 1 cm of the thickness of the optical member according to the embodiment of the present invention. Δn = 1 ×
It is explanatory drawing which shows the measurement stripe pattern about a 10-6 flat and favorable synthetic quartz glass molding optical member.

【図3】従来法による光透過面の屈折率の分布が、厚さ
1cmあたりの屈折率の最大値と最小値の差で、Δn=
3×10−6と平坦でない合成石英ガラス成形体につい
ての測定された縞模様を示す説明図である。
FIG. 3 shows the distribution of the refractive index of the light transmitting surface according to the conventional method, wherein the difference between the maximum value and the minimum value of the refractive index per 1 cm in thickness is Δn =
It is explanatory drawing which shows the striped pattern measured about the synthetic quartz glass molded object which is not 3 * 10-6 and flat.

【符号の説明】 1 合成石英ガラス成形体 2 合成石英ガラス成形体の上面 3 合成石英ガラス成形体の下面 4 合成石英ガラス成形体の周側面 5 光透過方向 6 電気炉 7 台[Description of Signs] 1 Synthetic quartz glass molded article 2 Upper surface of synthetic quartz glass molded article 3 Lower surface of synthetic quartz glass molded article 4 Peripheral side surface of synthetic quartz glass molded article 5 Light transmission direction 6 Electric furnace 7 units

───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠藤 政彦 福島県郡山市田村町金屋字川久保88 信 越石英株式会社石英技術研究所内 (58)調査した分野(Int.Cl.6,DB名) C03B 20/00──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masahiko Endo 88 Kawakubo, Kanaya, Tamura-cho, Koriyama-shi, Fukushima Shin-Etsu Quartz Co., Ltd. Quartz Research Laboratory (58) Field surveyed (Int. Cl. 6 , DB name) C03B 20/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも光透過方向に脈理が存在しな
い光学用合成石英ガラス成形体の熱処理方法において、
光学用合成石英ガラス成形体を、被覆体内に、該被覆体
の開口に該光透過面を向けて配置し、800℃乃至13
00℃の範囲内の温度に加熱保持した後、15℃/時間
以下の降温速度で徐冷することを特徴とする光学用合成
石英ガラス成形体の熱処理方法。
1. A method for heat treating an optical synthetic quartz glass molded body having no striae at least in a light transmission direction,
An optical synthetic quartz glass molded body is placed in a coating body with the light transmitting surface facing the opening of the coating body.
A heat treatment method for a synthetic quartz glass molded article for optics, comprising heating and holding at a temperature in the range of 00 ° C., and then gradually cooling at a cooling rate of 15 ° C./hour or less.
【請求項2】 被覆体が、石英ガラス、炭化珪素、アル
ミナ又はグラファイトで形成されていることを特徴とす
る請求項1に記載の光学用合成石英ガラス成形体の熱処
理方法。
2. The method according to claim 1, wherein the coating is made of quartz glass, silicon carbide, alumina, or graphite.
【請求項3】 合成石英ガラス成形体が円柱形状に形成
されており、被覆体が、該石英ガラス体の側面を覆う円
管形状に形成されていることを特徴とする請求項1に記
載の光学用合成石英ガラス成形体の熱処理方法。
3. The synthetic quartz glass molded body is formed in a cylindrical shape, and the cover is formed in a tubular shape covering a side surface of the quartz glass body. A heat treatment method for a synthetic quartz glass molded article for optics.
JP3280895A 1991-07-31 1991-07-31 Heat treatment method for synthetic quartz glass molded article for optical Expired - Lifetime JP2835542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3280895A JP2835542B2 (en) 1991-07-31 1991-07-31 Heat treatment method for synthetic quartz glass molded article for optical

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3280895A JP2835542B2 (en) 1991-07-31 1991-07-31 Heat treatment method for synthetic quartz glass molded article for optical

Publications (2)

Publication Number Publication Date
JPH05170466A JPH05170466A (en) 1993-07-09
JP2835542B2 true JP2835542B2 (en) 1998-12-14

Family

ID=17631442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3280895A Expired - Lifetime JP2835542B2 (en) 1991-07-31 1991-07-31 Heat treatment method for synthetic quartz glass molded article for optical

Country Status (1)

Country Link
JP (1) JP2835542B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209134A (en) * 1998-01-23 1999-08-03 Nikon Corp Synthetic quartz glass and its production
US6442973B1 (en) 1995-01-06 2002-09-03 Nikon Corporation Synthetic silica glass and its manufacturing method
JP4017863B2 (en) * 2001-12-18 2007-12-05 信越石英株式会社 Annealing furnace and method for producing optical synthetic quartz glass
JP6532269B2 (en) * 2015-04-15 2019-06-19 信越石英株式会社 Method of manufacturing synthetic quartz glass
CN115745384A (en) * 2022-11-22 2023-03-07 宁波云德半导体材料有限公司 Annealing method of thick quartz product

Also Published As

Publication number Publication date
JPH05170466A (en) 1993-07-09

Similar Documents

Publication Publication Date Title
US4358306A (en) Method for molding a fused quartz glass block
KR101513310B1 (en) Titania-doped quartz glass member and making method
EP0917523B1 (en) Synthetic silica glass used with uv-rays and method producing the same
JP2862001B2 (en) Manufacturing method of quartz glass optical member
EP1033350B1 (en) Synthetic quartz glass member for use in ArF excimer laser lithography
JP4462557B2 (en) Method for producing synthetic silica glass substrate for photomask, synthetic silica glass substrate for photomask by the method
JP2835542B2 (en) Heat treatment method for synthetic quartz glass molded article for optical
KR20090039668A (en) Manufacture of large articles in synthetic vitreous silica
JPH06157058A (en) Flame-polishing of glass preform
JP2861512B2 (en) Manufacturing method of quartz glass optical member
JP2835543B2 (en) Heat treatment method for synthetic quartz glass molded article for optical
JP5912999B2 (en) Heat treatment method for synthetic quartz glass
JP5935765B2 (en) Synthetic quartz glass for nanoimprint mold, method for producing the same, and mold for nanoimprint
JP4079204B2 (en) Quartz glass tube for optical fiber preform and manufacturing method thereof
JP4017863B2 (en) Annealing furnace and method for producing optical synthetic quartz glass
JP2814795B2 (en) Manufacturing method of quartz glass
JPS61286236A (en) Slow cooling method for optical glass element
JPS61256937A (en) Production of optical fiber base material
JPS632421Y2 (en)
JP2566349B2 (en) Method for manufacturing synthetic quartz glass member
JP4744046B2 (en) Method for producing synthetic quartz glass material
JPH01286932A (en) Production of optical fiber preform
JPH07247132A (en) Production of quartz glass
JPH10324528A (en) Optical quartz glass
JPS5810354Y2 (en) Quartz tube for heat treatment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 13

EXPY Cancellation because of completion of term