JP2832257B2 - Method for growing cyst-arbuscular mycorrhizal fungi and apparatus therefor - Google Patents

Method for growing cyst-arbuscular mycorrhizal fungi and apparatus therefor

Info

Publication number
JP2832257B2
JP2832257B2 JP1212415A JP21241589A JP2832257B2 JP 2832257 B2 JP2832257 B2 JP 2832257B2 JP 1212415 A JP1212415 A JP 1212415A JP 21241589 A JP21241589 A JP 21241589A JP 2832257 B2 JP2832257 B2 JP 2832257B2
Authority
JP
Japan
Prior art keywords
soil
fine
grained soil
coarse
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1212415A
Other languages
Japanese (ja)
Other versions
JPH0376572A (en
Inventor
克己 中井
嘉孝 村上
隆志 細江
生佳 田井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKA GASU KK
Original Assignee
OOSAKA GASU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKA GASU KK filed Critical OOSAKA GASU KK
Priority to JP1212415A priority Critical patent/JP2832257B2/en
Publication of JPH0376572A publication Critical patent/JPH0376572A/en
Application granted granted Critical
Publication of JP2832257B2 publication Critical patent/JP2832257B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はのう状体−樹枝上体菌根菌(以下「VA菌根
菌」という)の増殖方法及びその装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for multiplying an amygdala-arbuscular mycorrhizal fungus (hereinafter referred to as "VA mycorrhizal fungus") and an apparatus therefor.

従来の技術 植物の根にカビやきのこなどの真菌類がついて、菌根
を形成することによる共生は自然界にきわめて多くみら
れる。その中でも、接合菌類であるアツギケカビ科に属
する6種類の内生菌〔ジャイガスポーラ(Gigaspor
a)、スクテロスポーラ(Scutellospora)、グロマス
(Glomus)、アカウロスポーラ(Acaulospora)、スク
レロシスチス(Sclerocystis)、エントロフォスポーラ
(Entrophospora)〕が形成するのう状体−樹枝状体(V
A)菌根は、世界の被子植物の80%以上にみられること
が知られている。
BACKGROUND ART Fungi such as molds and mushrooms are attached to plant roots, and symbiosis due to formation of mycorrhiza is extremely common in nature. Among them, six kinds of endophytic bacteria belonging to the zygomycete family Aphidaceae [Gigaspor
a), scutellospora, glomus, Acaulospora, sclerocystis, entrophospora (entrophospora) formed dendrites-dendrites (V
A) Mycorrhizas are known to be found in over 80% of the world's angiosperms.

VA菌根菌の菌糸は比較的太いが、植物の細根や根毛よ
り細くて長く、また枝分かれしているため土壌中に広範
囲に伸長することができる。そして土壌中の水分や可溶
性のリン、カルシウム、マグネシウムをはじめとするミ
ネラルや窒素などの栄養分を吸収し、その一部を共生す
る植物に与える。したがって植物にVA菌根が形成される
と、その植物は吸収する栄養分が増大し、乾燥や植物病
原菌に対する抵抗性が増し、施肥量を減少させ得ると共
に植物に耐乾燥性、耐病性を付与できる。
The mycelium of VA mycorrhizal fungi is relatively thick, but it is thinner and longer than the fine roots and root hairs of plants, and because it is branched, it can extend widely in soil. Then, it absorbs nutrients such as minerals and nitrogen, including water and soluble phosphorus, calcium, and magnesium in the soil, and gives a part of the nutrients to coexisting plants. Therefore, when VA mycorrhiza is formed in a plant, the plant absorbs more nutrients, increases resistance to drought and phytopathogenic bacteria, can reduce fertilization amount, and can impart drought resistance and disease resistance to plants. .

VA菌根菌を植物に接種し菌根を形成させるためには、
VA菌根菌を大量に培養する必要がある。しかしVA菌根菌
は絶対共生菌であり、現在の技術では純粋培養は不可能
であるとされている。
To inoculate plants with VA mycorrhizal fungi to form mycorrhiza,
It is necessary to culture VA mycorrhizal fungi in large quantities. However, VA mycorrhizal fungi are absolutely symbiotic bacteria, and it is said that pure culture is impossible with current technology.

これまでVA菌根菌の培養に関する技術として、VA菌根
菌と共生関係にある植物を大量培養する方法と、VA菌根
菌胞子が形成されやすい状態を作り出す方法とが提案さ
れている。
Heretofore, as a technique relating to the culture of VA mycorrhizal fungi, a method of mass-culturing a plant that is symbiotic with VA mycorrhizal fungi and a method of creating a state in which VA mycorrhizal fungal spores are easily formed have been proposed.

VA菌根菌と共生関係にある植物の大量培養方法として
は、VA菌根を形成した植物を栄養薄膜培養する方法(特
開昭55−118390号公報)、双子葉植物の根を形質転換
し、VA菌根菌に感染させて大量培養する方法(特開昭59
−95883号公報)、VA菌根菌に感染したアゼニック性菌
根の根器官培養物を多孔性基体で増殖および発育させる
方法(特開昭62−19028号公報)が知られている。
As a method for mass-cultivating plants having a symbiotic relationship with VA mycorrhizal fungi, there is a method of vegetative thin film cultivation of a plant that has formed VA mycorrhiza (JP-A-55-118390), a method of transforming dicotyledonous roots. , A method of infecting VA mycorrhizal fungi and mass-cultivating
Japanese Patent Application Laid-Open No. 62-19028) discloses a method of growing and growing a root organ culture of an azenic mycorrhizal fungus infected with VA mycorrhizal fungus on a porous substrate.

VA菌根菌用培地としては、ブレー粘土、または軽石等
の多孔性物質の接着剤からなるものが知られている(特
開昭60−237987号公報)。
As a medium for VA mycorrhizal fungi, a medium comprising an adhesive of a porous substance such as bray clay or pumice is known (Japanese Patent Application Laid-Open No. 60-237987).

VA菌根菌胞子の増殖方法としては、イモ類とVA菌根菌
生長促進剤またはVA菌根形成促進剤を吸着させた多孔性
両性イオン交換体とを含む培土にVA菌根菌を接種して培
養することにより、大量増殖する方法が知られている
(特開昭63−87973号公報)。
VA mycorrhizal fungal spores are propagated by inoculating VA mycorrhizal fungi into a culture medium containing potatoes and a porous amphoteric ion exchanger adsorbing a VA mycorrhizal growth promoter or a VA mycorrhizal formation promoter. There is known a method in which the cells are cultured in large quantities by culturing the cells (JP-A-63-87973).

また、VA菌根の形成を容易ならしめる生態系を準備す
るために、針葉樹や広葉樹の炭化物に化学肥料または有
機質肥料を添加した炭肥料を土壌に混入する方法が知ら
れている(特開昭60−49717号公報)。
In addition, in order to prepare an ecosystem that facilitates the formation of VA mycorrhiza, a method is known in which a carbon fertilizer obtained by adding a chemical fertilizer or an organic fertilizer to charcoal of coniferous or hardwood is mixed into soil (Japanese Patent Laid-Open No. No. 60-49717).

発明が解決しようとする問題点 VA菌根菌の接種剤をつくるにあたって、根の器官培養
や、形質転換した根の培養等の方法を採用すると、非常
に高額な費用がかかる。
PROBLEM TO BE SOLVED BY THE INVENTION In producing an inoculant for VA mycorrhizal fungi, it is very expensive to employ methods such as root organ culture and culture of transformed roots.

一方、植物の栄養薄膜培養では、好水性の病原体が現
われるという著しい危険性が生じ、これらの病原体はい
ったん根に付着すると共生体といっしょに蔓延する。
On the other hand, vegetative thin-film cultivation of plants poses a significant danger of the appearance of hydrophilic pathogens, which, once attached to the roots, spread with symbionts.

土壌を用いてVA菌根菌を生産する場合には、土壌中に
広く胞子が分散しているため、これを収穫するには多大
な労力を必要とする。VA菌根菌の胞子が形成される場所
が土壌中の一部分に限られていれば、胞子の収穫が非常
に容易になるが、VA菌根菌胞子の形成場所を制御する方
法は未だ知られていない。
In the case of producing VA mycorrhizal fungi using soil, spores are widely dispersed in the soil, so that great effort is required to harvest the spores. If spore formation of VA mycorrhizal fungi is limited to a part of the soil, harvesting of spores becomes very easy, but methods for controlling the location of VA mycorrhizal fungal spores are still unknown. Not.

また、培土中に炭類を添加する場合には、その有効な
添加場所が不明であるために、ポットあるいは圃場全体
に均一に添加する方法をとらざるを得ず、栽培コストの
上昇を引き起こすとともに、これを過剰に添加した場合
には培土のpH変化をもたらし、植物に悪影響を与える。
またこれ迄VA菌根菌種の培土添加物に対する嗜好性につ
いては、報告されていない。
In addition, when adding charcoal during cultivation, since the effective addition location is unknown, it is necessary to take a method of uniformly adding pots or the entire field, causing an increase in cultivation costs However, if it is added in excess, the pH of the soil is changed, which has an adverse effect on plants.
In addition, no preference has been reported so far on the palatability of the VA mycorrhizal fungi to the culture medium additive.

本発明はVA菌根菌を容易に且つ大量に増殖させ得る方
法及び装置を提供しようとするものである。
An object of the present invention is to provide a method and an apparatus capable of easily and mass-producing VA mycorrhizal fungi.

問題点を解決するための手段 本発明は粒径が約0.1〜1mmの粒度小なる細粒培土とこ
れより粒径の大なる粗粒培土とを深さ方向の界面に於て
接触せしめて充填して形成される培土に、のう状体−樹
枝状体菌根菌を感染させた植物を栽培し、該菌根菌胞子
を細粒培土に選択的に形成せしめ、胞子の形成された細
粒培土を回収することを特徴とするのう状体−樹枝状体
菌根菌の増殖方法に係るものである。
Means for solving the problems The present invention is to fill a fine-grained soil with a small grain size of about 0.1 to 1 mm and a coarse-grained soil with a larger grain size by contacting at the interface in the depth direction. A plant infected with a mycelium-arbuscular mycorrhizal fungus is cultivated on the cultivation formed by the cultivation, and the mycorrhizal fungal spores are selectively formed on the fine-grained cultivation. The present invention relates to a method for growing ectomycorrhizal-arbuscular mycorrhizal fungi, which comprises recovering grain culture soil.

本発明者の研究によると約0.1〜1mmの粒径の細粒培土
とこれより粒度の大なる粗粒培土とを深さ方向の界面に
於て接触せしめて充填した培土にVA菌根菌を感染させた
植物を栽培すると、植物の根は粗粒培土側で選択的に伸
長してVA菌根菌との菌根を形成し、逆に胞子は細粒培土
側に選択的に形成され、VA菌根菌を効率的に増殖及び収
穫できることが見出された。本発明によれば菌根菌胞子
が細粒培土側に選択的に形成されるから、細粒培土のみ
を回収し、必要に応じそれから胞子を採集することによ
り、容易に且つ効率的にVA菌根菌を増殖させることがで
きる。
According to the study of the present inventor, VA mycorrhizal fungi were added to the soil filled by contacting fine-grained soil having a particle size of about 0.1 to 1 mm with coarse-grained soil having a larger particle size at the interface in the depth direction. When the infected plant is cultivated, the roots of the plant selectively elongate on the coarse-grained soil side to form mycorrhizas with VA mycorrhizal fungi, while spores are selectively formed on the fine-grained soil side, It has been found that VA mycorrhizal fungi can be propagated and harvested efficiently. According to the present invention, mycorrhizal fungal spores are selectively formed on the fine-grained soil side, so that only the fine-grained soil is collected, and if necessary, spores are collected therefrom, so that the VA bacterium can be easily and efficiently obtained. Root fungi can grow.

本発明に於て使用される培土は植物の成長に適したも
のであればいずれでもよいが、ふるい分けにより粒度調
整がし易い埴土、埴壌土、壌土、砂壌土等が好ましく、
殊に植物の栽培中に団粒が破壊され難いもの及び鹿沼
土、日向土、赤玉土等の多孔性のものが好ましい。これ
ら培土をふるい分けして細粒培土とこれより粒径の大な
る粗粒培土とにする。細粒培土の粒径は約0.1〜1mmの範
囲にある必要があり、斯かる粒径を有することによって
VA菌根菌胞子を細粒培土側に選択的に形成せしめること
が可能となる。細粒培土のより好ましい粒径は約0.3〜
0.7mmである。粗粒培土の粒径は細粒培土より大であれ
ばよく広い範囲に亘り得るが、植物の根を選択的に粗粒
培土側に形成せしめ且つ植物の良好なる生育を図る為に
約1〜5mmの範囲の粒径、殊に約1〜2mmの範囲の粒径を
有するのが好ましい。
The cultivation soil used in the present invention may be any as long as it is suitable for plant growth, but clay, which is easy to adjust the particle size by sieving, clay loam, loam, sand loam, and the like are preferable.
In particular, those in which the aggregates are hardly destroyed during the cultivation of the plant and porous materials such as Kanuma soil, Hyuga soil and Akadama soil are preferred. These soils are sieved into fine-grained soil and coarse-grained soil with a larger particle size. The particle size of the fine-grained soil must be in the range of about 0.1-1 mm, and by having such a particle size
VA mycorrhizal spores can be selectively formed on the fine-grained soil side. The more preferable particle size of the fine grain soil is about 0.3 to
0.7 mm. The grain size of the coarse-grained soil can be wide as long as it is larger than the fine-grained soil. However, in order to selectively form the roots of the plant on the coarse-grained soil side and to achieve good growth of the plant, about 1 to 1 It preferably has a particle size in the range of 5 mm, especially in the range of about 1-2 mm.

粗粒培土は細粒培土に対し約0.5〜3倍容量となる割
合で用いるのが好ましい。粗粒培土の比率がこれをこえ
て大きくなるに従い粗粒培土中のVA菌根菌胞子濃度が増
大する傾向があり、また逆に上記比率をこえて小さくな
るに従い細粒培土中の菌根菌胞子の濃度が低下する傾向
があるのみならず根が伸長できる培土量が減少し、植物
の成長が阻害される虞が生ずる。
The coarse-grained soil is preferably used at a ratio of about 0.5 to 3 times the volume of the fine-grained soil. As the ratio of coarse-grained soil increases, the concentration of VA mycorrhizal fungi in the coarse-grained soil tends to increase, and conversely, as the ratio decreases, the mycorrhizal fungi in the fine-grained soil increase. Not only does the concentration of spores tend to decrease, but also the amount of cultivated soil that the roots can elongate is reduced, and there is a risk that plant growth may be inhibited.

本発明に於ては上記細粒培土と粗粒培土とを深さ方向
の界面に於て接触させて充填し植物栽培用培地とする。
ここで深さ方向の界面は垂直方向の界面及び水平方向に
対し傾斜する界面を包含する。水平方向に対し傾斜する
界面は水平方向に対し約45゜以上の角度で傾斜する界面
であることが望ましい。
In the present invention, the fine-grained soil and the coarse-grained soil are brought into contact at the interface in the depth direction and filled to obtain a plant cultivation medium.
Here, the interface in the depth direction includes an interface in the vertical direction and an interface inclined with respect to the horizontal direction. The interface inclined with respect to the horizontal direction is desirably an interface inclined at an angle of about 45 ° or more with respect to the horizontal direction.

本発明に於てVA菌根菌としては、VA菌根を形成させる
菌であればいずれでもよいが、ジャイガスポーラ(Gias
pora)、スクテロスポーラ(Scutellospora)、グロマ
ス(Glomus)、アカウロスポーラ(Acaulospora)、ス
クレロシスチス(Sclerocystis)、エントロフォスポー
ラ(Entrophospora)属に属する菌が用いられる。具体
的にはジャイガスポーラ・マルガリータ(Gigaspora ma
rgarita)、スクテロスポーラ・グレガリア、(Scutell
ospora gregaria)、グロマス・ファシキュラツム(Glo
mus fasciculatum)、及びグロマス・エツニカツム(Gl
omus etunicutum)等があげられるが、これらに特に限
定するわけではない。
In the present invention, the VA mycorrhizal fungi may be any fungi that form VA mycorrhizal fungi.
pora), Scutellospora, Glomus, Acaulospora, Sclerocystis, and bacteria belonging to the genus Entrophospora. Specifically, Jigaspora Margarita (Gigaspora ma
rgarita), Scutelospora gregaria, (Scutell
ospora gregaria), Glomas fascicularatum (Glo)
mus fasciculatum) and gromas etnicatum (Gl
omus etunicutum) and the like, but are not particularly limited thereto.

本発明に於て共生植物は、VA菌根菌が共生する植物で
あればいずれでもよいが、クローバー、アルファルファ
等の豆科植物、とうもろこし、イモ類等の穀類、キュウ
リ、トマト、レタス等の野菜、バラ、カーネーション、
菊等の観賞用植物などがあげられる。これらの植物は、
粒径の異なる培土と培土の境界又は粗粒培土に播種して
或は植物を植栽して栽培するのが好ましい。なお、培土
と培土の境界にスクリーン等の仕切体を設置した状態で
植物を栽培する場合には、境界付近の粗粒培土に植物を
播種又は植栽するのが好ましい。
In the present invention, the symbiotic plant may be any plant as long as the VA mycorrhizal fungi coexists, but is not limited to legumes such as clover and alfalfa, corn, cereals such as potatoes, vegetables such as cucumber, tomato, and lettuce. , Roses, carnations,
Ornamental plants such as chrysanthemums. These plants are
It is preferable that the seeds are sown on the boundary between cultivated soils having different grain sizes or cultivated soil or coarse-grained soil, or planted and cultivated. In the case where plants are cultivated in a state in which a partition such as a screen is provided at the boundary between the soils, it is preferable to sow or plant the plants on coarse-grained soil near the boundaries.

本発明者の研究によると、VA菌根菌胞子が選択的に形
成される細粒培土に多孔性炭化物及び/又は植物残渣を
添加すると、胞子の形成が顕著に促進されるが、粗粒培
土にこれらを添加しても有意性が発現されないことが見
出された。従って本発明によれば多孔性炭化物及び/又
は植物残渣は細粒培土にのみ添加され、それにより添加
量の削減と培土のpH変化を最小限に抑制できる。
According to the study of the present inventors, the addition of porous carbide and / or plant residue to fine-grained soil in which VA mycorrhizal fungal spores are selectively formed significantly promotes the formation of spores. It was found that no significance was expressed even when these were added. Therefore, according to the present invention, the porous carbides and / or plant residues are added only to the fine-grained soil, thereby reducing the amount of addition and minimizing the pH change of the soil.

また本発明者の研究によれば菌根菌種により上記培土
添加物に対する嗜好性が異なり、ジャイガスポーラ属及
びスクテロスポーラ属に属する菌株には多孔性炭化物が
適しており、一方グロマス属に属する菌株には植物残渣
が適していることが認められた。従って使用するVA菌根
菌株の種類に応じて適当な添加物を選択使用することが
可能となる。
According to the study of the present inventor, the preference for the soil culture additive differs depending on the mycorrhizal fungal species, and porous carbides are suitable for strains belonging to the genera Jaigaspora and Scutellospora, while those belonging to the genus Gromas Plant residues were found to be suitable for the strains to which they belong. Therefore, it is possible to select and use an appropriate additive depending on the type of the VA mycorrhizal strain to be used.

多孔性炭化物としては各種の多孔性炭化物を使用でき
る。その代表的なものとしてはたとえば木炭、樹皮炭、
おがくず炭、やしがら炭、植物残渣炭等を挙げることが
でき、これらは1種又は2種以上を使用できる。これら
多孔性炭化物の添加量は約1〜10%(v/v)、好ましく
は約1.5〜5%(v/v)が適量である。これ以上、多孔性
炭化物の添加量を増加させると土壌のpHが変わり、植物
の生育に悪影響を及ぼす。またこれ以下では、添加の効
果が少ない。なお、多孔性炭化物の粒径は約0.1〜3.0mm
が好ましい。また植物残渣としては各種の植物残渣を使
用できる。その代表的なものとしては植物の茎や芽の断
片、種子の皮等を挙げることができ、たとえばとうもろ
こしの芽、大豆の芽、ねぎ類の芽、むぎわら、いねわ
ら、もみがら等がある。これらは1種又は2種以上を使
用できる。なおこれらの植物残渣の使用に際しては植物
病原菌による感染や、目的としないVA菌根菌による感染
を避けるため、まえもって滅菌処理するのが好ましい。
植物残渣の添加量は約1〜10%(v/v)、好ましくは約
3〜7%(v/v)が適量である。これ以上、植物残渣の
添加量を増加させると、培土に粒径差をつけた効果が少
なくなり、またこれ以下にすると、植物残渣添加の効果
が少ない。なお、植物残渣の大きさは、長径が約0.1〜8
mmが好ましい。
Various porous carbides can be used as the porous carbide. Typical examples are charcoal, bark charcoal,
Sawdust charcoal, coconut charcoal, plant residue charcoal and the like can be mentioned, and one or more of these can be used. An appropriate amount of the porous carbide is about 1 to 10% (v / v), preferably about 1.5 to 5% (v / v). If the amount of the porous carbide is further increased, the pH of the soil changes, which adversely affects plant growth. Below this, the effect of addition is small. The particle size of the porous carbide is about 0.1 to 3.0 mm
Is preferred. Various plant residues can be used as the plant residues. Typical examples include plant stems and bud fragments, seed hulls, and the like, such as corn buds, soybean buds, green onion buds, barley straw, rice straw, rice husk, and the like. . These can be used alone or in combination of two or more. When using these plant residues, it is preferable to sterilize them beforehand in order to avoid infection by plant pathogenic bacteria and undesired infection by VA mycorrhizal fungi.
An appropriate amount of the plant residue is about 1 to 10% (v / v), preferably about 3 to 7% (v / v). If the amount of addition of the plant residue is further increased, the effect of giving a difference in particle size to the cultivated soil is reduced, and if the amount is less than this, the effect of addition of the plant residue is reduced. In addition, the size of the plant residue is approximately 0.1 to 8
mm is preferred.

植物にVA菌根菌を感染させる際には、種々の方法を採
り得るが例えば種子の下方1〜5cmのところにVA菌根菌
の胞子、菌糸、VA菌根菌に感染した植物根等を接種する
方法を採り得る。また、これらの接種源を種子の下方に
接種する代わりに、粗粒培土全体に接種源を分散させて
も良いし、種子の発芽後に根の近傍にこれらの接種源を
接種してもよい。またVA菌根菌を予め感染させた植物を
植栽して栽培することもできる。この様にVA菌根菌を接
種して感染させた植物又は予め感染させた植物の栽培は
通常約2〜4カ月間行なう。この栽培期間が終了した
後、潅水をやめて植物を枯死させ、形成したVA菌根菌胞
子を含む細粒培土を収穫する。あるいは、約2〜4カ月
後に植物を生かしたままでVA菌根菌胞子を含む細粒培土
を収穫し、その空隙に新しい細粒培土を充填して植物の
栽培及び胞子の増殖を継続してもよい。
When infecting plants with VA mycorrhizal fungi, various methods can be adopted.For example, spores, hyphae, plant roots infected with VA mycorrhizal fungi, etc. of VA mycorrhizal fungi at 1 to 5 cm below the seeds can be used. An inoculation method can be adopted. Instead of inoculating these seeds below the seeds, the seeds may be dispersed throughout the coarse-grained soil, or these seeds may be inoculated near the roots after germination of the seeds. Plants infected with VA mycorrhizal fungi in advance can also be planted and cultivated. Cultivation of a plant infected or infected beforehand by inoculation of the VA mycorrhizal fungus is usually performed for about 2 to 4 months. After the end of this cultivation period, the irrigation is stopped and the plants die, and the fine-grained soil containing the formed VA mycorrhizal spores is harvested. Alternatively, after about 2 to 4 months, harvesting the fine-grained soil containing the VA mycorrhizal fungal spores while keeping the plant alive, filling the voids with new fine-grained soil, and continuing cultivation of the plant and propagation of the spores Good.

細粒培土を収穫する際には、先端が鋭利になった鋼板
等の切断具を挿入して二種の培土にまたがって伸長する
根を切断し、培土を分離するとよい。
When harvesting fine-grained soil, it is advisable to insert a cutting tool such as a steel plate having a sharpened tip and cut the root extending over the two types of soil to separate the soil.

あるいは、培土と培土の境界に耐腐食性のスクリーン
を設置した状態で植物を栽培し、培土を収穫する際にそ
のスクリーンを引き抜くことにより植物根を切断し、培
土を分離してもよい。また、耐腐食性のスクリーンでで
きた容器に粗粒培土を充填し、その周囲に細粒培土を挿
入して植物を栽培し、収穫時に粗粒培土の入った容器を
引き上げ容器を形成するスクリーンで根を切断すること
によって二種の培土を分離してもよい。なお、スクリー
ンを設置する際には、そのスクリーンを二重にしておく
と根の切断が容易になる。
Alternatively, the plant may be cultivated in a state where a corrosion-resistant screen is provided at the boundary between the soil and the soil, and when the soil is harvested, the screen may be pulled out to cut the plant roots and separate the soil. Also, a container made of a corrosion-resistant screen is filled with coarse-grained soil, fine-grained soil is inserted around it, plants are cultivated, and when harvesting, the container with the coarse-grained soil is pulled up to form a container. The two types of soil may be separated by cutting the roots with. When installing the screen, if the screen is doubled, the root can be easily cut.

使用するスクリーンの目開きは、植物の細根が通過で
きる範囲で、しかも培土を分離した際に培土がこぼれ落
ちにくい範囲であればよい。具体的には、目の開きが約
0.5mmから約2mmの範囲が好ましい。
The aperture of the screen to be used may be in a range where the fine roots of the plant can pass, and in a range where the cultivated soil is hard to spill when the cultivated soil is separated. Specifically, the eye opening is about
A range from 0.5 mm to about 2 mm is preferred.

収穫した培土はそのままVA菌根菌接種剤として使用す
ることもできるが、より高濃度のVA菌根菌胞子が必要な
ときには、一般的な胞子の分離法を採用することができ
る。この場合には、最初のVA菌根菌胞子濃度が高いた
め、通常の培土から胞子を回収するのに比べてはるかに
少ない労力で胞子を回収することができる。一般的な胞
子の分離方法にも、湿式ふるい分け法〔Gerdemann,J.
M.:Myc.,47,619(1955),Gerdemann,J.W.&Nicolson,T.
H.:Trans.Br.Mycol.Soc.,46,235(1963)〕・比重液浮
遊法〔Ohms,R.E.:Phytopathology,47,751(1957)〕や
その改良法〔Mosse,B.&Jones,G.W.:Trans.Br.Mycol.So
c.,51,604(1968),Furlan,V.&Fortin,J.A.:Naturalis
te Canadian,102,663(1975),Furlan,V.et.al:Trans.B
r.Mycol.Soc.,75,336(1980)〕などがある。
The harvested soil can be directly used as a VA mycorrhizal fungus inoculant, but when a higher concentration of VA mycorrhizal fungal spores is required, a general spore separation method can be employed. In this case, since the initial VA mycorrhizal fungal spore concentration is high, spores can be collected with much less effort than collecting spores from normal soil. A common spore separation method is also a wet sieving method (Gerdemann, J. et al.
M .: Myc., 47, 619 (1955), Gerdemann, JW & Nicolson, T.
H.:Trans.Br.Mycol.Soc.,46,235(1963)] ・ Specific gravity suspension method [Ohms, RE: Phytopathology, 47,751 (1957)] and its improved method [Mosse, B. & Jones, GW: Trans.Br .Mycol.So
c., 51,604 (1968), Furlan, V. & Fortin, JA: Naturalis
te Canadian, 102, 663 (1975), Furlan, V.et.al:Trans.B
r. Mycol. Soc., 75, 336 (1980)].

本発明方法を実施する為の装置は、のう状体−樹枝状
体菌根菌を感染させた植物を栽培して菌根菌を増殖させ
る装置であって、約0.1〜1mmの粒径の粒度小なる細粒培
土を収容する細粒培土収容部と上記細粒培土より粒径の
大なる粗粒培土を収容する粗粒培土収容部とを深さ方向
の界面に於て隣接させて備えると共に、上記界面に細粒
培土と粗粒培土との混合を防止し且つ細粒培土回収時に
栽培植物の根を切断するための仕切体を着脱可能に設置
したことにより特徴付けられる。
An apparatus for carrying out the method of the present invention is an apparatus for cultivating a plant infected with a fungus-arbuscular mycorrhizal fungus and growing mycorrhizal fungi, and having a particle size of about 0.1 to 1 mm. A fine-grained soil storage unit that accommodates fine-grained soil with a small particle size and a coarse-grained soil storage unit that accommodates coarse-grained soil with a larger particle size than the fine-grained soil are provided adjacent to each other at the interface in the depth direction. At the same time, it is characterized in that a partition for preventing mixing of fine-grained soil and coarse-grained soil and for cutting the roots of the cultivated plant at the time of collecting fine-grained soil is detachably installed at the interface.

第1図乃至第3図は上記本発明装置の好ましい1実施
態様を示すもので、図に於て栽培容器(1)は細粒培土
収容部(2)と粗粒培土収容部(3)とを備え、両収容
部(2)、(3)は垂直方向の界面で隣接して設けられ
ている。
FIGS. 1 to 3 show a preferred embodiment of the apparatus of the present invention, in which a cultivation container (1) comprises a fine-grained soil storage unit (2) and a coarse-grained soil storage unit (3). , And both housing portions (2) and (3) are provided adjacent to each other at a vertical interface.

上記隣接界面には両収容部(2)、(3)を区分する
仕切板(4a)が溝(5)により着脱可能に装着されてい
る。上記仕切板(4a)の下端には必要に応じ根を切断す
る為の刃を設けても良い。(6)及び(7)は各培土収
容部(2)及び(3)の下端に開口可能に設けられた培
土取出用底蓋である。
A partition plate (4a) for separating the two storage portions (2) and (3) is detachably attached to the adjacent interface by a groove (5). A blade for cutting the root may be provided at the lower end of the partition plate (4a) as necessary. (6) and (7) are bottom covers for taking out the soil, which are provided at the lower ends of the soil storage sections (2) and (3) so as to be openable.

第3図の装置は、第1図に示された1対の細粒培土収
容部(2)と粗粒培土収容部(3)を複数対連結させた
もので、各対の細粒培土収容部(2)と粗粒培土収容部
(3)とが垂直方向に界面に於て仕切板(4a)を介して
隣接する様に連結されている。仕切板(4a)は案内溝
(5)により着脱自在に装着されている。第3図の他の
符号の意味は第1図と同じである。
The apparatus shown in FIG. 3 is obtained by connecting a plurality of pairs of the fine-grained soil storage unit (2) and the coarse-grained soil storage unit (3) shown in FIG. The section (2) and the coarse-grained soil storage section (3) are vertically connected to each other via a partition plate (4a) at the interface. The partition plate (4a) is detachably mounted by a guide groove (5). The meanings of the other symbols in FIG. 3 are the same as those in FIG.

第1図及び第3図の装置に於て細粒培土収容部(2)
に粒径約0.1〜1mmの細粒培土を必要に応じ多孔性炭化物
及び/又は植物残渣と混合して充填し、粗粒培土収容部
(3)にこれより粒径の大なる粗粒培土を入れた後、仕
切板(4a)を引き抜き、細粒培土と粗粒培土との界面又
は粗粒培土にVA菌根菌の胞子、菌糸、VA菌根菌に感染し
た植物根あるいはそれらで作られたVA菌根菌接種剤を接
種し、その上に植物の種子を播種する。あるいは先に述
べたように、植物の種子が発芽した後、根の近傍にそれ
らを接種してもよいし、播種する前に接種源を粒径の粗
い培土全体に分散させてもよい。
In the apparatus shown in FIGS. 1 and 3, a fine-grained soil storage unit (2)
A fine-grained soil having a particle size of about 0.1 to 1 mm is mixed with a porous carbide and / or a plant residue as necessary, and filled, and the coarse-grained soil having a larger particle size is filled in the coarse-grained soil storage unit (3). After insertion, the partition plate (4a) is pulled out, and spores, hyphae, and plant roots infected with VA mycorrhizal fungi are formed on the interface between fine-grained soil and coarse-grained soil or on coarse-grained soil. The inoculated VA mycorrhizal inoculant is then inoculated and plant seeds are sown thereon. Alternatively, as described above, after the seeds of the plant have germinated, they may be inoculated near the roots, or the inoculum may be dispersed throughout the coarse-grained soil before sowing.

栽培した植物は、発芽から約2〜4カ月後に潅水を中
止して枯死させる。その後、仕切板(4a)を案内溝
(5)に沿って挿入して根を切断し、底蓋(6)をはず
して細粒培土を収穫する。さらに底蓋(7)をはずして
粗粒培土を回収する。粗粒培土中にはVA菌根菌胞子や菌
糸、あるいはVA菌根菌に感染した植物根が含まれている
ので、次回栽培時の接種源として、あるいは培土として
再利用することも可能である。しかしながらこの場合に
は、植物の老廃物の蓄積や、植物病原菌の増殖、いわゆ
る連作障害に注意する必要がある。
About 2 to 4 months after germination, the cultivated plants stop irrigation and die. Thereafter, the partition plate (4a) is inserted along the guide groove (5) to cut the root, and the bottom cover (6) is removed to harvest fine soil. Further, the bottom cover (7) is removed, and the coarse-grained soil is collected. The coarse-grained soil contains VA mycorrhizal spores and mycelium, or plant roots infected with VA mycorrhizal fungi, so it can be reused as an inoculum for the next cultivation or as a soil cultivation . However, in this case, it is necessary to pay attention to accumulation of waste products of plants and growth of phytopathogenic fungi, so-called continuous cropping failure.

植物を枯死させずに、発芽から約2〜4カ月後に植物
を生かしたままの状態で分離板(4a)を挿入して根を切
断し、底蓋(6)をはずして細粒培土を収穫してもよ
い。この場合には、再度底蓋(6)を設置し、細粒培土
収容部(2)に細粒培土を充填し仕切板(4a)を引き抜
いて植物の栽培を継続する。斯くして植物の細根や、VA
菌根菌の外生菌糸が再び細粒培土側に伸長し、細粒培土
側にVA菌根菌の胞子が再生産される。そして植物の寿命
がくるまで継続的にVA菌根菌の胞子を多量に含んだ培土
を収穫することができる。
About 2 to 4 months after germination, without cutting off the plants, insert the separation plate (4a) and cut the roots while keeping the plants alive, remove the bottom cover (6), and harvest fine-grained soil May be. In this case, the bottom lid (6) is installed again, the fine-grained soil storage part (2) is filled with the fine-grained soil, the partition plate (4a) is pulled out, and plant cultivation is continued. Thus, fine roots of plants, VA
The ectomycorrhizal mycorrhizal fungi extend again to the fine-grained soil side, and the spores of the VA mycorrhizal fungus are reproduced on the fine-grained soil side. Then, the soil containing a large amount of spores of VA mycorrhizal fungi can be continuously harvested until the life of the plant comes.

第4図乃至第6図は本発明方法を実施する為の装置の
他の好ましい1例である。第4図は細粒培土収容部
(2)と粗粒培土収容部(3)の1対からなる容器であ
り、第6図はこれらを複数対並べた装置である。第4図
及び第6図の装置に於ては仕切体として着脱可能な耐腐
食性の二重スクリーン(4b)及び(4c)が用いられてい
る。上記点を除いては第1図乃至第3図に示した装置と
同様であって、同一符号は同一の意味を有する。
4 to 6 show another preferred example of an apparatus for carrying out the method of the present invention. FIG. 4 shows a container comprising a pair of a fine-grained soil storage unit (2) and a coarse-grained soil storage unit (3), and FIG. 6 shows a device in which a plurality of pairs are arranged. In the apparatus shown in FIGS. 4 and 6, detachable corrosion-resistant double screens (4b) and (4c) are used as partitions. Except for the above points, the apparatus is the same as the apparatus shown in FIGS. 1 to 3, and the same reference numerals have the same meaning.

本装置によれば第1図乃至第3図に説明したと同様に
してVA菌根菌に感染された植物が栽培される。但し二重
スクリーン(4b)及び(4c)は細粒培土収容部(2)と
粗粒培土収容部(3)との界面に据置したままで栽培さ
れる。胞子の形成された細粒培土を回収するにあたっ
て、一方のスクリーン(4b)を引抜き根を切断し、底蓋
(6)から細粒培土を回収する。他は第1図乃至第3図
につき説明したと同様である。
According to the present apparatus, plants infected with VA mycorrhizal fungi are cultivated in the same manner as described with reference to FIGS. However, the double screens (4b) and (4c) are cultivated with the double screens (4b) and (4c) being installed at the interface between the fine-grained soil storage part (2) and the coarse-grained soil storage part (3). When collecting the fine-grained soil on which the spores are formed, one screen (4b) is pulled out, the root is cut, and the fine-grained soil is collected from the bottom cover (6). Others are the same as those described with reference to FIGS.

第7図は本方法を具体化した別の好ましい1例であ
る。第7図は栽培容器(1)の中に、耐腐蝕性のスクリ
ーン(4d)で形成した粗粒培土収納容器(8)を一個又
は複数個載置する。容器(8)の内部には粗粒培土を充
填し、容器(8)の外側に必要に応じて多孔性炭化物及
び/又は植物残渣を混入した細粒培土を充填する。そし
て、第1図乃至第3図につき説明したと同様にしてVA菌
根菌で感染させた植物を栽培する。細粒培土の回収は容
器(8)を引き上げて根を切断し、栽培容器(1)に残
された細粒培土を収穫することにより成される。
FIG. 7 shows another preferred embodiment of the method. In FIG. 7, one or a plurality of coarse-grained soil storage containers (8) formed of a corrosion-resistant screen (4d) are placed in the cultivation container (1). The inside of the container (8) is filled with coarse-grained soil, and the outside of the container (8) is filled with fine-grained soil mixed with porous carbide and / or plant residue as necessary. Then, plants infected with VA mycorrhizal fungi are cultivated in the same manner as described with reference to FIGS. The fine-grained soil is collected by pulling up the container (8), cutting the root, and harvesting the fine-grained soil left in the cultivation container (1).

図面には細粒培土収容部(2)中に3個の容器(8)
を配したものを示したが、容器(8)の数は任意に増減
できることは言う迄もない。
The drawing shows three containers (8) in the fine-grained soil storage unit (2).
Is shown, but it goes without saying that the number of containers (8) can be arbitrarily increased or decreased.

本発明方法は、図示の装置の如くポット栽培に準ずる
増殖容器においてその効果が顕著であるが、増殖容器に
準じてコンクリートや鉄板等で区分した圃場に於ても十
分使用し得る方法である。
The method of the present invention has a remarkable effect in a propagation container similar to pot cultivation as in the illustrated apparatus, but is a method that can be sufficiently used in a field divided by concrete, iron plate, or the like according to the propagation container.

発明の効果 本発明によれば、VA菌根菌の胞子を選択的に細粒培土
に形成せしめることができ容易に且つ大量にVA菌根菌を
増殖させることが可能となる。
Advantageous Effects of the Invention According to the present invention, spores of VA mycorrhizal fungi can be selectively formed on fine-grained soil, and it is possible to grow VA mycorrhizal fungi easily and in large quantities.

また本発明によれば胞子の形成される細粒培土に多孔
性炭化物及び/又は植物残渣を添加して胞子の形成を促
進させることができ、添加量の削減と培土のpH変化を最
小に抑制できる。
Further, according to the present invention, it is possible to promote the formation of spores by adding a porous carbide and / or plant residue to the fine-grained soil on which spores are formed, thereby reducing the amount of addition and minimizing the pH change of the soil. it can.

更に本発明によれば菌根菌種の培土添加物に対する嗜
好性の差異を利用してジャイガスポーラ属及びスクテロ
スポーラ属に属する菌株に多孔性炭化物を、グロマス属
に属する菌株に植物残渣を夫々用いることにより、各属
の菌株を効率良く増殖させることが可能となる。
Furthermore, according to the present invention, utilizing the difference in the preference of the mycorrhizal fungi to the culture soil additive, the porous charcoal is added to the strains belonging to the genus Jaigaspora and the genus Scutellospora, and the plant residue is added to the strains belonging to the genus Glomus. By using each, strains of each genus can be efficiently grown.

実 施 例 以下に実施例を挙げ本発明をより具体的に説明する。
本発明がこれら実施例に限定されるものでないことは言
う迄もない。
EXAMPLES The present invention will be described more specifically with reference to the following examples.
It goes without saying that the present invention is not limited to these examples.

実施例1 1/5000aワグネルポットの向かって右半分にエチレン
オキサイドガスにより滅菌処理した粗い粒径の芝の目上
(粒径約1〜2mm)、左半分に同じくエチレンオキサイ
ドガスにより滅菌処理した細かい粒径の芝の目土(粒径
約0.1〜0.5mm)を1:1(容量)の比率で入れ、アルファ
ルファを栽培した。なお対照として、滅菌処理した粗い
粒径の芝の目土(粒径約1〜2mm)と細かい粒径の芝の
目土(粒径約0.1〜0.5mm)を1:1の容量比で混合した培
土を同じ大きさのワグネルポットに充填し、アルファル
ファを栽培した。
Example 1 On the right half of a 1 / 5000a Wagner pot, on the right side of a coarse-grained turf that was sterilized with ethylene oxide gas (particle diameter: about 1-2 mm), and on the left half, a fine germ that was also sterilized with ethylene oxide gas. Alfalfa was cultivated with turf soil (particle diameter: about 0.1 to 0.5 mm) having a particle size of 1: 1 (volume). As a control, sterilized coarse-grain turf soil (particle diameter: about 1 to 2 mm) and fine-grain turf soil (particle diameter: about 0.1 to 0.5 mm) were mixed in a 1: 1 volume ratio. The cultivated soil was filled in a Wagner pot of the same size, and alfalfa was cultivated.

アルファルファ種子は容器の中央に播種し、その下3
〜4cmのところにジャイガスポーラ・マルガリータの胞
子を30個接種した。なお、両方のポットに化成肥料(窒
素:リン:カリ=8:8:5)を3gずつ添加し、さらに根粒
細菌(Rhyzobium meliloti)の懸濁液(OD=2.0)を2ml
接種した。ポットは温室内に置き、適宜潅水を行ない3
カ月間栽培した。
Alfalfa seeds are sown in the center of the container and 3
30 spores of Jigaspora margarita were inoculated at ~ 4 cm. To both pots, add 3 g of chemical fertilizer (nitrogen: phosphorus: potassium = 8: 8: 5), and add 2 ml of a suspension of rhizobium meliloti (OD = 2.0).
Inoculated. The pot is placed in a greenhouse and properly watered.
Cultivated for months.

その後潅水を中止してアルファルファを枯死させ、栽
培していた土壌をサンプリングし、各々の土壌中のVA菌
根菌胞子数を数えた。粒径差をつけた培土では、粗い土
壌中に土壌100ccあたり50個、細かい土壌中には土壌100
ccあたり250個のVA菌根菌胞子が確認された。一方、粒
径差をつけない培土では、土壌100ccあたり120個のVA菌
根菌胞子が確認された。
Then, the irrigation was stopped to kill alfalfa, and the cultivated soil was sampled, and the number of VA mycorrhizal fungal spores in each soil was counted. In soil with a difference in particle size, 50 pieces per 100 cc of soil in coarse soil, 100 pieces of soil in fine soil
250 VA mycorrhizal spores per cc were identified. On the other hand, in the culture medium with no difference in particle size, 120 VA mycorrhizal spores were confirmed per 100 cc of soil.

すなわち、土壌に粒径差をつけることにより、細かい
粒径の土壌中にVA菌根菌の胞子が大量に形成されること
が確認された。
In other words, it was confirmed that spores of VA mycorrhizal fungi were formed in large amounts in soil having a fine particle diameter by giving a difference in particle diameter to the soil.

実施例2 1/5000aワグネルポットの向かって右半分にエチレン
オキサイドガスにより滅菌処理した粗い粒径の赤玉土
(粒径約1〜2mm)、左半分に同じくエチレンオキサイ
ドガスにより滅菌処理した細かい粒径の赤玉土(粒径約
0.5〜1.0mm)を入れ、大豆を栽培した。大豆の種子はポ
ットの中央に播種し、その下3〜4cmのところにスキュ
テロスポーラ・グレガリアの胞子を30個接種した。
Example 2 The right half of a 1 / 5000a Wagner pot was treated with ethylene oxide gas to sterilize it with a coarse particle size reddish clay (particle diameter of about 1 to 2 mm) in the right half, and the left half thereof was similarly finely sterilized with ethylene oxide gas. Akadama (with a particle size of approx.
0.5-1.0 mm) and soybeans were cultivated. Soybean seeds were sown in the center of the pot, and 30 to 3 cm below were inoculated with 30 spores of Scutelospora gregaria.

上記のポットを190個準備し、多孔性炭化物として木
炭、植物残渣としてもみがらを用いて表−1に示す実験
区を設定して、各条件10ポットずつ栽培を行なった。な
お、すべてのポットに化成肥料(窒素:リン:カリ=8:
8:5)を3gずつ添加し、さらにすべてのポットに根粒細
菌(Rhyzobium japonicum)の懸濁液(OD=2.0)を2ml
ずつ接種した。ポットは温室内に置き適宜潅水を行なっ
た。
190 pots were prepared, and the experimental plots shown in Table 1 were set using charcoal as porous charcoal and rice husk as plant residue, and cultivation was carried out for 10 pots under each condition. In addition, chemical fertilizers (nitrogen: phosphorus: potassium = 8:
8: 5), add 3 g each, and add 2 ml of a suspension (OD = 2.0) of rhizobium japonicum to all pots.
Each was inoculated. The pot was placed in a greenhouse and properly watered.

実験開始後4カ月目に潅水を中止し大豆を枯死させ
た。そして各ポットの土壌を粒径の粗いものと細かいも
のを別々にサンプリングし、各々の土壌中のVA菌根菌胞
子数を数えた。その結果を表−2に示す。
Four months after the start of the experiment, watering was stopped and soybeans were killed. Then, the soil of each pot was coarsely and finely sampled separately, and the number of VA mycorrhizal spores in each soil was counted. Table 2 shows the results.

表−2に示したように、木炭を粒径の細かい土壌中に
1〜10%(V/V)、特に1.5〜5%(V/V)添加したポッ
トで胞子形成の促進がみられた。なお、大きな粒径の土
壌中に木炭を添加しても、胞子形成数の増加はほとんど
みられなかった。
As shown in Table 2, promotion of spore formation was observed in pots in which charcoal was added to soil having a fine particle size of 1 to 10% (V / V), particularly 1.5 to 5% (V / V). . Even when charcoal was added to soil having a large particle size, the number of spores formed hardly increased.

実施例3 1/5000gワグネルポットの向かって右半分にエチレン
オキサイドガスにより滅菌処理した粗い赤玉土(粒径約
1〜2mm)、左半分に同じくエチレンオキサイドガスに
より滅菌処理した細かい赤玉土(粒径約0.1〜0.5mm)を
入れ、大豆を栽培した。大豆の種子はポットの中央に播
種し、その下3〜4cmのところにグロマス・ファシキュ
ラツムの胞子を40個接種した。
Example 3 In the right half of a 1/5000 g Wagner pot, coarse red clay (particle size: about 1 to 2 mm) sterilized with ethylene oxide gas was placed on the right half, and fine red clay (particle size) was sterilized with ethylene oxide gas on the left half. Soybeans were cultivated. Soybean seeds were sown in the center of the pot, and 40 spores of Glomas fascicularatum were inoculated 3 to 4 cm below.

上記のポットを100個準備し、表−3に示す実験区を
設定し、各条件10ポットずつ栽培を行なった。なお、す
べてのポットに化成肥料(窒素:リン:カリ=8:8:5)
を3gずつ添加し、さらにすべてのポットに根粒細菌(Rh
yzobium japonicum)の懸濁液(OD=2.0)を2mlずつ接
種した。ポットは温室内に置き適宜潅水を行なった。
100 pots were prepared, and the experimental plots shown in Table 3 were set, and cultivation was performed for 10 pots under each condition. Chemical fertilizer (nitrogen: phosphorus: potassium = 8: 8: 5) for all pots
Is added to each pot and rhizobial bacteria (Rh
yzobium japonicum) (OD = 2.0). The pot was placed in a greenhouse and properly watered.

実験開始後4カ月目に潅水を中止し大豆を枯死させ
た。そして各ポットの土壌を粒径の粗いものと細かいも
のと別々にサンプリングし、各々の土壌中のVA菌根菌胞
子数を数えた。その結果を表−4に示す。
Four months after the start of the experiment, watering was stopped and soybeans were killed. The soil of each pot was sampled separately for coarse and fine soil, and the number of VA mycorrhizal spores in each soil was counted. Table 4 shows the results.

表−4に示したように、もみがらを粒径の細かい土壌
中に1〜10%(v/v)特に3〜7%(v/v)添加したポッ
トで胞子形成の促進がみられた。
As shown in Table 4, promotion of spore formation was observed in pots in which rice husks were added to soil having a fine particle size of 1 to 10% (v / v), particularly 3 to 7% (v / v). .

実施例4 第4図に示す容量3.8L(細粒培土収容部(2)=1.8
L、粗粒培土収容部(3)=2.0L)のVA菌根菌の増殖・
収穫装置に、オートクレーブで滅菌処理した粒径の粗い
芝の目土(粒径約1〜2mm)と、同じくオートクレーブ
により滅菌処理した粒径の細かい芝の目土(粒径約0.1
〜0.5mm)をそれぞれ1.6L及び1.44L入れアルファルファ
を栽培した。アルファルファの種子の下方3〜4cmのと
ころには、スクテロスポーラ・グレガリアの胞子を30個
接種し、さらに根粒細菌(Rhyzobium meliloti)の懸濁
液(OD=2.0)を2ml接種した。また、粒径の細かい芝の
目土の中には、木炭を5%(v/v)の比率で混入した。
アルファルファには適宜水を与え、4日月間栽培した。
Example 4 A capacity of 3.8 L shown in FIG. 4 (fine-grained soil storage unit (2) = 1.8)
L, growth of VA mycorrhizal fungi in the coarse-grained soil storage unit (3) = 2.0 L)
In the harvesting device, coarse turf soil (particle diameter of about 1 to 2 mm) sterilized by an autoclave and fine turf soil (particle diameter of about 0.1 similarly sterilized by an autoclave) were used.
0.50.5 mm), respectively, and 1.6L and 1.44L were added to grow alfalfa. Thirty spores of Scutelospora gregaria were inoculated 3 to 4 cm below the alfalfa seeds, and 2 ml of a suspension of rhizobium meliloti (OD = 2.0) was further inoculated. In addition, charcoal was mixed into the grass having a fine particle size at a ratio of 5% (v / v).
Alfalfa was appropriately watered and cultivated for 4 days a month.

その後、ステンレス製のスクリーンを引き上げて根を
切断し粒径の細かい方の芝の目土を収穫し、得られた胞
子数を数えたところ土壌100ccあたり420個、粒径の細か
い芝の目土全体で約6000個の胞子が存在した。これは実
験開始時に接種した胞子数の200倍に相当する。そして
再度粒径の細かい芝の目土を培土収容部(2)に1.44L
入れアルファルファの栽培を継続した。3ケ月後再びス
テンレス性の網を引き上げて根を切断し粒径の細かい方
の芝の目土を収穫し、得られた胞子数を数えたところ土
壌100ccあたり370個、粒径の細かい芝の目土全体で約53
00個の胞子が存在した。
After that, the stainless steel screen was pulled up, the roots were cut, the finer grain turf was harvested, and the number of spores obtained was counted. There were about 6000 spores in total. This corresponds to 200 times the number of spores inoculated at the start of the experiment. Then, 1.44L of the fine turf soil of the grain size is again put into the cultivation soil storage unit (2).
The alfalfa cultivation was continued. Three months later, the stainless steel net was pulled up again, the roots were cut, and the grain of the turf with the finer grain size was harvested. The number of spores obtained was counted. About 53 in total
There were 00 spores.

【図面の簡単な説明】[Brief description of the drawings]

第1図乃至第7図は本発明装置の好ましい実施態様例を
説明するものであり、第1図はその1例を示す斜視図、
第2図は同平面図、第3図は第1図装置の複数対を連結
した装置の斜視図、第4図は他の1例を示す斜視図、第
5図は同平面図、第6図は第4図装置の複数対を連結し
た装置の斜視図、第7図は他の1例を示す斜視図であ
る。 図に於て各符号の意味は以下の通りである。 (1)……植物栽培容器 (2)……細粒培土収容部 (3)……粗粒培土収容部 (4a)……仕切板 (4b)及び(4c)……二重スクリーン (4d)……スクリーン (5)……案内溝 (6)……底蓋 (7)……底蓋 (8)……粗粒培土収納容器
1 to 7 illustrate preferred embodiments of the apparatus of the present invention. FIG. 1 is a perspective view showing one example of the apparatus.
FIG. 2 is a plan view of the same, FIG. 3 is a perspective view of an apparatus in which a plurality of pairs of the apparatus of FIG. 1 are connected, FIG. 4 is a perspective view showing another example, FIG. Fig. 4 is a perspective view of a device in which a plurality of pairs of the device shown in Fig. 4 are connected, and Fig. 7 is a perspective view showing another example. In the figure, the meaning of each symbol is as follows. (1) Plant cultivation container (2) Fine grain cultivation storage unit (3) Coarse grain cultivation storage unit (4a) Partition plate (4b) and (4c) Double screen (4d) ... Screen (5) ... Guide groove (6) ... Bottom cover (7) ... Bottom cover (8) ... Coarse grain cultivation storage container

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田井 生佳 大阪府大阪市中央区平野町4丁目1番2 号 大阪瓦斯株式会社内 (58)調査した分野(Int.Cl.6,DB名) C12N 1/00 - 1/38 C12M 1/00 - 1/42 A01G 7/00 BIOSIS(DIALOG) WPI(DIALOG)──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Iika Imai 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Osaka Gas Co., Ltd. (58) Field surveyed (Int.Cl. 6 , DB name) C12N 1/00-1/38 C12M 1/00-1/42 A01G 7/00 BIOSIS (DIALOG) WPI (DIALOG)

Claims (16)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粒径が約0.1〜1mmの粒度小なる細粒培土と
これより粒径の大なる粗粒培土とを深さ方向の界面に於
て接触せしめて充填して形成される培土に、のう状体−
樹枝状体菌根菌を感染させた植物を栽培し、該菌根菌胞
子を細粒培土に選択的に形成せしめ、胞子の形成された
細粒培土を回収することを特徴とするのう状体−樹枝状
体菌根菌の増殖方法。
1. A soil formed by contacting and filling a fine-grained soil having a small particle size of about 0.1 to 1 mm with a coarse-grained soil having a larger particle size at an interface in a depth direction. , Sac-
A spore shape characterized by cultivating a plant infected with arbuscular mycorrhizal fungi, selectively forming the mycorrhizal fungal spores on fine-grained soil, and collecting the fine-grained soil on which the spores are formed. A method for growing body-arbuscular mycorrhizal fungi.
【請求項2】細粒培土の粒径が約0.3〜0.7mmの範囲にあ
る請求項1記載の方法。
2. The method according to claim 1, wherein the grain size of the fine-grained soil is in the range of about 0.3 to 0.7 mm.
【請求項3】粗粒培土の粒径が約1〜5mmの範囲にある
請求項1記載の方法。
3. The method of claim 1 wherein the coarse soil has a particle size in the range of about 1 to 5 mm.
【請求項4】粗粒培土の粒径が約1〜2mmの範囲にある
請求項3記載の方法。
4. The method of claim 3 wherein the coarse soil has a particle size in the range of about 1-2 mm.
【請求項5】植物が細粒培土と粗粒培土との界面又は粗
粒培土に於て栽培される請求項1記載の方法。
5. The method according to claim 1, wherein the plant is cultivated at the interface between the fine soil and the coarse soil or at the coarse soil.
【請求項6】細粒培土と粗粒培土との界面又は粗粒培土
にのう状体−樹枝状体菌根菌を接種し且つ植物種子を播
種して菌根菌を感染させた植物を栽培する請求項5記載
の方法。
6. A plant inoculated with mycorrhizal fungi by inoculating a fungus-arbuscular mycorrhizal fungus at the interface between fine-grained soil and coarse-grained soil or on coarse-grained soil. The method according to claim 5, which is cultivated.
【請求項7】菌根菌胞子が形成された回収細粒培土から
胞子を採集する請求項1記載の方法。
7. The method according to claim 1, wherein spores are collected from the collected fine-grained soil on which the mycorrhizal fungal spores are formed.
【請求項8】のう状体−樹枝状体菌根菌がジャイガスポ
ーラ属、スクテロスポーラ属及びグロマス属に属する1
種である請求項1記載の方法。
8. A fungus-arbuscular mycorrhizal fungus belonging to the genus Jaigaspora, Scutellospora and Glomas.
2. The method of claim 1, which is a species.
【請求項9】のう状体−樹枝状体菌根菌がジャイガスポ
ーラ・マルガリータ、スクテロスポーラ・グレガリア、
グロマス・ファシキュラツム及びグロマス・エツニカツ
ムから選ばれた1種である請求項1記載の方法。
9. The method according to claim 9, wherein the mycelial fungi are dendritic mycorrhizal fungi, such as Jygaspora margarita, Scutelospora gregaria,
2. The method according to claim 1, wherein the method is one selected from Glomas fascicularum and Glomas etnicatum.
【請求項10】細粒培土に多孔性炭化物及び/又は植物
残渣を添加する請求項1記載の方法。
10. The method according to claim 1, wherein a porous carbide and / or plant residue is added to the fine-grained soil.
【請求項11】細粒培土に多孔性炭化物を添加して、ジ
ャイガスポーラ属又はスクテロスポーラ属に属する菌根
菌を増殖させる請求項10記載の方法。
11. The method according to claim 10, wherein a porous carbide is added to the fine-grained soil to grow mycorrhizal fungi belonging to the genus Jaigaspora or Scutellospora.
【請求項12】細培粒土に植物残渣を添加してグロマス
属に属する菌根菌を増殖させる請求項10記載の方法。
12. The method according to claim 10, wherein a plant residue is added to the fine-grained soil to grow mycorrhizal fungi belonging to the genus Glomus.
【請求項13】のう状体−樹枝状体菌根菌を感染させた
植物を栽培して菌根菌を増殖させる装置であって、約0.
1〜1mmの粒径の粒度小なる細粒培土を収容する細粒培土
収容部と上記細粒培土より粒径の大なる粗粒培土を収容
する粗粒培土収容部とを深さ方向の界面に於て隣接させ
て備えると共に、上記界面に細粒培土と粗粒培土との混
合を防止し且つ細粒培土回収時に栽培植物の根を切断す
るための仕切体を着脱可能に設置したことを特徴とする
のう状体−樹枝状体菌根菌の増殖装置。
13. An apparatus for cultivating a plant infected with a fungus-arbuscular mycorrhizal fungus to propagate mycorrhizal fungi, comprising:
An interface in the depth direction between a fine-grained soil storage unit for accommodating a fine-grained soil with a particle size of 1 to 1 mm and a coarse-grained soil storage unit for accommodating a coarse-grained soil with a larger particle size than the fine-grained soil At the same time, the partition for detaching the root of the cultivated plant at the time of collecting the fine-grained soil and preventing the mixing of the fine-grained soil and the coarse-grained soil was provided at the interface. An apparatus for growing cyst-arbuscular mycorrhizal fungi.
【請求項14】上記仕切体が耐腐食性のスクリーンであ
る請求項13記載の装置。
14. The apparatus according to claim 13, wherein said partition is a corrosion-resistant screen.
【請求項15】上記スクリーン状仕切体が二重のスクリ
ーンから成り、植物の生育期間中細粒培土と粗粒培土と
の界面に据置され細粒培土回収時に何れか一方のスクリ
ーンを抜き取って植物の根を切断し得るものである請求
項14記載の装置。
15. The screen-like partition body is composed of a double screen, and is placed at the interface between the fine-grained soil and the coarse-grained soil during the growing period of the plant. 15. The apparatus according to claim 14, wherein the root can be cut.
【請求項16】スクリーンで形成された容器状の粗粒培
土収容部の1乃至複数個を細粒培土収容部内に設置した
請求項14の装置。
16. The apparatus according to claim 14, wherein one or more of the container-shaped coarse-grained soil accommodating portions formed by the screen are installed in the fine-grained soil-accommodating container.
JP1212415A 1989-08-17 1989-08-17 Method for growing cyst-arbuscular mycorrhizal fungi and apparatus therefor Expired - Lifetime JP2832257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1212415A JP2832257B2 (en) 1989-08-17 1989-08-17 Method for growing cyst-arbuscular mycorrhizal fungi and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1212415A JP2832257B2 (en) 1989-08-17 1989-08-17 Method for growing cyst-arbuscular mycorrhizal fungi and apparatus therefor

Publications (2)

Publication Number Publication Date
JPH0376572A JPH0376572A (en) 1991-04-02
JP2832257B2 true JP2832257B2 (en) 1998-12-09

Family

ID=16622210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1212415A Expired - Lifetime JP2832257B2 (en) 1989-08-17 1989-08-17 Method for growing cyst-arbuscular mycorrhizal fungi and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2832257B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5607663B2 (en) * 2012-01-23 2014-10-15 最 上 蘭 園 有限会社 Mass breeding method of sea anemone, greening method using sea anemone, and cultivation method of wood rotting fungi used for them
DE102013101456B4 (en) * 2013-02-14 2014-12-11 Angelika Spindler Culture vessels for receiving a culture medium for inokolum or spore production in the context of an in-vitro mass production of VA mycorrhizal spores
CN115443854B (en) * 2022-09-27 2023-06-27 苏州农业职业技术学院 Arbuscular mycorrhizal fungus agent preparation facilities

Also Published As

Publication number Publication date
JPH0376572A (en) 1991-04-02

Similar Documents

Publication Publication Date Title
Hayman et al. Methods for inoculating field crops with mycorrhizal fungi
Marx et al. Fungicides influence growth and development of specific ectomycorrhizae on loblolly pine seedlings
CN107027519B (en) The mycorrhiza fungi seeding cultivating method of Panzhihua ferfas
JPH0739248A (en) Method for culturing coprinus comatus
JP2832257B2 (en) Method for growing cyst-arbuscular mycorrhizal fungi and apparatus therefor
JPS6387973A (en) Multiplication of mycorrhiza cell in sac-shaped state or in arborescent state
JP2022077963A (en) Plant seedling, seedling cultivation method, culture soil, and method of growing plant
EP0482130A1 (en) Production of mycorrhizal inoculum by static culture hydroponics
Magarey et al. The influence of vesicular arbuscular mycorrhizae (VAM) on sugarcane growth in the field
JP7038451B6 (en) Plant seedlings, seedling raising methods, hilling, and plant growing methods
JP2004129653A (en) Method of forming of matsutake fungus-infected pine seedling by cocultivating matsutake fungus and aseptically germinated pine seedling
JPH05244824A (en) Method for culturing plant
Balla et al. Acclimation results of micropropagated black locust (Robinia pseudoacacia L.) improved by symbiotic micro-organisms
Balla et al. Acclimation results of micropropagated black locust (Robina pseudoacacia L.) improved by symbiotic micro-organisms
JP3355151B2 (en) Mushroom bed for larva breeding of stag beetle
JP4647563B2 (en) Shiitake fungus cultivation method
JP2762894B2 (en) Indoor cultivation of Hatake shimeji
Dar et al. Effect of source and inoculum load of ectomycorrhizae on the growth and biomass of containerized kail pine (Pinus wallichiana) seedlings
JP2002112631A (en) Method for indoor culturing of lyophyllum decastes
JPH0591820A (en) Culture of plant
JP3263730B2 (en) Rapid artificial synthesis of matsutake mycorrhiza
KR100239152B1 (en) Method of preparing va mycorrhizae inoculant
Waterer et al. Response of lettuce to pre-and post-transplant phosphorus and pre-transplant inoculation with a VA-mycorrhizal fungus
JPH0638736A (en) Production of vesicular-arbuscular mycorrhizal fungal inoculum
JPH05176636A (en) Proliferation of va mycorrhiza bacteria

Legal Events

Date Code Title Description
S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

EXPY Cancellation because of completion of term