JP2809873B2 - Plant cultivation equipment - Google Patents

Plant cultivation equipment

Info

Publication number
JP2809873B2
JP2809873B2 JP33805290A JP33805290A JP2809873B2 JP 2809873 B2 JP2809873 B2 JP 2809873B2 JP 33805290 A JP33805290 A JP 33805290A JP 33805290 A JP33805290 A JP 33805290A JP 2809873 B2 JP2809873 B2 JP 2809873B2
Authority
JP
Japan
Prior art keywords
plant
light
far
source
red light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33805290A
Other languages
Japanese (ja)
Other versions
JPH04207127A (en
Inventor
公俊 洞口
政明 森田
克介 村上
一郎 相賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33805290A priority Critical patent/JP2809873B2/en
Priority to US07/801,689 priority patent/US5269093A/en
Publication of JPH04207127A publication Critical patent/JPH04207127A/en
Application granted granted Critical
Publication of JP2809873B2 publication Critical patent/JP2809873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は人工光源の光放射によって野菜などの植物を
栽培する植物栽培装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plant cultivation apparatus for cultivating plants such as vegetables by light radiation of an artificial light source.

従来の技術 光放射強度をはじめ、温度、湿度、気流条件、CO2
度、水分、養分、等の成育環境条件を人工的に有効適切
に制御して、野菜などの植物を高品質、高効率、安定に
栽培・生産する、いわゆる植物工場の研究開発が近年、
活発化し、一部では実用化されている。植物工場の光放
射の供給方式としては、完全自然光利用方式、自然光と
人工光を併用したハイブリッド光方式、完全人工光利用
方式がある。高品質、高効率、安定に野菜などの植物を
栽培・生産するという植物工場の目的に適合させるため
には、より完全な成育環境制御の下で栽培を図る方式が
望ましく、光放射の供給方式としても完全人工光利用方
式の採用が理想的である。人工光源としては一般に、メ
タルハライドランプ、高圧ナトリウムランプ、蛍光ラン
プ、等が単独、あるいは組合わせて使用されている。
Conventional technology Effectively and appropriately controls growth environment conditions such as light emission intensity, temperature, humidity, airflow conditions, CO 2 concentration, moisture, nutrients, etc. In recent years, research and development of so-called plant factories that cultivate and produce
It has been activated and some have been put to practical use. As a method of supplying light radiation in a plant factory, there are a completely natural light utilization method, a hybrid light method using both natural light and artificial light, and a completely artificial light utilization method. In order to meet the purpose of a plant factory that cultivates and produces vegetables and other plants with high quality, high efficiency, and stability, it is desirable to use a method of cultivating under more complete growth environment control. However, it is ideal to adopt a method using completely artificial light. Generally, metal halide lamps, high-pressure sodium lamps, fluorescent lamps and the like are used alone or in combination as artificial light sources.

発明が解決しようとする課題 完全人工光利用方式の植物工場では、生産コストの中
で光放射エネルギーコストの占める割合が大きい。例え
ば比較的、光放射エネルギーを低く抑えることができ
る、サラダナやレタスなどの葉菜類を生産する場合で
も、生産コストの約40%を電力コストが占め、そのうち
の約70%余りを光放射エネルギーコストが占めている。
このため、品質と生産の安定という、工業生産方式の利
点が発揮できる完全人工光利用方式の植物工場の実用化
を図るうえで、生産コストの中で占める割合が大きい光
放射エネルギーコストの引き下げが重要な課題となって
いる。本発明は前記問題点を解決できる植物の栽培方法
および栽培装置を提供すること目的としている。
Problems to be Solved by the Invention In a plant factory using a completely artificial light, the ratio of the light radiation energy cost to the production cost is large. For example, even when producing leafy vegetables such as salads and lettuce that can keep light radiation energy low, electricity costs account for about 40% of production costs, and light radiation energy costs account for about 70% of that cost. is occupying.
For this reason, the reduction of light radiation energy costs, which account for a large proportion of the production costs, in order to commercialize a plant factory that uses the completely artificial light method, which can demonstrate the advantages of the industrial production method, such as quality and production stability. It is an important issue. An object of the present invention is to provide a plant cultivation method and a plant cultivation device that can solve the above-mentioned problems.

課題を解決するための手段 前記課題を解決するため本発明は、400〜700nmの波長
域を主波長とする光放射(PAR)源および遠赤色光放射
源(700〜800nmの波長域を主波長とする光放射源)を組
合せ配設し、その両者の光放射強度の比が光量子束密度
比600〜700nm/700〜800nmの値で1.3〜0.6であることを
特徴とする。
Means for Solving the Problems To solve the above problems, the present invention provides a light emission (PAR) source having a wavelength range of 400 to 700 nm and a far-red light emission source (a wavelength range of 700 to 800 nm having a main wavelength range). Light emission sources), and the ratio of the light emission intensity of both is 1.3 to 0.6 at a photon flux density ratio of 600 to 700 nm / 700 to 800 nm.

作用 前記構成によれば、植物の物質生産を制御する光合成
の観点からみて有効であるとされるPAR光放射源のみの
光放射環境の下での成育に比べ700〜800nmの波長域を有
する遠赤色光放射源からの照射に基づく光形態形成作用
によって植物の節間や葉脈の伸長が促進される。この結
果、栽培植物の草丈が伸長するとともに葉面積も増大
し、さらに草丈の伸長で植物は光放射源に接近し、受光
量を増す。このうえ、植物の節間の伸長は葉同志による
光放射の遮蔽を減少させるため、植物全体の光放射の受
光量の増加がもたらされる。このため、光放射エネルギ
ーの利用効率が高められ、植物の生体重増加が加速さ
れ、植物の生産所要期間が短絡され、生産コストに占め
る光放射エネルギーコストの割合が改善される。
Action According to the above configuration, compared to the growth under the light emitting environment of only the PAR light emitting source, which is considered to be effective from the viewpoint of photosynthesis for controlling the substance production of plants, it has a wavelength range of 700 to 800 nm. Photomorphogenesis based on irradiation from a red light source promotes plant internode and leaf vein elongation. As a result, the plant height of the cultivated plant elongates and the leaf area increases, and further the plant height approaches the light radiation source and the amount of received light increases. In addition, internode elongation of the plant reduces the interception of light radiation by the leaves, resulting in an increase in the amount of light radiation received by the entire plant. For this reason, the utilization efficiency of light radiant energy is enhanced, the increase in the live weight of the plant is accelerated, the required period of plant production is short-circuited, and the ratio of the light radiant energy cost to the production cost is improved.

実施例 以下、本発明の実施例を図面に基づいて説明する。第
1図は本発明の植物栽培装置の一実施例を示している。
Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of the plant cultivation apparatus of the present invention.

風洞型グロースキャビネット1内には栽培室2と空気
を循環させるための風洞3が設けられ、ファン4によっ
て空気が循環されるとともに風速が調整される。温度調
整手段5、温度調整手段6、CO2濃度調整手段7が設け
られ、グロースキャビネット1内の温度、湿度、CO2
度が調整される。
A wind tunnel 3 for circulating air with the cultivation room 2 is provided in the wind tunnel type growth cabinet 1, and air is circulated by a fan 4 and the wind speed is adjusted. A temperature adjusting unit 5, a temperature adjusting unit 6, and a CO 2 concentration adjusting unit 7 are provided, and the temperature, humidity, and CO 2 concentration in the growth cabinet 1 are adjusted.

前記栽培室2内の上方にはPAR(Photosynthetically
Active Radiation、光合成有効光放射)、即ち400〜700
nmの波長域を主波長とする複数本のPAR照射用蛍光ラン
プ8aおよび遠赤色光放射、即ち700〜800nmの波長域を主
波長とする複数本の遠赤色光放射用蛍光ランプ8bが水平
且つ並列に配設されており、PAR照射用蛍光ランプおよ
び遠赤色光放射照射用蛍光ランプは個々個別に点滅およ
び調光できるようになっている。またこれら蛍光ランプ
8aおよび8bの下方には保水性を備えた栽培ベット9が配
設されている。栽培ベット9には点滴方式で所要量の培
養液が供給され、栽培ベット9に栽培された植物に水分
と養分が供給される。
PAR (Photosynthetically
Active Radiation, photosynthetically effective light radiation), ie 400-700
A plurality of fluorescent lamps 8a for PAR irradiation having a main wavelength in the wavelength range of nm and far-red light emission, that is, a plurality of fluorescent lamps 8b for far-red light emission having a main wavelength in the wavelength range of 700 to 800 nm are horizontal and The fluorescent lamp for PAR irradiation and the fluorescent lamp for irradiating far-red light are arranged in parallel, and can be individually turned on and off. These fluorescent lamps
Below 8a and 8b, a cultivation bed 9 having water retention is arranged. A required amount of culture solution is supplied to the cultivation bed 9 by a drip method, and water and nutrients are supplied to the plants cultivated in the cultivation bed 9.

次に、上記装置4基を用いて植物栽培を行った実験例
につき説明する。
Next, an experimental example in which plant cultivation was performed using the four devices described above will be described.

栽培植物Aとして、7年間継続して隔離栽培され、遺
伝的な均一性が確保されたヒマワリ(Helianthus Annus
L.cv Russian Manmoth)の種子を発芽させ、第2図の
点線で示す分光分布特性をもつPAR照射用3波長域発光
形蛍光ランプの下で育苗した、子葉が充分に展開し、第
3葉、第4葉が展開しつつある播種8日目の均一な幼植
物を用いた。4基のグロースキャビネット1内には各
々、第2図の点線で示す分光分布特性をもつPAR照射用
3波長域発光形55W蛍光ランプのみ4本配設、同じく前
記PAR照射用3波長域発光形55W蛍光ランプ4本に加え、
第2図の実線で示す遠赤色光放射照射用20W蛍光ランプ
を1本、5本、9本を配設した。なお、遠赤色光照射用
20W蛍光ランプを付加しないランプ配設場所には、20W蛍
光ランプを黒色画用紙で覆ったランプを配設し、各々の
グロースキャビネットの温度均一性が確保されるよう配
慮した。各々のキャビネット内の光放射環境条件を第1
表に示す。ランプはいずれも24時間連続点灯し、気温は
25℃、相対温度は70%に制御した。また栽培は培養液
(大塚ハウス1号、2号標準濃度培養液)を用いた水耕
法とした。さらに根圏にはエアーポンプにより空気を供
給した。
Sunflower (Helianthus Annus), which has been continuously cultivated for seven years as a cultivated plant A and has a genetic homogeneity
L.cv Russian Manmoth) seeds were germinated and grown under a three-band fluorescent lamp for PAR irradiation having the spectral distribution characteristics shown by the dotted line in FIG. A uniform young plant on day 8 of sowing in which the fourth leaf was developing was used. In each of the four growth cabinets 1, only four 55-W fluorescent lamps for PAR irradiation having a spectral distribution characteristic shown by dotted lines in FIG. In addition to four 55W fluorescent lamps,
One, five, and nine 20W fluorescent lamps for irradiating far-red light shown by solid lines in FIG. 2 were provided. For far-red light irradiation
At the place where the 20W fluorescent lamp is not added, a lamp in which the 20W fluorescent lamp is covered with black paper is placed so that the temperature uniformity of each growth cabinet is ensured. The light emission environment conditions in each cabinet
It is shown in the table. All lamps are lit continuously for 24 hours,
The temperature was controlled at 25 ° C. and the relative temperature was controlled at 70%. Cultivation was performed by a hydroponic method using a culture solution (Otsuka House No. 1, No. 2 standard concentration culture solution). In addition, air was supplied to the rhizosphere by an air pump.

実験結果を示すと第2表のようになる。生体重は第2
表に示すように、遠赤色光放射照射用蛍光ランプを各々
1本、5本、9本付加した遠赤色光放射処理区では、遠
赤色光放射の照射を行わない対照区に対し、生体重で遠
赤色光放射処理後8日目では各々1.2倍、1.6倍、1.9倍
に、また乾物重では各々1.1倍、1.7倍、1.9倍になり、
遠赤色光放射処理を行うことによって植物の生体重およ
び乾物重増加が加速され、植物の生産所要時間が短縮さ
れ、生産コストの引き下げができる。
Table 2 shows the experimental results. Live weight is second
As shown in the table, in the far-red light emission treatment section in which one, five, and nine far-red light emission fluorescent lamps were added, respectively, the live weight was higher than the control section in which the far-red light emission was not irradiated. On the 8th day after the far-red light emission treatment, the weights increased 1.2 times, 1.6 times, and 1.9 times, respectively, and the dry matter increased 1.1 times, 1.7 times, and 1.9 times, respectively.
By performing the far-red light radiation treatment, the increase in the live weight and dry matter weight of the plant is accelerated, the time required for plant production is shortened, and the production cost can be reduced.

発明の効果 前記構成によれば、植物の物質生産を制御する光合成
の観点からみて有効であるとされるPAR光放射源のみの
光放射環境の下での成育に比べ、700〜800nmの波長域を
有する遠赤色光放射源からの照射に基づく光形態形成作
用によって植物の節間や葉脈の伸長が促進される。この
結果、栽培植物の草丈が伸長するとともに葉面積も増大
し、さらに草丈の伸長で植物は光放射源に接近し、受光
量を増す。このうえ、植物の節間の伸長は葉同志による
光放射の遮蔽を減少させるため、植物全体の光放射の受
光量の増加がもたらされる。このため、光放射エネルギ
ーの利用効率が高められ、植物の生体重増加が加速さ
れ、植物の生産所要期間が短縮され、生産コストに占め
る光放射エネルギーコストの割合が改善され、その効果
は大なるものである。
Effects of the Invention According to the above configuration, compared to the growth under a light-emitting environment of only a PAR light-emitting source, which is effective from the viewpoint of photosynthesis controlling plant material production, a wavelength range of 700 to 800 nm. The growth of internodes and veins of plants is promoted by photomorphogenesis based on irradiation from a far-red light radiation source having the following. As a result, the plant height of the cultivated plant elongates and the leaf area increases, and further the plant height approaches the light radiation source and the amount of received light increases. In addition, internode elongation of the plant reduces the interception of light radiation by the leaves, resulting in an increase in the amount of light radiation received by the entire plant. For this reason, the utilization efficiency of light radiant energy is enhanced, the increase in the living weight of the plant is accelerated, the period required for plant production is shortened, and the ratio of the light radiant energy cost to the production cost is improved, and the effect is increased. Things.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す栽培装置の概略側面
図、第2図は同栽培装置を用いた植物の成育実験に用い
たPAR照射用3波長域発光形蛍光ランプおよび遠赤色光
照射用蛍光ランプの分光分布特性図である。 8a……PAR照射用光源、8b……遠赤色光放射照射用光
源、9……栽培ベット、A……植物。
FIG. 1 is a schematic side view of a cultivation apparatus showing one embodiment of the present invention, and FIG. 2 is a PAR irradiation three-wavelength-range fluorescent lamp and far-red light used in a plant growth experiment using the same. It is a spectral-distribution-characteristic figure of the fluorescent lamp for irradiation. 8a: PAR irradiation light source, 8b: Far-red light radiation irradiation light source, 9: Cultivation bed, A: Plant.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−60527(JP,A) 特開 昭62−126915(JP,A) 特開 昭63−79531(JP,A) 特開 昭49−45581(JP,A) (58)調査した分野(Int.Cl.6,DB名) A01G 7/00──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-60527 (JP, A) JP-A-62-126915 (JP, A) JP-A-63-79531 (JP, A) JP-A-49-49 45581 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) A01G 7/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】400〜700nmの波長域を主波長とする光放射
(PAR)源および遠赤色光放射源(700〜800nmの波長域
を主波長とする光放射源)を組合せ配設し、その両者の
光放射強度の比が光量子束密度比600〜700nm/700〜800n
mの値で1.3〜0.6であることを特徴とする植物栽培装
置。
1. A light emitting (PAR) source having a main wavelength in a wavelength range of 400 to 700 nm and a far-red light emitting source (light emitting source having a main wavelength in a wavelength range of 700 to 800 nm) are arranged in combination. The ratio of the light emission intensity of the two is the photon flux density ratio of 600 to 700 nm / 700 to 800 n
A plant cultivation apparatus, wherein the value of m is 1.3 to 0.6.
JP33805290A 1990-11-30 1990-11-30 Plant cultivation equipment Expired - Fee Related JP2809873B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP33805290A JP2809873B2 (en) 1990-11-30 1990-11-30 Plant cultivation equipment
US07/801,689 US5269093A (en) 1990-11-30 1991-12-02 Method and apparatus for controlling plant growth with artificial light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33805290A JP2809873B2 (en) 1990-11-30 1990-11-30 Plant cultivation equipment

Publications (2)

Publication Number Publication Date
JPH04207127A JPH04207127A (en) 1992-07-29
JP2809873B2 true JP2809873B2 (en) 1998-10-15

Family

ID=18314462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33805290A Expired - Fee Related JP2809873B2 (en) 1990-11-30 1990-11-30 Plant cultivation equipment

Country Status (1)

Country Link
JP (1) JP2809873B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732049B1 (en) * 1995-03-17 1998-05-06 Mitsui Toatsu Chemicals, Incorporated Covering material for plant growth control
CN103766145B (en) * 2014-02-25 2015-03-25 山东棉花研究中心 Rapid indentifying method for disleaving effect before cotton harvesting
NL2018324B1 (en) * 2017-02-07 2018-09-03 Priva Holding B V Method and device for growing a crop

Also Published As

Publication number Publication date
JPH04207127A (en) 1992-07-29

Similar Documents

Publication Publication Date Title
US5269093A (en) Method and apparatus for controlling plant growth with artificial light
CN104813857B (en) It is a kind of based on the watermelon seedling cultivation technology without LED plant lamps under the conditions of natural light
JP2012165665A (en) Lighting device, strawberry cultivation system and strawberry cultivation method
JP2003339236A (en) Lighting device and apparatus for plant growth, and method for plant growth
JP2010130986A (en) Method for cultivating plants
JP2001054320A (en) Method for culturing plant
KR20170025460A (en) Cultivation method of spinach by using light quality in closed-type plant factory system
JP2017169519A (en) Method for viticulture and lighting apparatus for viticulture
JP2011109934A (en) Method for cultivating plant
CN113498689B (en) Light environment for producing indoor purple and red lettuce
JP2809873B2 (en) Plant cultivation equipment
JP4123875B2 (en) Flowering method in flower buds
KR101900643B1 (en) Cultivation method of spinach by using light quality in closed-type plant factory system
JPH0349530B2 (en)
JPH04207128A (en) Apparatus for cultivating plant
JP3858104B2 (en) Plant growing device
GB2140262A (en) A method for improving plant growth
JP5376667B2 (en) Flower seedling raising method and seedling system
JPS6054618A (en) Improvement in plant growth by intermittent irradiation
CN206101298U (en) Workshop is bred to shrimp seedling
JP7157489B1 (en) Plant cultivation method and plant cultivation device
JPH0260527A (en) Method for cultivating and apparatus therefor
JP7236186B1 (en) Plant cultivation method and plant cultivation device
CN216131832U (en) Cambered surface shape plant light filling lamp
EP3656204B1 (en) Method and apparatus for plant treatment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees