JPH0260527A - Method for cultivating and apparatus therefor - Google Patents

Method for cultivating and apparatus therefor

Info

Publication number
JPH0260527A
JPH0260527A JP21032588A JP21032588A JPH0260527A JP H0260527 A JPH0260527 A JP H0260527A JP 21032588 A JP21032588 A JP 21032588A JP 21032588 A JP21032588 A JP 21032588A JP H0260527 A JPH0260527 A JP H0260527A
Authority
JP
Japan
Prior art keywords
fluorescent lamps
light emission
par
wavelength
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21032588A
Other languages
Japanese (ja)
Inventor
Kimitoshi Horaguchi
洞口 公俊
Masaaki Morita
森田 政明
Ichiro Aiga
相賀 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21032588A priority Critical patent/JPH0260527A/en
Publication of JPH0260527A publication Critical patent/JPH0260527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

PURPOSE:To reduce light emission cost accounting for a great part of production cost by adding light emission having a wavelength region within a specific range of far red light emission to emission of light having a wavelength region of light emission effective in photosynthesis as a main wavelength. CONSTITUTION:Plural fluorescent lamps (8a) for irradiation of photosynthetically active radiation(PAR) having a wavelength region of the PAR, i.e., 400-700nm wavelength region as a main wavelength and plural far red fluorescent lamps (8b) having far red light emission, i.e., 700-800nm wavelength region as a main wavelength are horizontally arranged in parallel in the upper part of a cultivation room 2. The number of the arranged far red fluorescent lamps (8b) is >=5% based on the fluorescent lamps (8a) for irradiation of the PAR expressed in terms of light emission energy. The respective lamps can be separately turned on and off and dimmed. The fresh weight increase of plants is accelerated by photomorphogenic action based on irradiation with the fluorescent lamps (8a) and (8b) and the period required to produce the plants is shortened.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は人工光源の光放射によって、野菜などの植物を
栽培する方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method and apparatus for cultivating plants such as vegetables by light radiation from an artificial light source.

従来の技術 光放射エネルギー強度をはじめ、温度、水分。Conventional technology including light radiant energy intensity, temperature, and moisture.

C02濃度等の環境条件を人工的に有効適切に制御して
、野菜などの植物を高品質、高効率、安定に栽培・生産
する、いわゆる植物工場の研究開発が近年、活発化し、
一部では実施されている。植物工場における光放射の供
給方式としては、完全自然光利用方式、自然光と人工光
を併用したノ・イブリッド光利用方式、完全人工光利用
方式がある。
In recent years, research and development of so-called plant factories, which cultivate and produce vegetables and other plants in a high-quality, highly efficient, and stable manner by effectively and appropriately controlling environmental conditions such as CO2 concentration, have become active in recent years.
It has been implemented in some places. Methods for supplying light radiation in plant factories include a completely natural light system, a hybrid light system that uses a combination of natural light and artificial light, and a completely artificial light system.

品質の揃った植物を安定生産するためには、より完全な
環境制御の下で栽培を図る方式が望ましく、先進的な植
物工場システムにおける光放射供給方式としては、完全
人工光利用方式の採用が理想的である。完全人工光利用
方式の植物工場における人工光源としては、一般に、メ
タルハライドランプ、高圧ナトリウムランプ、蛍光ラン
プ等が単独・成るいは組合わせて使用されている。
In order to stably produce plants of uniform quality, it is desirable to cultivate them under more complete environmental control, and as a light radiation supply method in an advanced plant factory system, it is recommended to adopt a method that uses completely artificial light. ideal. In general, metal halide lamps, high-pressure sodium lamps, fluorescent lamps, and the like are used singly, singly, or in combination as artificial light sources in plant factories that utilize completely artificial light.

発明が解決しようとする課題 完全人工光利用方式の植物工場では、生産コストの中で
光放射エネルギーコストの占める割合が大きい。例えば
比較的、光放射エネルギーを低く抑えることができる、
サラダナやレタスなどの葉菜類を生産する場合でも、生
産コストの約40%を電力コストが占め、そのうちの約
To%余りを光放射エネルギーコストが占めている。こ
のため、品質と生産の安定という、工業的生産方式のメ
リットが発揮できる完全人工光利用方式の植物工場の実
用化を図るうえで、生産コストの中で占める割合が大き
い光放射エネルギーコストの引下げが重要な課題となっ
ている。本発明は前記問題点を解決できる植物の栽培方
法及び栽培装置を提供することを目的としている。
Problems to be Solved by the Invention In a plant factory that uses completely artificial light, the cost of light radiant energy accounts for a large proportion of the production cost. For example, optical radiation energy can be kept relatively low.
Even when producing leafy vegetables such as saladana and lettuce, the electricity cost accounts for about 40% of the production cost, of which approximately To% is accounted for by the optical radiation energy cost. Therefore, in order to commercialize a plant factory that utilizes completely artificial light, which can take advantage of the advantages of industrial production methods such as stable quality and production, it is necessary to reduce the cost of light radiant energy, which accounts for a large proportion of production costs. has become an important issue. An object of the present invention is to provide a method and apparatus for cultivating plants that can solve the above-mentioned problems.

課題を解決するための手段 前記課題を解決するため本発明は、PAR(Photo
synthetiaally Active Radi
ation。
Means for Solving the Problems In order to solve the above problems, the present invention utilizes PAR (Photo
SynthetiaAlly Active Radio
ation.

光合成有効光放射)、即ち400〜700nmの波長域
を主波長とする光放射に、遠赤色光放射、即ち700〜
soonmの波長域を主波長とする光放射を付加した光
放射環境の下で植物を生育することを特徴とした植物の
栽培方法及び栽培装置である。
(photosynthetically effective light radiation), i.e., light radiation with a main wavelength in the wavelength range of 400 to 700 nm, far-red light radiation, i.e., 700 to 700 nm.
The present invention is a method and apparatus for cultivating plants, characterized in that plants are grown under a light radiation environment in which light radiation having a main wavelength in the soon wavelength range is added.

作用 前記構成によれば、植物の物質生産を制御する光合成の
観点からみて、有効であるとされるPAR光放射源のみ
の光放射環境の下での生育に比べ、700〜aoonm
の波長域を有する遠赤色光放射源からの照射に基づく光
形態形成作用によって、植物の生体重増加が加速され、
植物の生産所要期間が短縮され、生産コストに占める光
放射エネルギーコストの割合が改善される。
Effect According to the above configuration, from the viewpoint of photosynthesis that controls material production in plants, compared to growth under a light radiation environment using only a PAR light radiation source, which is considered to be effective, the growth rate is 700~aoonm.
The photomorphogenic effect based on irradiation from a far-red light radiation source with a wavelength range of
The period required for plant production is shortened, and the ratio of light radiant energy costs to production costs is improved.

実施例 以下、本発明の実施例を図面に基づいて説明する。第1
図は本発明の植物栽培装置の一実施例を示している。
Embodiments Hereinafter, embodiments of the present invention will be described based on the drawings. 1st
The figure shows an embodiment of the plant cultivation device of the present invention.

風洞型グロースキャビネット1内には栽培室2と空気を
循環させるための風洞3とが設けられ、ファン4によっ
て空気が循環されると共に風速が調整される。温度調整
手段6、湿度調整手段6、C02濃度調整手段7が設け
られ、グロースキャビネット1内の温度、湿度、CO2
濃度が調整される。
A cultivation chamber 2 and a wind tunnel 3 for circulating air are provided in the wind tunnel type growth cabinet 1, and a fan 4 circulates the air and adjusts the wind speed. A temperature adjustment means 6, a humidity adjustment means 6, and a CO2 concentration adjustment means 7 are provided to control the temperature, humidity, and CO2 inside the growth cabinet 1.
The concentration is adjusted.

前記栽培室2内の上方にはP A R(Photosy
 −nthetically AOtiT6 Radi
ation、光合成有効光放射)、即ち400〜700
nmの波長域を主波長とする複数本のPAR照射用蛍光
ランプ81Lおよび遠赤色光放射、即ち700〜aoo
nmの波長域を主波長とする複数本の遠赤色蛍光ランプ
8bが水平且つ並列に配設されている。遠赤色蛍光ラン
プ8bの配設本数は光放射エネルギーでPAR照射用蛍
光ランプ8aの5チ以上になっておシ、各々個別に点滅
及び調光できるようになっている。また、これら蛍光ラ
ンプ8aおよび8bの下方には保水性を備えた栽培ベツ
ド9が配設されている。栽培ベツド9には点滴方式で所
定量の培養液が与えられ、栽培ペッド9に栽培された植
物に水分と栄養分が供給される。
Above the cultivation room 2 is a P A R (Photosy
-nthetically AOtiT6 Radi
ation, photosynthetically effective light radiation), i.e. 400-700
A plurality of fluorescent lamps 81L for PAR irradiation having a main wavelength in the wavelength range of nm and far-red light emission, i.e., 700~aoo
A plurality of far-red fluorescent lamps 8b having a main wavelength in the nm wavelength range are arranged horizontally and in parallel. The number of far-red fluorescent lamps 8b is 5 or more than the number of PAR irradiation fluorescent lamps 8a in terms of light radiant energy, and each can be blinked and dimmed individually. Furthermore, a cultivation bed 9 with water retention properties is arranged below these fluorescent lamps 8a and 8b. A predetermined amount of culture solution is given to the cultivation bed 9 by a drip method, and water and nutrients are supplied to the plants cultivated in the cultivation bed 9.

次に上記装置3基を用いて植物栽培を行った実験例につ
き説明する。
Next, an experimental example in which plant cultivation was carried out using the three devices described above will be explained.

栽培植物ムとして自然光型環境制御温室内で12日間育
苗したレタスを用いた。3基の上記装置のグロースキャ
ビネット1内には各々、第2図の点線で示す分光分布特
性をもつPAR照射用光源としての20!3波長域発光
形蛍光ランプのみ10本の配設、同じく前記20W3波
長域発光形蛍光ランプ10本に加え第2図の実線で示す
遠赤色光放射照射用光源としての20!遠赤色蛍光ラン
プを1本および3本を配設した。またグロースキャビネ
ット1内へのレタス苗の移植後2日間は、新しい環境状
態に馴化させるため、基本光源となる前記20!3波長
域発光形蛍光ランプ10本のみで照射した。その後、2
0W3波長域発光形蛍光ランプ10本のみで継続して照
射した状態で育生した場合と前記20W3波長域発光形
蛍光ランプ10本に20!遠赤色蛍光ランプを1本およ
び3本を追加して点灯照射した状態で育生した場合につ
いてその生育状態を観察・比較した。
As a cultivated plant, lettuce seedlings were grown for 12 days in a natural-light environment-controlled greenhouse. In each of the growth cabinets 1 of the three above-mentioned apparatuses, only ten 20!3 wavelength range emitting fluorescent lamps were installed as light sources for PAR irradiation having the spectral distribution characteristics shown by the dotted line in FIG. In addition to the 10 20W 3-wavelength fluorescent lamps, 20 ! One and three far-red fluorescent lamps were installed. In addition, for two days after transplanting the lettuce seedlings into the growth cabinet 1, in order to acclimatize them to the new environmental conditions, they were irradiated with only the 10 20!3 wavelength band emitting fluorescent lamps serving as the basic light source. After that, 2
When growing under continuous irradiation with only 10 0W 3 wavelength range fluorescent lamps, and 20% of the above 10 20W 3 wavelength range fluorescent lamps! The growth conditions were observed and compared when the plants were grown under the conditions where one and three far-red fluorescent lamps were additionally lit and irradiated.

各々のキャビネット内の光放射環境条件を第1表に示す
。また各々のキャビネット内は実験期間を通じて24時
間の連続照射とし、気温は25±3.0’C,相対湿度
は76±10’%に設定・保持した。キャビネット内に
おける栽培には培養液(人尿ハウス1号、2号)を用い
、植物の吸収等により減少した分は隔日に補給し、7日
毎に全量を交換した。さらに植物が光放射量、温度分布
等のバラツキの影響を受けないよう毎日並べ変えを行っ
た。
The light emission environmental conditions within each cabinet are shown in Table 1. The inside of each cabinet was continuously irradiated for 24 hours throughout the experiment period, and the temperature was set and maintained at 25±3.0'C and relative humidity at 76±10'%. Culture solution (Human Urine House Nos. 1 and 2) was used for cultivation in the cabinet, and the amount reduced due to absorption by the plants was replenished every other day, and the entire amount was replaced every 7 days. Furthermore, the arrangement of the plants was rearranged every day to ensure that the plants were not affected by variations in the amount of light radiation, temperature distribution, etc.

実験結果を示すと第2表のようになる。バイオマス生産
に関しては、第2表に示すように、遠赤色蛍光ランプを
1本および2本付加した遠赤色光放射処理区では、遠赤
色光放射の照射を行わない対照区に対し、葉の生体重で
遠赤色光放射の照射処理後9日目に1.3倍および1.
7倍・166日目1.4倍および1.6倍、乾物重で9
日目に1.1倍および1.6倍、155日目1.2倍お
よび1.5倍となシ、遠赤色光放射照射処理を行うこと
によって、遠赤色光放射照射用光源の追加による消費電
力量を上回るバイオマス生産が得られ、生産コストに占
める光放射エネルギーコストの引下げができることが明
らかとなった。
The experimental results are shown in Table 2. Regarding biomass production, as shown in Table 2, leaf growth in the far-red light irradiation treated plots with one and two far-red fluorescent lamps was lower than in the control plot that was not irradiated with far-red light radiation. Body weight increased by 1.3 times and 1.9 days after irradiation treatment with far-red light radiation.
7 times, 166th day 1.4 times and 1.6 times, dry weight 9
1.1 times and 1.6 times on the 155th day, 1.2 times and 1.5 times on the 155th day, and by adding a far-red light irradiation light source. It has become clear that biomass production can exceed the amount of electricity consumed, and that the cost of optical radiation energy, which accounts for production costs, can be reduced.

(以下余 白) 発明の効果 前記構成によれば、植物の物質生産を制御する光合成の
観点からみて、有効であるとされるPAR光放射源のみ
の光放射環境の下での生育に比べ、700〜aoonm
の波長域を有する遠赤色光放射源による光放射に基づく
光形態形成作用によって、植物の生体重増加が加速され
、植物の生産所要期間が短縮され、生産コストに占める
光放射エネルギーコストの割合が改善され、その効果は
大なるものである。
(The following is a blank space) Effects of the invention According to the above configuration, compared to growing in a light radiation environment using only PAR light radiation source, which is considered to be effective from the viewpoint of photosynthesis that controls material production in plants, 700~aoonm
The photomorphogenetic action based on the light radiation from the far-red light radiation source with a wavelength range of The improvements have been made and the effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の〒実施例を示す栽培装置の概略側面図
、第2図は同栽培装置を用いた植物の生育実験に用いた
PAR照射用蛍光ランプおよび遠赤色光放射照射用蛍光
ランプの分光分布特性図である。 8a・・・・・・PAR照射用光源、8b・・・・・・
遠赤色光放射照射用光源、9・・・・・・栽培ベツド、
ム・・・・・・植物。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名(λ
九−
FIG. 1 is a schematic side view of a cultivation device showing an embodiment of the present invention, and FIG. 2 is a fluorescent lamp for PAR irradiation and a fluorescent lamp for irradiation of far-red light radiation used in a plant growth experiment using the same cultivation device. It is a spectral distribution characteristic diagram of. 8a...Light source for PAR irradiation, 8b...
Far-red light radiation irradiation light source, 9...Cultivation bed,
Mmm...plant. Name of agent: Patent attorney Shigetaka Awano and one other person (λ
Nine-

Claims (3)

【特許請求の範囲】[Claims] (1)PAR(Photosynthetically
 ActiveRadiation、光合成有効光放射
)、即ち400〜700nmの波長域を主波長とする光
放射に、遠赤色光放射、即ち700〜800nmの波長
域を主波長とする光放射を付加した光放射環境の下で植
物を生育することを特徴とした植物の栽培方法。
(1) PAR (Photosynthetically
Active Radiation (photosynthetically active radiation), i.e., optical radiation with a dominant wavelength in the wavelength range of 400 to 700 nm, and far-red radiation, i.e., optical radiation with a dominant wavelength in the wavelength range of 700 to 800 nm, is added to the optical radiation environment. A method of cultivating plants characterized by growing the plants under.
(2)400〜700nmの波長域を有するPARエネ
ルギーを100とした場合、これに付加する700〜8
00nmの波長域を有する遠赤色光放射のエネルギーの
比率が略1以上10以下であることを特徴とした請求項
1記載の植物の栽培方法。
(2) If the PAR energy with a wavelength range of 400 to 700 nm is 100, then 700 to 8
2. The method for cultivating plants according to claim 1, wherein the energy ratio of far-red light radiation having a wavelength range of 0.00 nm is approximately 1 or more and 10 or less.
(3)植物に対する光放射源として、400〜700n
mの波長域を主波長とする光放射を照射するPAR光放
射源及び700〜800nmの波長域を主波長とする光
放射を照射する遠赤色光放射源を配設し、PAR光放射
及び遠赤色光放射源を各々個別に点滅及び調光できるこ
とを特徴とする植物の栽培装置。
(3) 400-700n as a light radiation source for plants
A PAR light radiation source that emits light radiation with a main wavelength in the wavelength range of A plant cultivation device characterized in that each of the red light radiation sources can be blinked and dimmed individually.
JP21032588A 1988-08-24 1988-08-24 Method for cultivating and apparatus therefor Pending JPH0260527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21032588A JPH0260527A (en) 1988-08-24 1988-08-24 Method for cultivating and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21032588A JPH0260527A (en) 1988-08-24 1988-08-24 Method for cultivating and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH0260527A true JPH0260527A (en) 1990-03-01

Family

ID=16587555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21032588A Pending JPH0260527A (en) 1988-08-24 1988-08-24 Method for cultivating and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH0260527A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046989A1 (en) * 2011-09-30 2013-04-04 シャープ株式会社 Illuminating device for plant cultivation, plant cultivation system and plant cultivation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01273519A (en) * 1988-04-27 1989-11-01 Mitsui Toatsu Chem Inc Method for rearing plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01273519A (en) * 1988-04-27 1989-11-01 Mitsui Toatsu Chem Inc Method for rearing plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046989A1 (en) * 2011-09-30 2013-04-04 シャープ株式会社 Illuminating device for plant cultivation, plant cultivation system and plant cultivation method
CN103841818A (en) * 2011-09-30 2014-06-04 夏普株式会社 Illuminating device for plant cultivation, plant cultivation system and plant cultivation method
CN103841818B (en) * 2011-09-30 2016-10-19 夏普株式会社 Plant culture illuminator, plant cultivation system and plant cultivation method

Similar Documents

Publication Publication Date Title
US5269093A (en) Method and apparatus for controlling plant growth with artificial light
EP0140361B1 (en) Method of enhancing plant growth
JPH0365128A (en) Plant cultivation method and system therefor
GB1600173A (en) Method and installation for the storage of biochemical energy in plants
KR101481538B1 (en) Growing apparatus of plant with led
CN104813857B (en) It is a kind of based on the watermelon seedling cultivation technology without LED plant lamps under the conditions of natural light
JP2001054320A (en) Method for culturing plant
CN207284620U (en) A kind of plant factor's operating system for mixing light type
JP2003339236A (en) Lighting device and apparatus for plant growth, and method for plant growth
CN103975834A (en) In-house production technology for hydroponic swamp cabbages
KR20170025460A (en) Cultivation method of spinach by using light quality in closed-type plant factory system
CN111448905A (en) Light-controlled tomato seedling method and illumination equipment
CN109380109A (en) A kind of plant factor's operating system mixing light type
JPH10191787A (en) Plant cultivation system
CN105660216A (en) Technology for culturing hot pepper seedlings by applying LED plant lamps
WO2012090897A1 (en) Pigment accumulation enhancing system, ion generating device, and pigment accumulation enhancing method
JPH10178901A (en) Device and method for cultivating plant and recording medium for recording the same
KR101900643B1 (en) Cultivation method of spinach by using light quality in closed-type plant factory system
JPH0260527A (en) Method for cultivating and apparatus therefor
JPS62155030A (en) Plant culture apparatus
JPH04207127A (en) Apparatus for cultivating plant
JPS6054618A (en) Improvement in plant growth by intermittent irradiation
JPH0750929A (en) Method for raising plant and apparatus therefor
JPH0349530B2 (en)
JPH04207128A (en) Apparatus for cultivating plant