JP2808734B2 - Fine particle film manufacturing equipment - Google Patents

Fine particle film manufacturing equipment

Info

Publication number
JP2808734B2
JP2808734B2 JP1275281A JP27528189A JP2808734B2 JP 2808734 B2 JP2808734 B2 JP 2808734B2 JP 1275281 A JP1275281 A JP 1275281A JP 27528189 A JP27528189 A JP 27528189A JP 2808734 B2 JP2808734 B2 JP 2808734B2
Authority
JP
Japan
Prior art keywords
chamber
ejector
fine particle
pressure
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1275281A
Other languages
Japanese (ja)
Other versions
JPH03138355A (en
Inventor
茂夫 鈴木
正明 安立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1275281A priority Critical patent/JP2808734B2/en
Publication of JPH03138355A publication Critical patent/JPH03138355A/en
Application granted granted Critical
Publication of JP2808734B2 publication Critical patent/JP2808734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金属、酸化物、有機物の超微粒子を形成し、
その超微粒子を基板上に堆積して厚膜、薄膜を形成し機
能デバイス等を得る製造装置に関するものである。
The present invention forms ultrafine particles of metals, oxides, and organic substances,
The present invention relates to a manufacturing apparatus for forming a thick film or a thin film by depositing the ultrafine particles on a substrate to obtain a functional device or the like.

従来の技術 従来の微粒子膜製造装置としては、例えば特開昭60−
106975号公報や特開昭61−38632号公報に示されてい
る。
2. Description of the Related Art As a conventional fine particle film production apparatus, for example,
It is disclosed in JP-A-106975 and JP-A-61-38632.

第4図はこの従来の微粒子膜製造装置の概略を示すも
のであり、1は金属、酸化物、有機物を加熱蒸発させる
坩堝であり、溶融させる物質の条件によってその加熱方
法は、抵抗加熱、電子線加熱、高周波加熱等が用いら
れ、2はその加熱のための電源である。3は蒸発室であ
り、その内部を真空に排気した後、4のガス導入系より
不活性ガスであるHe,Ar,N2ガスなどを導入し、所定の圧
力に保っている。5は、粒子をガス流れに乗せて搬送す
る搬送管である。また6は搬送管先端に取り付けられた
微粒子吹き付けノズルであり、製膜室7内に開口してい
る。8は製膜される基板であり移動機構9によって図の
矢印方向に移動可能なようになっている。10は真空ポン
プであり、3は蒸発室及び7の製膜室をバルブ11及び12
を介して適当な圧力に保っている。
FIG. 4 shows an outline of the conventional apparatus for producing a fine particle film. Reference numeral 1 denotes a crucible for heating and evaporating metals, oxides, and organic substances. Wire heating, high-frequency heating, or the like is used, and 2 is a power supply for the heating. Reference numeral 3 denotes an evaporating chamber, and after evacuating the inside thereof, He, Ar, N2 gas or the like, which is an inert gas, is introduced from a gas introduction system of 4, and is maintained at a predetermined pressure. Reference numeral 5 denotes a transport pipe that transports the particles in a gas flow. Reference numeral 6 denotes a fine particle spray nozzle attached to the tip of the transfer pipe, which is opened in the film forming chamber 7. Reference numeral 8 denotes a substrate on which a film is formed. The substrate 8 can be moved by a moving mechanism 9 in the direction of the arrow in FIG. Reference numeral 10 denotes a vacuum pump, 3 denotes an evaporation chamber and a film forming chamber of 7, and valves 11 and 12
At a suitable pressure.

以上のように構成された従来の微粒子膜製造装置にお
いては、蒸発室3を真空ポンプ10により、適当な真空圧
力状態にし、電源2に通電すると、坩堝1内の物質が加
熱溶融し蒸発する。この時ガス導入系4よりガスを導入
すると、坩堝1より蒸発してきた物質が冷却されて適当
な粒径の超微粒子13となる。この時、蒸発室内の圧力は
初期の圧力よりも高くなる。この時、製膜室7の圧力が
蒸発室3よりも低くなるようにバルブ11及び12を調整す
ると、蒸発室3で生成された超微粒子13は導入ガスとと
もに、搬送管5を通過し6の微粒子吹き付けノズルを通
過し、数十〜数百m/secの速度で基板8に衝突する。こ
の時基板8を移動機構によって移動させることにより、
14の様な膜を基板8上に堆積することが出来る。
In the conventional fine particle film manufacturing apparatus configured as described above, when the evaporating chamber 3 is set to an appropriate vacuum pressure state by the vacuum pump 10 and the power supply 2 is energized, the substance in the crucible 1 is heated and melted to evaporate. At this time, when a gas is introduced from the gas introduction system 4, the substance evaporated from the crucible 1 is cooled to become ultrafine particles 13 having an appropriate particle size. At this time, the pressure in the evaporation chamber becomes higher than the initial pressure. At this time, when the valves 11 and 12 are adjusted so that the pressure of the film forming chamber 7 becomes lower than that of the evaporation chamber 3, the ultrafine particles 13 generated in the evaporation chamber 3 pass through the transfer pipe 5 together with the introduced gas and pass through the transfer pipe 5. It passes through the fine particle spray nozzle and collides with the substrate 8 at a speed of several tens to several hundreds m / sec. At this time, by moving the substrate 8 by the moving mechanism,
A film like 14 can be deposited on the substrate 8.

発明が解決しようとする課題 しかしながら前記のような構成では、製膜室7の圧力
を常に蒸発室3の圧力よりも低くする事が必要である。
一般に蒸発量は加熱溶融する投入エネルギーが一定の場
合、蒸発室3の圧力が低ければ低いほど多くなる。しか
しながら蒸発室3の圧力を低くし、超微粒子13の基板8
への衝突速度を大きくするためには、製膜室7の厚力を
更に高真空にする必要がある。それ故真空ポンプ10の容
量を大きくしなければならないものである。また蒸発室
3の厚力を高め、製膜室7との圧力差を大きくする場合
は、蒸発室3の圧力が高くなると蒸発量が減少するだけ
でなく、出来る超微粒子13の粒径が大きくなるものであ
る。更に製膜室7が真空状態の場合には、製膜室7での
基板8の取扱や、大気圧下での処理が出来ないために装
置が煩雑になるとともに、プロセスが煩雑になるという
問題点を有していた。
Problems to be Solved by the Invention However, in the above configuration, it is necessary to always keep the pressure of the film forming chamber 7 lower than the pressure of the evaporation chamber 3.
Generally, when the input energy for heating and melting is constant, the evaporation amount increases as the pressure in the evaporation chamber 3 decreases. However, the pressure in the evaporating chamber 3 is lowered and the substrate 8
In order to increase the collision speed, the thickness of the film forming chamber 7 needs to be further increased to a higher vacuum. Therefore, the capacity of the vacuum pump 10 must be increased. When the thickness of the evaporating chamber 3 is increased to increase the pressure difference between the evaporating chamber 3 and the film forming chamber 7, when the pressure in the evaporating chamber 3 increases, not only does the amount of evaporation decrease, but also the particle size of the ultrafine particles 13 formed increases. It becomes. Further, when the film forming chamber 7 is in a vacuum state, the handling of the substrate 8 in the film forming chamber 7 and the processing under the atmospheric pressure cannot be performed, so that the apparatus becomes complicated and the process becomes complicated. Had a point.

本発明はかかる点に鑑み、高真空下で粒径の小さな超
微粒子を、大量に発生させ、製膜領域に於いては、大気
圧状態で、且つ高速度で超微粒子を基板に衝突させ、製
膜速度が大きく、膜質が稚密な膜を大気圧状態で製膜可
能な微粒子膜の製造装置を提供することを目的とする。
In view of the above, the present invention generates ultra-fine particles having a small particle diameter under a high vacuum in a large amount, and in the film forming region, collides the ultra-fine particles with the substrate at atmospheric pressure and at a high speed, It is an object of the present invention to provide an apparatus for producing a fine particle film capable of forming a film having a high film forming speed and a dense film under an atmospheric pressure.

課題を解決するための手段 本発明は、蒸発室内に蒸発用手段と、蒸発室に開口す
るガス導入口と、蒸発部上部に開口する搬送管と、搬送
管端部を二次流路に接続したエゼクターと、エゼクター
のディフューザが基板に向けて開口した製膜部を備え、
前記蒸発室に導入されるガスより比重の大きい流体を前
記エゼクターの駆動流体としたことを特徴とする微粒子
膜の製造装置である。
Means for Solving the Problems The present invention connects an evaporating means in an evaporating chamber, a gas inlet opening to an evaporating chamber, a transport pipe opening at an upper part of an evaporating section, and a transport pipe end to a secondary flow path. Ejector, and a film-forming part where the diffuser of the ejector opens toward the substrate,
An apparatus for producing a fine particle film, wherein a fluid having a specific gravity greater than that of a gas introduced into the evaporation chamber is used as a driving fluid for the ejector.

作用 本発明は前記した構成により、蒸発室内で蒸発し、導
入されたガスによって冷却され生成した微粒子を、導入
ガスとともに搬送管を通って基板に衝突させ微粒子膜を
製膜する際、搬送管をエゼクターの2次流路に接続し
て、駆動流体により2次流である微粒子流を吸引し、エ
ゼクター部の搬送管部圧力をより低圧にすることができ
るため、蒸発室の圧力が低い状態で蒸発が行え、粒径の
小さな微粒子発生を大量に行えるとともに、製膜部では
エゼクターのディフューザ開口部から微粒子ガス流を基
板に衝突させているので、その部分の圧力を大気圧状態
にすることが出来るものである。
Function The present invention has the above-described configuration, and when the fine particles evaporated by evaporating in the evaporating chamber and being cooled by the introduced gas collide with the introduced gas and collide against the substrate through the transfer tube to form a fine particle film, the transfer tube is formed. Connected to the secondary flow path of the ejector, the secondary fluid flow is sucked by the driving fluid, and the pressure in the transport pipe section of the ejector section can be made lower. Evaporation can be performed and a large amount of fine particles with a small particle diameter can be generated in a large amount.In the film forming part, the fine particle gas stream collides with the substrate from the diffuser opening of the ejector, so that the pressure in that part can be brought to atmospheric pressure. You can do it.

実施例 第1図は本発明の実施例における微粒子膜の製造装置
の構成図を示すものである。第1図において、15は金
属、酸化物、有機物等の所定材料を加熱溶融する坩堝で
あり、その加熱手段としては抵抗加熱や電子線加熱、誘
導加熱等であり、16はその電源を示している。坩堝15、
電源16によって前記所定材料の蒸発用手段が構成されて
いる。17は蒸発室であり、18の真空ポンプによりバルブ
19を介して真空引きされる。20は蒸発室にガスを導入す
るガス導入系であり、ガスとしてはHe、Ar、N2,O2ガス
などである。
Embodiment FIG. 1 shows a configuration diagram of an apparatus for producing a fine particle film according to an embodiment of the present invention. In FIG. 1, reference numeral 15 denotes a crucible that heats and melts a predetermined material such as a metal, an oxide, and an organic substance. The heating means includes resistance heating, electron beam heating, and induction heating. I have. Crucible 15,
The power supply 16 constitutes means for evaporating the predetermined material. Reference numeral 17 denotes an evaporation chamber, which is valved by a vacuum pump of 18.
Vacuum is drawn through 19. Reference numeral 20 denotes a gas introduction system for introducing a gas into the evaporation chamber, and the gas is He, Ar, N 2 , O 2 gas, or the like.

21は蒸発室の上部に設けた搬送管である。搬送管21の
途中経路には経路遮断バルブ22がある。23は製膜室であ
り、中には基板24が移動可能な状態で設けられている。
また25はエゼクター本体であり、エゼクター本体25の2
次流路26には搬送管21の一端が接続されている。27はエ
ゼクターの駆動流体を供給する駆動流体供給装置であ
り、バルブ28によってその流量が調整される。またエゼ
クター本体25のディフューザ部29はその先端が基板24に
向けて開口している。また蒸発室17内、エゼクター2次
流路26、製膜室23にはそれぞれ圧力計30、31、32が設け
られている。
Reference numeral 21 denotes a transfer pipe provided at the upper part of the evaporation chamber. A path shutoff valve 22 is provided in the middle of the transfer pipe 21. Reference numeral 23 denotes a film forming chamber in which a substrate 24 is provided in a movable state.
Reference numeral 25 denotes an ejector body, and 2 of the ejector body 25
One end of the transfer pipe 21 is connected to the next flow path 26. Reference numeral 27 denotes a drive fluid supply device for supplying a drive fluid for the ejector, and its flow rate is adjusted by a valve 28. The diffuser portion 29 of the ejector main body 25 has an end opening toward the substrate 24. Further, pressure gauges 30, 31, and 32 are provided in the evaporation chamber 17, the ejector secondary flow path 26, and the film forming chamber 23, respectively.

また第2図(a)は本実施例に於けるエゼクター本体
25とその各部の基本構成図であり、同図(b)にはエゼ
クター各部P1〜P5の圧力を対応して示している。33は駆
動流流路であり、34はそのノズル、35は混合室、26は2
次流路、36は平行部、29はディフューザ部である。各部
の圧力は図に示すように二次流路部26の低真空状態がデ
ィフューザ出口でほぼ大気圧状態に昇圧されることが分
かる。
FIG. 2A shows an ejector body according to the present embodiment.
It is a basic configuration diagram of 25 and each part thereof, and FIG. 2B shows the pressures of the ejector parts P1 to P5 correspondingly. 33 is a driving flow channel, 34 is its nozzle, 35 is a mixing chamber, 26 is 2
The next flow path, 36 is a parallel part, 29 is a diffuser part. As shown in the figure, the pressure of each part is increased from a low vacuum state of the secondary flow path part 26 to a substantially atmospheric pressure state at the diffuser outlet.

以上のように構成された実施例の微粒子膜の製造装置
において、以下その動作を説明する。
The operation of the apparatus for manufacturing a fine particle film according to the embodiment configured as described above will be described below.

まず搬送管21の途中経路に設けられた経路遮断バルブ
22を閉止した状態で、真空ポンプ18によって蒸発室17内
を排気する。蒸発室17内が所定の真空度に到達した状態
で、電源16に通電し、坩堝15内の蒸発材料を加熱溶融さ
せ蒸発を行なわせる。このときガス導入系20より例えば
Arガスを蒸発面近傍に供給すると、蒸発原子が過冷却さ
れて微粒子が形成される。出来た微粒子は上昇途中で互
いに合体して初期粒径よりも大きな微粒子となるが、全
体としては非常に小さな微粒子が生成されるものであ
る。微粒子が生成された状態で経路遮断バルブ22を開放
するとともに、エゼクター本体25の駆動流流路33に駆動
流体供給装置27より駆動ガスが供給されると、ノズル34
から駆動ガスが噴流となって噴出する。2次流である微
粒子流はエゼクター本体25の2次流路26から混合室35に
吸い込まれ、駆動ガスの噴出によって混合室35に生ずる
負圧と駆動ガスの粘性とによって、駆動ガスと一緒にな
って平行部36にはいる。この混合室35と平行部36とで駆
動ガスと2次流とは完全に混合し、ディフューザ29によ
って圧力を高められて大気圧状態で基板24上に衝突さ
れ、微粒子膜37が形成される。この時基板24を移動搬送
することにより連続的に微粒子膜37を形成することが出
来る。
First, a path shut-off valve provided in the middle of the transfer pipe 21
With the 22 closed, the inside of the evaporation chamber 17 is evacuated by the vacuum pump 18. While the inside of the evaporation chamber 17 has reached a predetermined degree of vacuum, the power supply 16 is energized to heat and melt the evaporation material in the crucible 15 to evaporate. At this time, for example, the gas introduction system 20
When the Ar gas is supplied near the evaporation surface, the evaporated atoms are supercooled to form fine particles. The resulting fine particles are united with each other in the course of ascending to form fine particles larger than the initial particle size, but extremely small fine particles are generated as a whole. When the path shut-off valve 22 is opened in a state where the fine particles are generated, and the driving gas is supplied from the driving fluid supply device 27 to the driving flow path 33 of the ejector body 25, the nozzle 34
, The driving gas is jetted out as a jet. The fine particle flow, which is the secondary flow, is sucked into the mixing chamber 35 from the secondary flow path 26 of the ejector body 25, and is driven together with the driving gas by the negative pressure generated in the mixing chamber 35 by the ejection of the driving gas and the viscosity of the driving gas. And enter the parallel part 36. The driving gas and the secondary flow are completely mixed in the mixing chamber 35 and the parallel portion 36, and the pressure is increased by the diffuser 29 and collides with the substrate 24 under atmospheric pressure to form a fine particle film 37. At this time, the fine particle film 37 can be continuously formed by moving and transporting the substrate 24.

以上のように、本実施例によれば微粒子膜を形成する
蒸発材料を加熱溶融させて蒸発させて、不活性ガスの冷
却により微粒子を形成させ、その微粒子を不活性ガスと
共に搬送しそのまま基板に吹き付けて微粒子膜を製膜す
るものであるが、この時、微粒子を基板24に吹き付ける
際に製膜室23に設けられたエゼクター本体25の二次流路
部26に微粒子の搬送管21を接続し、駆動流を噴出させる
事により生じるいわゆるエゼクター効果を用いる事で、
微粒子搬送管21の圧力をより低圧にでき、ひいては蒸発
室17の圧力も低圧に出来るため蒸発室17での微粒子発生
量を多く取れ、製膜速度を上げることが出来るとともに
発生微粒子の粒径をも小さくできる。
As described above, according to this embodiment, the evaporation material that forms the fine particle film is heated and melted to evaporate, the fine particles are formed by cooling the inert gas, and the fine particles are transported together with the inert gas and directly transferred to the substrate. At this time, when the fine particles are sprayed on the substrate 24, the fine particle transport pipe 21 is connected to the secondary flow path portion 26 of the ejector body 25 provided in the film forming chamber 23. By using the so-called ejector effect caused by ejecting the driving flow,
Since the pressure of the fine particle transport pipe 21 can be made lower, and the pressure of the evaporating chamber 17 can also be made lower, the amount of fine particles generated in the evaporating chamber 17 can be increased, the film forming speed can be increased, and the particle size of the generated fine particles can be reduced. Can also be reduced.

また製膜基板24に微粒子を噴出するエゼクター本体25
のディフューザ部29では圧力が高められるため製膜部は
常圧とすることができる。それ故、装置として簡便にな
るだけでなく基板の取扱も容易になるといった効果を有
する。
Ejector body 25 that ejects fine particles to film forming substrate 24
Since the pressure is increased in the diffuser section 29, the film forming section can be at normal pressure. Therefore, there is an effect that not only the device becomes simple but also the handling of the substrate becomes easy.

また第3図には本発明の微粒子膜製造装置での各部の
圧力を曲線Bを用いて示している。比較のために従来の
微粒子膜製造装置での各部の圧力を曲線Aを用いて示し
ている。図より明らかなように本発明での蒸発室の圧力
は、従来例に比較して低真空状態とすることができ、さ
らに製膜室ではほぼ大気圧状態とすることができるもの
である。
FIG. 3 shows the pressure of each part in the apparatus for manufacturing a fine particle film according to the present invention using a curve B. For comparison, the pressure of each part in the conventional apparatus for manufacturing a fine particle film is shown using a curve A. As is clear from the drawing, the pressure of the evaporation chamber in the present invention can be set to a lower vacuum state as compared with the conventional example, and further, it can be set to almost the atmospheric pressure in the film forming chamber.

またエゼクターにおいては、駆動流体の重量流量/2次
流体の重量流量が大きければ大きいほど、エゼクター2
次流路部の圧力を低圧にすることができる。そこで本発
明ではエゼクターの駆動流体として蒸発室に導入される
ガスよりも比重の大きな流体を用い、さらに微粒子膜を
基板に製膜する際に基板との付着強度をもたらすような
バインダーを含む溶剤等とすると強固に製膜する事が出
来るし、またその有機物によって機能を持たすようにす
ることもできる。
In the ejector, the larger the weight flow rate of the driving fluid / the weight flow rate of the secondary fluid, the larger the ejector 2
The pressure in the next flow path can be reduced. Therefore, in the present invention, a fluid having a specific gravity larger than that of the gas introduced into the evaporation chamber is used as a driving fluid for the ejector, and a solvent containing a binder or the like which brings about an adhesion strength with the substrate when a fine particle film is formed on the substrate. Then, the film can be formed firmly, and the function can be provided by the organic substance.

なお、この実施例において蒸発手段として坩堝15を用
いて所定材料を加熱溶融する構成としているが、他の微
粒子発生手段例えば熱プラズマやレーザーのブレイクダ
ウン法等でも良いことは勿論であり、またエゼクター25
への駆動流体供給装置27は溶液などを供給するためのポ
ンプなどでも良いことも勿論である。
In this embodiment, the predetermined material is heated and melted by using the crucible 15 as the evaporating means. However, it is needless to say that other fine particle generating means such as a thermal plasma or laser breakdown method may be used. twenty five
It is needless to say that the drive fluid supply device 27 to the device may be a pump for supplying a solution or the like.

さらに製膜室23は基本的に大気圧近くにすることが可
能であるが、ガス置換のためやあるいは付着粒子の散乱
を防ぐといった目的で若干の真空にし、そのために真空
ポンプを設けても良い。
Further, the film forming chamber 23 can be basically made to be close to the atmospheric pressure, but a slight vacuum may be provided for gas replacement or for the purpose of preventing scattering of attached particles, and a vacuum pump may be provided for that purpose. .

発明の効果 以上説明したように、本発明によれば、微粒子をガス
に搬送させて基盤に衝突させ製膜する場合、蒸発室の圧
力をより低圧に出来るために蒸発量を多くできるととも
に微粒子サイズも小さくでき、さらに製膜室では大気圧
レベルの圧力状態とすることができるので、製膜室での
基板の取扱や装置が簡便になるなど、その実用的効果は
大きい。
Effect of the Invention As described above, according to the present invention, when fine particles are conveyed to a gas and collided with a substrate to form a film, the pressure in the evaporation chamber can be made lower, so that the amount of evaporation can be increased and the particle size can be increased. Further, since the pressure in the film forming chamber can be reduced to the atmospheric pressure level, the practical effect is large, for example, the handling of the substrate and the apparatus in the film forming chamber are simplified.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例における微粒子膜の製造装置の
構成図、第2図(a),(b)は本発明構成要素のエゼ
クター部の構成図ならびにその各部での圧力状態図、第
3図は本発明と従来の微粒子膜製造装置での各部の圧力
図、第4図は従来の微粒子膜製造装置の構成図である。 17……蒸発室、20……ガス導入系、21……搬送管、25…
…エゼクター、26……二次流路部、32……製膜室。
FIG. 1 is a configuration diagram of an apparatus for producing a fine particle film in an embodiment of the present invention, and FIGS. 2 (a) and 2 (b) are configuration diagrams of an ejector portion of the components of the present invention and a pressure state diagram of each portion thereof. FIG. 3 is a pressure diagram of each part in the present invention and a conventional fine particle membrane manufacturing apparatus, and FIG. 4 is a configuration diagram of a conventional fine particle membrane manufacturing apparatus. 17 …… Evaporation chamber, 20 …… Gas introduction system, 21 …… Transport pipe, 25…
... Ejector, 26 ... Secondary flow path, 32 ... Film forming chamber.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C23C 14/00 - 14/58 C23C 24/00 - 24/06──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C23C 14/00-14/58 C23C 24/00-24/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蒸発室内に蒸発用手段と、蒸発室に開口す
るガス導入系と、前記蒸発室上部に開口する搬送管と、
前記搬送管の端部を二次流路に接続したエゼクターと、
前記エゼクターのディフューザが基板に向けて開口した
製膜部を備え、前記エゼクターの駆動流体は前記蒸発室
に導入されるガスより比重の大きい流体であることを特
徴とする微粒子膜の製造装置。
An evaporating means in the evaporating chamber, a gas introduction system opening in the evaporating chamber, and a conveying pipe opening in the upper part of the evaporating chamber.
An ejector in which the end of the transfer pipe is connected to a secondary flow path,
An apparatus for manufacturing a fine particle film, wherein a diffuser of the ejector has a film forming part opened toward a substrate, and a driving fluid of the ejector is a fluid having a higher specific gravity than a gas introduced into the evaporation chamber.
【請求項2】前記エゼクターの駆動流体は微粒子を表面
被覆する有機系のバインダーを含む溶液であることを特
徴とする請求項1記載の微粒子膜の製造装置。
2. The apparatus according to claim 1, wherein the driving fluid for the ejector is a solution containing an organic binder for coating the surface of the fine particles.
JP1275281A 1989-10-23 1989-10-23 Fine particle film manufacturing equipment Expired - Fee Related JP2808734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1275281A JP2808734B2 (en) 1989-10-23 1989-10-23 Fine particle film manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1275281A JP2808734B2 (en) 1989-10-23 1989-10-23 Fine particle film manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH03138355A JPH03138355A (en) 1991-06-12
JP2808734B2 true JP2808734B2 (en) 1998-10-08

Family

ID=17553240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1275281A Expired - Fee Related JP2808734B2 (en) 1989-10-23 1989-10-23 Fine particle film manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2808734B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA87177C2 (en) * 2007-07-04 2009-06-25 Государственное Предприятие "Международный Центр Электронно-Лучевых Технологий Института Электросварки Им. Е.О.Патона Национальной Академии Наук Украины" method of producing nanoparticles for magnetic fluids by electron-beam evaporation and condensation in vacuum, method of producing magnetic liquid and magnetic liquid produced by said method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138632A (en) * 1984-07-31 1986-02-24 Res Dev Corp Of Japan Method and apparatus for producing ultrafine particle catalyst or ultrafine particle catalytic carrier
JPS61218813A (en) * 1985-05-30 1986-09-29 Canon Inc Minute particle flow control apparatus

Also Published As

Publication number Publication date
JPH03138355A (en) 1991-06-12

Similar Documents

Publication Publication Date Title
EP1200200B2 (en) Kinetic spray coating method and apparatus
US20160024633A1 (en) Cold Gas Dynamic Spray Apparatus, System and Method
KR101497811B1 (en) Deposition method
KR20060063639A (en) Vacuum cold spray process
JPH07166332A (en) Gas deposition device
US20130149471A1 (en) Apparatus and method for continuous powder coating
GB1601286A (en) Metal meltspraying method and equipment
JP2808734B2 (en) Fine particle film manufacturing equipment
JP2006198577A (en) Classification method of finely divided particle and film forming method
JP5207308B2 (en) Gas deposition apparatus and gas deposition method
KR100916944B1 (en) Continuous desposition apparatus and method of fixing solid powder on diverse substrates
JPH08199372A (en) Production of functionally gradient material and device therefor
KR101020042B1 (en) Deposition apparatus of solid powder with thermal shock control units ? Temperature control method for eliminating thermal shock in solid powder spray deposition
US7351450B2 (en) Correcting defective kinetically sprayed surfaces
JPH0230752A (en) Method and apparatus for forming hyperfine particles film
JP3141166B2 (en) Method of forming film by gas devolution method and apparatus for forming film
JP2019147995A (en) Film-attached member and method for producing the same
JP4633336B2 (en) Gas deposition apparatus and gas deposition method
JP3154213B2 (en) Method of forming fine particle film by gas deposition method and its forming apparatus
JP2000256876A (en) Gas deposition apparatus and method therefor
JP3812660B2 (en) Composite structure manufacturing method and composite structure manufacturing apparatus
US6555180B2 (en) System and method for direct fabrication of micro/macro scale objects in a vacuum using electromagnetic steering
JPS62155954A (en) Method for controlling fine particle flow
JPH0270058A (en) Stabilized superfine particle film forming device
JP2021161501A (en) Film deposition apparatus and manufacturing method of ceramic film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees