JP2806590B2 - Polymer liquid crystal compound and its intermediate epoxy compound - Google Patents

Polymer liquid crystal compound and its intermediate epoxy compound

Info

Publication number
JP2806590B2
JP2806590B2 JP2013694A JP1369490A JP2806590B2 JP 2806590 B2 JP2806590 B2 JP 2806590B2 JP 2013694 A JP2013694 A JP 2013694A JP 1369490 A JP1369490 A JP 1369490A JP 2806590 B2 JP2806590 B2 JP 2806590B2
Authority
JP
Japan
Prior art keywords
liquid crystal
polymer liquid
compound
ferroelectric
crystal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013694A
Other languages
Japanese (ja)
Other versions
JPH03220160A (en
Inventor
元久 井戸
憲次 橋本
俊治 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2013694A priority Critical patent/JP2806590B2/en
Publication of JPH03220160A publication Critical patent/JPH03220160A/en
Application granted granted Critical
Publication of JP2806590B2 publication Critical patent/JP2806590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)
  • Polyethers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高分子液晶化合物及びその中間体エポキシ
化合物に関し、詳しくは、光学活性化合物と混合するこ
とにより、室温を含む幅広い温度範囲で強誘電性を示す
とともに、製膜性、配向性及び外的因子に対する高速応
答性に優れた強誘電性高分子液晶組成物が得られる高分
子液晶化合物、及びその製造に用いられる中間体エポキ
シ化合物に関するものである。このような高分子液晶化
合物を用いて得られる強誘電性高分子液晶組成物は、オ
プトエレクトロニクス分野、特に電卓、時計などの表示
素子、電子光学シャッター、電子光学絞り、光変調器、
光通信光路切換スイッチ、メモリー、液晶プリンターヘ
ッド、焦点距離可変レンズなどの種々の電子光学デバイ
スとして有利に使用することができる。
Description: FIELD OF THE INVENTION The present invention relates to a polymer liquid crystal compound and an intermediate epoxy compound thereof. The present invention relates to a polymer liquid crystal compound capable of obtaining a ferroelectric polymer liquid crystal composition exhibiting dielectric properties and excellent in film forming property, orientation property, and high-speed response to external factors, and an intermediate epoxy compound used in the production thereof. Things. Ferroelectric polymer liquid crystal composition obtained using such a polymer liquid crystal compound, in the field of optoelectronics, especially calculators, display elements such as watches, electro-optical shutters, electro-optical diaphragms, optical modulators,
The present invention can be advantageously used as various electronic optical devices such as an optical communication optical path switch, a memory, a liquid crystal printer head, and a variable focal length lens.

〔従来の技術〕[Conventional technology]

従来、低分子液晶を用いた表示素子は、電卓、時計な
どのデジタル表示に広く使用されている。これらの利用
分野では、通常、従来の低分子液晶は間隔をミクロンオ
ーダーで制御した2枚のガラス基板の間にはさんで使用
されている。しかしながら、そのような間隙の調整は大
型画面及び曲面画面では実現が不可能であった。この難
点を解決する1つの手段として液晶を高分子化し、それ
自体を成形可能ならしめることが試みられている(J,Po
lym.Sci., Polym.Lett., Ed.13,243(1975)、Polym.
Bull.,,309(1982)、特開昭55−21479号公報、特開
昭61−137133号公報など)。
Conventionally, display devices using low-molecular liquid crystals have been widely used for digital displays such as calculators and watches. In these applications, the conventional low-molecular liquid crystal is usually used between two glass substrates whose spacing is controlled on the order of microns. However, such a gap adjustment cannot be realized on a large screen or a curved screen. One way to solve this difficulty is to polymerize the liquid crystal and make it moldable itself (J, Po
lym. Sci., Polym. Lett., Ed. 13 , 243 (1975), Polym.
Bull., 6 , 309 (1982), JP-A-55-21479, JP-A-61-137133, etc.).

しかしながら、これら従来の高分子液晶においては、
電解など外的因子の変化に対するその透過光量変化等の
応答速度が一般に遅く、未だ満足しうるものは得られて
いない。
However, in these conventional polymer liquid crystals,
The response speed of a change in the amount of transmitted light to a change in an external factor such as electrolysis is generally slow, and a satisfactory one has not yet been obtained.

また、前記公開公報に示されている高分子液晶は、高
分子自体は室温では液晶としての性質を示さず、ガラス
転移温度以上で透明化温度未満の温度範囲で加熱して液
晶化しなければならないなどという欠点を有している。
In addition, the polymer liquid crystal disclosed in the above publication does not exhibit the properties of a liquid crystal at room temperature, and the polymer itself must be converted into a liquid crystal by heating in a temperature range of a glass transition temperature or higher and lower than a transparency temperature. It has the drawback of such as.

さらに、高分子液晶組成物として、熱可塑性非晶質高
分子化合物と低分子液晶化合物とからなる液晶組成物
(特開昭61−47427号公報)、情報記録媒体としての高
分子液晶化合物と低分子液晶化合物及び高分子化合物か
らなる液晶組成物(特開昭59−10930号公報王)が提案
されているが、これらの高分子液晶組成物は、カイラル
スメクチックC相温度域が高いか、又は低くても温度域
が著しく狭く、しかも降温過程にしかカイラルスメクチ
ックC相が現れないという実用上使い難いものであっ
た。
Further, as a polymer liquid crystal composition, a liquid crystal composition comprising a thermoplastic amorphous polymer compound and a low-molecular liquid crystal compound (JP-A-61-47427), and a polymer liquid crystal compound as an information recording medium. A liquid crystal composition comprising a molecular liquid crystal compound and a polymer compound (JP-A-59-10930) has been proposed. These polymer liquid crystal compositions have a high chiral smectic C phase temperature range, or Even if the temperature is low, the temperature range is extremely narrow, and furthermore, the chiral smectic C phase appears only in the temperature decreasing process, which is practically difficult to use.

本出願人は、先に、上記の高分子液晶組成物の難点を
解消し、製膜性、配向性及び高速応答性に優れた強誘電
性高分子液晶組成物を得る手段として、強誘電性低分子
液晶化合物とスメクチックC相を有する側鎖型高分子液
晶化合物との混合を考案するとともに(特開昭64−6628
7号公報)、この混合に用いる高分子液晶の例も特開昭6
4−66287号公報の発明の詳細な説明の欄に開示した。し
かしながら、それらの高分子液晶を強誘電性低分子液晶
化合物と混合して調製された強誘電性高分子液晶組成物
においても、室温付近の外部電界に対する応対速度はミ
リ秒オーダーのものが多く、応答の高速性において十分
に満足しうるものではなかった。
The present applicant has previously solved the above-mentioned disadvantages of the polymer liquid crystal composition, and as a means for obtaining a ferroelectric polymer liquid crystal composition having excellent film-forming properties, alignment properties and high-speed response, ferroelectric In addition to devising a mixture of a low-molecular liquid crystal compound and a side-chain high-molecular liquid crystal compound having a smectic C phase, Japanese Patent Laid-Open Publication No.
No. 7) and an example of a polymer liquid crystal used for this mixing is also disclosed in
This is disclosed in the column of the detailed description of the invention in JP-A-4-66287. However, even in a ferroelectric polymer liquid crystal composition prepared by mixing such a polymer liquid crystal with a ferroelectric low-molecular liquid crystal compound, the response speed to an external electric field near room temperature is often on the order of milliseconds. The response speed was not satisfactory enough.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は、前記問題点を解消し、強誘電性低分子液晶
化合物あるいは非液晶性光学活性化合物といった光学活
性化合物との混合により、室温を含む広い温度範囲で強
誘電性を示し、製膜性、配向性に優れるのみならず、外
部電界に対する高速応答性において特に秀でた強誘電性
高分子液晶組成物が得られるような高分子液晶化合物、
及びその製造に用いらるれる中間体エポキシ化合物を提
供することを目的とするものである。
The present invention solves the above-mentioned problems, and exhibits ferroelectricity in a wide temperature range including room temperature by mixing with an optically active compound such as a ferroelectric low-molecular liquid crystal compound or a non-liquid crystalline optically active compound. , A polymer liquid crystal compound capable of obtaining a ferroelectric polymer liquid crystal composition which is not only excellent in orientation but also excellent in high-speed response to an external electric field,
And an intermediate epoxy compound used for the production thereof.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは前記課題を解決すべく鋭意検討を重ねた
結果、特開昭64−66287号公報に開示されたスメクチッ
クC相を有する側鎖型高分子液晶化合物の中でも、特定
の構造を有するポリエーテル系高分子液晶化合物が、そ
れを光学活性化合物と混合した場合、高速応答性のみな
らず強誘電性を示す温度範囲、製膜性及び配向性におい
ても特に優れた性能を示す強誘電性高分子液晶組成物が
得られることを見出し、本発明を完成するに至った。
The present inventors have conducted intensive studies to solve the above problems, and as a result, among the side chain type polymer liquid crystal compounds having a smectic C phase disclosed in JP-A-64-66287, having a specific structure. When a polyether-based polymer liquid crystal compound is mixed with an optically active compound, it exhibits not only high-speed response but also ferroelectricity in a temperature range showing ferroelectricity, and particularly excellent performance in film forming properties and orientation. They have found that a polymer liquid crystal composition can be obtained, and have completed the present invention.

すなわち、本発明は、下記一般式からなる繰り返し単
位を有し、スメクチックC相を有する高分子化合物を提
供するものである。
That is, the present invention provides a polymer compound having a repeating unit represented by the following general formula and having a smectic C phase.

(式中、pは6〜12の整数を表し、 Rは−Z(CH2qHを表し、 ただし、Zは単結合、−O−又は−COO−を表し、 qは4〜8の整数を表す。) さらに本発明は、上記高分子液晶化合物の製造に用い
られる下記一般式からなる構造を有する中間体エポキシ
化合物を提供する。
(Wherein, p represents an integer of 6 to 12, R represents -Z (CH 2) q H, however, Z is a single bond, represents -O- or -COO-, q is 4-8 Further, the present invention provides an intermediate epoxy compound having a structure represented by the following general formula, which is used for producing the polymer liquid crystal compound.

(式中、pは6〜12の整数を表し、 Rは−Z(CH2qHを表し、 ただし、Zは単結合、−O−又は−COO−を表し、 qは4〜8の整数を表す。) 本発明の高分子液晶化合物は、この中間体エポキシ化
合物を公知の方法で重合することにより得ることができ
る。
(Wherein, p represents an integer of 6 to 12, R represents -Z (CH 2) q H, however, Z is a single bond, represents -O- or -COO-, q is 4-8 The polymer liquid crystal compound of the present invention can be obtained by polymerizing the intermediate epoxy compound by a known method.

特開昭64−66287号公報の発明の詳細な説明の欄に
は、下記一般式で表されるポリエーテル系高分子液晶化
合物が使用できることが記載されているが、 (式中、kは1〜30の整数であり、 Xは−O−(酸素)又は−COO−であり、 Yは−A(CH2mH又は−ACNであり、ここでAはは単結
合、−O−又は−COO−であり、mは0〜10の整数であ
る。) 本発明の高分子液晶化合物を実際に用いた具体例につい
ては記載がない。本発明の化合物を使用することによ
り、下記に示される如き優れた効果が得られることが見
出された。
Japanese Patent Application Laid-Open No. Sho 66-66287 describes in the column of the detailed description of the invention that a polyether polymer liquid crystal compound represented by the following general formula can be used. (Where k is an integer of 1 to 30, X is -O- (oxygen) or -COO-, Y is -A (CH 2) a m H or-ACN, wherein A mother single bond, -O- or -COO- in and, m is an integer of 0. There is no description about specific examples in which the polymer liquid crystal compound of the present invention was actually used. It has been found that by using the compound of the present invention, the following excellent effects can be obtained.

本発明の高分子液晶化合物において上記式(III)の
スペーサーのポリメチレン基の長さ(k)に相当する数
(p)は6〜12の整数である。pが6より短いと、高分
子液晶化合物のネマチック相の温度範囲が広くなり、ス
メクチックC相を発現しないことが多く、一方pが12よ
り長いと、スメクチックA相の温度範囲が広くなり、や
はりスメクチックC相を発現しないとことが多くなるこ
とが見出された。従って、pを6〜12に限定することに
より、スメクチックC相を安定して発現する高分子液晶
化合物を得ることができる。
In the polymer liquid crystal compound of the present invention, the number (p) corresponding to the length (k) of the polymethylene group of the spacer of the above formula (III) is an integer of 6 to 12. When p is shorter than 6, the temperature range of the nematic phase of the polymer liquid crystal compound is widened, and the smectic C phase is not often expressed. On the other hand, when p is longer than 12, the temperature range of the smectic A phase is widened. It has been found that the absence of the smectic C phase often increases. Therefore, by limiting p to 6 to 12, a polymer liquid crystal compound stably expressing a smectic C phase can be obtained.

上記式(III)のスペーサーと剛直な部分R1を結合し
ているXは−O−又は−COO−であるが、Xが−COO−で
ある場合には−O−であるときに比べて、得られる強誘
電性高分子液晶組成物の自発分極は大きくなるものの、
粘性も大きくなってしまい、応答速度があまり速くなら
ないことが多い。Xに相当する基が−O−に限定されて
いる本発明の高分子液晶化合物を用いた場合、得られる
強誘電性液晶組成物は高速応答性に優れたものとなる。
X bonding the spacer of the above formula (III) and the rigid portion R 1 is —O— or —COO—, but when X is —COO—, it is less than when it is —O—. Although the spontaneous polarization of the obtained ferroelectric polymer liquid crystal composition is increased,
The viscosity also increases, and the response speed often does not increase very fast. When the polymer liquid crystal compound of the present invention in which the group corresponding to X is limited to -O-, the obtained ferroelectric liquid crystal composition has excellent high-speed response.

本発明の高分子液晶化合物においては、側鎖メソゲン
基の剛直な部分が に限定されている。剛直な部分が である高分子液晶化合物は、スメクチックC相の温度範
囲が若干狭く、またそれを用いて得られる強誘電性高分
子液晶組成物の自発分極も小さくなることが見出され、
剛直な部分が である高分子液晶化合物は、化学的な安定性に欠ける。
また、剛直な部分が 又は である高分子液晶化合物は、スメクチックC相を安定し
て発現するものの、液晶状態を示す温度範囲が高く、室
温付近ではガラス状態となってしまうことが多い。本発
明の高分子液晶化合物においては、側鎖メソゲン基の剛
直な部分が に限定されているため、室温を含む広い温度範囲でスメ
クチックC相が安定して発現される。
In the polymer liquid crystal compound of the present invention, the rigid portion of the side chain mesogen group has Is limited to The rigid part Is found that the temperature range of the smectic C phase is slightly narrower, and the spontaneous polarization of the ferroelectric polymer liquid crystal composition obtained using the same is also smaller,
The rigid part Is lacking in chemical stability.
Also, the rigid part Or Although the polymer liquid crystal compound described above stably expresses the smectic C phase, it has a high temperature range showing a liquid crystal state, and often becomes a glass state near room temperature. In the polymer liquid crystal compound of the present invention, the rigid portion of the side chain mesogen group has Therefore, the smectic C phase is stably expressed in a wide temperature range including room temperature.

本発明の高分子液晶化合物においては、側鎖メソゲン
基の末端基が−Z(CH2qHに限定されている。−Z(C
H2qH は−ACN と比較して、スメクチックC相を安定
して発現しやすい。−ACNの場合は、ネマチック温度範
囲が広くなり、スメクチックC相を発現しないことが多
く、また、分子長軸方向の誘電率が大きいため、電界を
かけた時、電極に対して分子が垂直に立ってしまいやす
い。
In the polymer liquid crystal compound of the present invention, the terminal groups of the side chain mesogen group is limited to -Z (CH 2) q H. −Z (C
H 2 ) q H is more likely to stably express the smectic C phase than -ACN. In the case of -ACN, the nematic temperature range is wide and the smectic C phase is not often exhibited, and since the dielectric constant in the long axis direction of the molecule is large, the molecules are perpendicular to the electrode when an electric field is applied. Easy to stand.

Zは単結合、−O−又は−COO−である。この3種の結
合基は、−COO−>−O−>単結合の順で高分子液晶化
合物にスメクチックC相を安定に発現させ、あるいはそ
れを用いて得られる強誘電性高分子液晶組成物に大きな
自発分極をもたらす。しかしながら、やはりこの順で粘
性が大きくなってしまうこともあるため、その優劣は一
概には規定できず、また、末端アルキル鎖の長さ(q)
との兼ね合いも考慮しなければならない。本発明におけ
る末端アルキル鎖の長さ(q)は4〜8である。qが4
より短い高分子液晶化合物では、ネマチック相温度範囲
が広く、スメクチックC相を発現しないことが多く、一
方8より長いと、スメクチックA相温度範囲が広く、や
はりスメクチックC相を発現しないことが多いことが見
出された。従って、qを4〜8に限定した本発明の高分
子液晶化合物は、スメクチックC相を安定して発現する
ことができる。
Z is a single bond, -O- or -COO-. These three types of bonding groups are used to stably develop a smectic C phase in the polymer liquid crystal compound in the order of -COO->-O-> single bond, or a ferroelectric polymer liquid crystal composition obtained using the same. Causes a large spontaneous polarization. However, since the viscosity may increase in this order, the superiority and the inferiority cannot be unequivocally defined, and the length of the terminal alkyl chain (q)
You must also consider the implications. The length (q) of the terminal alkyl chain in the present invention is 4 to 8. q is 4
Shorter polymer liquid crystal compounds often have a wider nematic phase temperature range and do not exhibit a smectic C phase, while longer than 8 have a wider smectic A phase temperature range and often do not exhibit a smectic C phase. Was found. Therefore, the polymer liquid crystal compound of the present invention in which q is limited to 4 to 8 can stably exhibit a smectic C phase.

本発明の高分子液晶化合物の数平均分子量は、好まし
くは1,000〜20,000である。1,000より小さいと、これを
用いて調製される強誘電性高分子液晶組成物の製膜性が
悪くなることがあり、また、20,000より大きいと、応答
速度が遅くなることがある。
The number average molecular weight of the polymer liquid crystal compound of the present invention is preferably from 1,000 to 20,000. If it is less than 1,000, the film forming property of the ferroelectric polymer liquid crystal composition prepared using the same may be poor, and if it is more than 20,000, the response speed may be slow.

以下に、本発明の高分子液晶化合物の一般的な合成方
法を示す。
Hereinafter, a general method for synthesizing the polymer liquid crystal compound of the present invention will be described.

上記反応式で示される如く、4−アルケニルオキシ安
息香酸をクロロホルム等の適当な溶媒中で、溶媒量の
ピリジンの存在下、塩化チオニル等のハロゲン化剤でハ
ロゲン化し、酸ハライドを合成する。得られた酸ハラ
イドを、テトラヒドロフラン(THF)等の溶媒中でフ
ェノール誘導体と反応させてエステル化し、化合物
を合成する。得られた化合物をジクロロメタン等の溶
媒中で、m−クロロ過安息香酸(mCPBA)等の過酸でエ
ポキシ化し、本発明の中間体エポキシ化合物を合成す
る。
As shown in the above reaction formula, 4-alkenyloxybenzoic acid is halogenated with a halogenating agent such as thionyl chloride in a suitable solvent such as chloroform in the presence of a solvent amount of pyridine to synthesize an acid halide. The obtained acid halide is reacted with a phenol derivative in a solvent such as tetrahydrofuran (THF) and esterified to synthesize a compound. The obtained compound is epoxidized with a peracid such as m-chloroperbenzoic acid (mCPBA) in a solvent such as dichloromethane to synthesize an intermediate epoxy compound of the present invention.

上記の合成法において用いられる4−アルケニルオキ
シ安息香酸は、具体的には、4−(7−オクテニルオ
キシ)安息香酸、4−(8−ノネニルオキシ)安息香
酸、4−(9−デセニルオキシ)安息香酸、4−(10−
ウンデセニルオキシ)安息香酸、4−(11−ドデセニル
オキシ)安息香酸、4−(12−トリデセニルオキシ)安
息香酸及び4−(13−テトラデセニルオキシ)安息香酸
である。また、上記合成法において用いられるフェノー
ル誘導体は、具体的には、4−n−ブチルフェノー
ル、4−n−ペンチルフェノール、4−n−ヘキシルフ
ェノール、4−n−ヘプチルフェノール、4−n−オク
チルフェノール、4−n−ブチルオキシフェノール、4
−n−ペンチルオキシフェノール、4−n−ヘキシルオ
キシフェノール、4−n−ヘプチルオキシフェノール、
4−n−オクチルオキシフェノール、4−ヒドロキシ安
息香酸n−ブチルエステル、4−ヒドロキシ安息香酸n
−ペンチルエステル、4−ヒドロキシ安息香酸n−ヘキ
シルエステル、4−ヒドロキシ安息香酸n−ヘプチルエ
ステル及び4−ヒドロキシ安息香酸n−オクチルエステ
ルである。
The 4-alkenyloxybenzoic acid used in the above synthesis method is specifically 4- (7-octenyloxy) benzoic acid, 4- (8-nonenyloxy) benzoic acid, 4- (9-decenyloxy) benzoic acid Acid, 4- (10-
Undecenyloxy) benzoic acid, 4- (11-dodecenyloxy) benzoic acid, 4- (12-tridecenyloxy) benzoic acid and 4- (13-tetradecenyloxy) benzoic acid. The phenol derivative used in the above synthesis method is, specifically, 4-n-butylphenol, 4-n-pentylphenol, 4-n-hexylphenol, 4-n-heptylphenol, 4-n-octylphenol, 4-n-butyloxyphenol, 4
-N-pentyloxyphenol, 4-n-hexyloxyphenol, 4-n-heptyloxyphenol,
4-n-octyloxyphenol, 4-hydroxybenzoic acid n-butyl ester, 4-hydroxybenzoic acid n
-Pentyl ester, 4-hydroxybenzoic acid n-hexyl ester, 4-hydroxybenzoic acid n-heptyl ester and 4-hydroxybenzoic acid n-octyl ester.

次に、このようにして得られたエポキシ化合物を塩化
合第二スズなどの触媒を用いてジクロロメタン等の溶媒
中でカチオン重合させ、本発明の高分子液晶化合物を
合成する。エポキシ化合物のカチオン重合用触媒とし
ては、塩化第二スズの他、三フッ化ホウ素、塩化アルミ
ニウム、四塩化チタン等のルイス酸、硫酸、リン酸、過
塩素酸等のプロトン酸、三フッ過ホウ素エーテラートな
どを用いることができる。
Next, the epoxy compound thus obtained is cationically polymerized in a solvent such as dichloromethane using a catalyst such as stannic chloride to synthesize a polymer liquid crystal compound of the present invention. Catalysts for cationic polymerization of epoxy compounds include stannic chloride, Lewis acids such as boron trifluoride, aluminum chloride and titanium tetrachloride, protic acids such as sulfuric acid, phosphoric acid and perchloric acid, and boron trifluoride. Etherate and the like can be used.

重合方法としては、上記の溶液重合方式が好ましい
が、塊状重合、スラリー重合など種々の方式を用いるこ
とができる。
As the polymerization method, the above-described solution polymerization method is preferable, but various methods such as bulk polymerization and slurry polymerization can be used.

重合温度は、触媒の種類に依存し、一様ではないが、
通常、0〜30℃が適当である。
The polymerization temperature depends on the type of catalyst and is not uniform,
Usually, 0 to 30 ° C is appropriate.

重合時間は重合温度など他の要因によって異なるが、
通常、数時間〜6日間である。
The polymerization time depends on other factors such as polymerization temperature,
Usually, it is several hours to 6 days.

分子量の調節は、公知の分子量調節剤の添加あるいは
モノマーに対する触媒の濃度の調節によって行うことが
できる。
The molecular weight can be adjusted by adding a known molecular weight modifier or adjusting the concentration of the catalyst with respect to the monomer.

また、重合反応及び前記エポキシ化の反応において
は、必須ではないが、アルゴン、窒素等の不活性ガスで
系を置換して行うことが好ましい。
In addition, in the polymerization reaction and the epoxidation reaction, it is preferable, but not essential, that the system be replaced with an inert gas such as argon or nitrogen.

本発明の高分子液晶化合物は光学活性低分子化合物の
添加により、強誘電性高分子液晶組成物として用いるこ
とができる。その際、本発明の高分子化合物は、1種単
独で使用してもよく、また複数を適宜併用することもで
きる。
The polymer liquid crystal compound of the present invention can be used as a ferroelectric polymer liquid crystal composition by adding an optically active low molecular compound. In this case, the polymer compound of the present invention may be used alone or in combination of two or more.

強誘電性高分子液晶組成物の調製に用いられる光学活
性低分子化合物としては、液晶性を有するもののみなら
ず、非液晶性のものも用いることができる。
As the optically active low molecular compound used for preparing the ferroelectric polymer liquid crystal composition, not only a compound having a liquid crystal property but also a non-liquid crystal compound can be used.

非液晶性の光学活性低分子化合物と本発明の高分子液
晶化合物とを混合して強誘電性高分子液晶組成物を調製
する場合には、強誘電性高分子液晶組成物中の光学活性
低分子化合物の含有量を30モル%以下、好ましくは10〜
20モル%とすることが望ましい。非液晶性の光学活性低
分子化合物の量が30モル%より多いと、組成物中に相分
離が起こることがある。
When a ferroelectric polymer liquid crystal composition is prepared by mixing a non-liquid crystalline optically active low molecular compound with the polymer liquid crystal compound of the present invention, the optical activity of the ferroelectric polymer liquid crystal composition is reduced. The content of the molecular compound is 30 mol% or less, preferably 10 to
It is desirable to set it to 20 mol%. If the amount of the non-liquid crystalline optically active low molecular compound is more than 30 mol%, phase separation may occur in the composition.

また、液晶性の光学活性低分子化合物と本発明の高分
子液晶化合物とを混合して強誘電性高分子液晶組成物を
調製する場合には、強誘電性高分子液晶組成物中の光学
活性低分子化合物の含有量を95モル%以下、好ましくは
10〜90モル%とすることが望ましい。光学活性低分子化
合物の量が95モル%より多いと、組成物の配向性、製膜
性が大きく低下することがある。
In addition, when a ferroelectric polymer liquid crystal composition is prepared by mixing a liquid crystal optically active low molecular compound with the polymer liquid crystal compound of the present invention, the optical activity in the ferroelectric polymer liquid crystal composition is reduced. The content of the low molecular weight compound is 95 mol% or less, preferably
It is desirable to set it to 10 to 90 mol%. When the amount of the optically active low-molecular compound is more than 95 mol%, the orientation and the film-forming property of the composition may be significantly reduced.

強誘電性液晶組成物の調製において本発明の高分子液
晶化合物と混合する液晶性の光学活性低分子化合物とし
ては、種々の公知光学活性低分子化合物を用いることが
でき、例えば、シッフ塩基系の強誘電性低分子液晶化合
物、アゾ系及びアゾキシ系強誘電性低分子液晶化合物、
ビフェニル系及びアロマティックスエステル系強誘電性
低分子液晶化合物、ビフェニル系及びアロマティックス
エステル系強誘電性低分子液晶化合物にハロゲン、シア
ノ基等の環置換基を導入したもの、並びに複素環を有す
る強誘電性低分子液晶化合物を挙げることができる。こ
れら液晶性の光学活性低分子化合物の代表的な例を以下
に示す。
As the liquid crystalline optically active low molecular weight compound to be mixed with the polymer liquid crystal compound of the present invention in the preparation of the ferroelectric liquid crystal composition, various known optically active low molecular weight compounds can be used. Ferroelectric low-molecular liquid crystal compounds, azo and azoxy ferroelectric low-molecular liquid crystal compounds,
Biphenyl-based and aromatics-based ferroelectric low-molecular liquid crystal compounds, biphenyl-based and aromatics-ester ferroelectric low-molecular-weight liquid crystal compounds having a ring substituent such as halogen, cyano group, etc., and a heterocyclic ring. Ferroelectric low-molecular liquid crystal compounds. Representative examples of these liquid crystalline optically active low molecular compounds are shown below.

シッフ塩基系強誘電性低分子液晶化合物 アゾ系及びアゾキシ系強誘電性低分子液晶化合物 ビフェニル系及びアロマティックスエステル系強誘電性
低分子液晶化合物 ハロゲン、シアノ基等の環置換基を導入した強誘電性低
分子液晶化合物 複素環を有する強誘電性低分子液晶化合物 強誘電性液晶組成物の調製において本発明の高分子液
晶化合物と混合する非液晶性の光学活性低分子化合物と
しては、種々の公知の光学活性低分子化合物を用いるこ
とができ、なかでも好適な代表例として下記の化合物を
挙げることができる。
Schiff base ferroelectric low-molecular liquid crystal compounds Azo-based and azoxy-based ferroelectric low-molecular liquid crystal compounds Biphenyl-based and aromatics-based ferroelectric low-molecular liquid crystal compounds Ferroelectric low molecular weight liquid crystal compounds with ring substituents such as halogen and cyano groups Ferroelectric low-molecular liquid crystal compound having heterocycle As the non-liquid crystalline optically active low molecular weight compound to be mixed with the polymer liquid crystal compound of the present invention in the preparation of the ferroelectric liquid crystal composition, various known optically active low molecular weight compounds can be used. Representative examples include the following compounds.

なお、これらの光学活性低分子化合物を本発明の高分
子液晶化合物と混合して強誘電性高分子液晶組成物を調
製するにあたっては、これらの光学活性低分子化合物は
1種単独で使用することもでき、また複数を適宜併用す
ることもできる。
In preparing the ferroelectric polymer liquid crystal composition by mixing these optically active low molecular weight compounds with the polymer liquid crystal compound of the present invention, these optically active low molecular weight compounds may be used alone. And a plurality of them can be used in combination as appropriate.

このようにして本発明の高分子液晶化合物と光学活性
低分子化合物とを配合して得られる強誘電性高分子液晶
組成物は、公知の製膜法、例えばキャスティング法、T
ダイ法、インフレーション法、カレンダー法、延伸法な
どによってフィルムに成形して用いることができる。フ
ィルム状の高分子液晶組成物は、2枚の通常のガラス基
板はもとより、大型のガラス基板、曲面状のガラス基
板、ポリエステルフィルムなど可撓性の基板の間に通常
の導電膜を介してはさんで液晶ディスプレー、電子光学
シャッター、電子光学絞りなどの種々のオプトエレクト
ロニクスの分野に利用することができる。また、適当な
溶媒に溶解した高分子液晶組成物の溶液を基板面に塗布
し、溶媒を蒸発させることによって、直接基板面上に密
着した状態でフィルム化することもできる。
The ferroelectric polymer liquid crystal composition obtained by blending the polymer liquid crystal compound of the present invention and the optically active low molecular compound in this manner can be prepared by a known film forming method such as a casting method,
It can be formed into a film by a die method, an inflation method, a calender method, a stretching method, or the like, and used. The polymer liquid crystal composition in the form of a film is formed not only from two ordinary glass substrates but also from a large-sized glass substrate, a curved glass substrate, and a flexible substrate such as a polyester film via an ordinary conductive film. It can be used in various optoelectronics fields such as liquid crystal displays, electro-optical shutters, and electro-optical diaphragms. Alternatively, by applying a solution of the polymer liquid crystal composition dissolved in an appropriate solvent to the substrate surface and evaporating the solvent, a film can be formed in a state of being directly adhered to the substrate surface.

このようにして製膜された強誘電性高分子液晶組成物
のフィルムの配合に好適な方法としては、力学的配向法
が好ましく、特に好ましくは延伸配合法、ロールを用い
てフィルムに曲げ変形による剪断応力を与えて配向する
曲げ配向法などがある。
As a method suitable for compounding the film of the ferroelectric polymer liquid crystal composition formed as described above, a mechanical alignment method is preferable, and a stretching compounding method is particularly preferable. There is a bending orientation method in which shear stress is applied to orientate.

延伸配向法としては、プラスチックフィルムの延伸に
通常用いられる方法、例えば一軸延伸法、二軸延伸法、
プレス延伸法、及びインフレーション延伸法等が挙げら
れる。これらの方法のうち一軸延伸法が好適に用いられ
る。延伸率は通常30〜1000%、好ましくは50〜600%で
ある。延伸率が30%未満だと液晶の配向度が低く、良好
なコントラスト比が得られない。また、1000%を超える
と、連続性のある膜が得られない。
As the stretching orientation method, a method usually used for stretching a plastic film, for example, a uniaxial stretching method, a biaxial stretching method,
A press stretching method, an inflation stretching method, and the like can be given. Among these methods, the uniaxial stretching method is preferably used. The stretching ratio is usually 30 to 1000%, preferably 50 to 600%. If the stretching ratio is less than 30%, the degree of orientation of the liquid crystal is low, and a good contrast ratio cannot be obtained. If it exceeds 1000%, a continuous film cannot be obtained.

高分子液晶組成物の配向処理は、高分子液晶組成物単
独で行ってもよいし、又は2枚の可撓性プラスチックフ
ィルムで挟んで行ってもよい。また、透明基板に高分子
液晶組成物を挾持した状態でプレスすることにより配合
することもできる。
The alignment treatment of the polymer liquid crystal composition may be performed by the polymer liquid crystal composition alone, or may be performed by sandwiching between two flexible plastic films. Further, it can also be compounded by pressing with the polymer liquid crystal composition sandwiched between transparent substrates.

高分子液晶組成物のフィルムの両面に位置する2枚の
導電膜のうち、少なくとも1枚は透明導電膜とする。透
明導電膜としては、酸化スズを被着させたNESA膜、酸化
スズと酸化インジウムよりなるITO膜等を用いることが
できる。そして、この透明導電膜は、ガラス、プラスチ
ック(ポリメチルメタクリレート、ポリカーボネート、
ポリエーテルスルフォン樹脂等)の透明基板の内側に設
けることが好ましい。高分子液晶組成物を表示素子とし
て用いる場合は、透明基板の外側に偏光板や反射板を設
けることが好ましい。
At least one of the two conductive films located on both surfaces of the polymer liquid crystal composition film is a transparent conductive film. As the transparent conductive film, a NESA film on which tin oxide is adhered, an ITO film made of tin oxide and indium oxide, or the like can be used. And this transparent conductive film is made of glass, plastic (polymethyl methacrylate, polycarbonate,
It is preferably provided inside a transparent substrate such as a polyethersulfone resin. When the polymer liquid crystal composition is used as a display element, it is preferable to provide a polarizing plate or a reflector outside the transparent substrate.

透明導電膜を使用しない場合に用いられる不透明な導
電膜としては、アルミ、金の蒸着膜、スパッタリング膜
等が挙げられる。
Examples of the opaque conductive film used when a transparent conductive film is not used include a deposited film of aluminum and gold, a sputtering film, and the like.

なお、強誘電性高分子液晶組成物を調製するにあたっ
ては、本発明の高分子液晶化合物と光学活性化合物の他
に、他のポリマー、安定剤、可塑剤などを含めた種々の
無機、有機及び金属類等の添加剤の添加など、当業界に
おいてよく知られている処理方法により、改善すること
ができる。
In addition, in preparing the ferroelectric polymer liquid crystal composition, in addition to the polymer liquid crystal compound of the present invention and the optically active compound, other polymers, stabilizers, various inorganics, including plasticizers, and organic and organic compounds. This can be improved by treatment methods well known in the art, such as the addition of additives such as metals.

〔実施例〕〔Example〕

次に実施例により本発明をさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。
Next, the present invention will be described in more detail with reference to Examples.
The present invention is not limited in any way by these examples.

なお、得られたエポキシ化合物の構造は、1H−NMR及
び元素分析により確認し、得られた高分子液晶化合物の
構造は1H−NMRにより確認した。また、相転移温度の測
定及び相の確認は、それぞれDSC及び偏光顕微鏡により
行った。
The structure of the obtained epoxy compound was confirmed by 1 H-NMR and elemental analysis, and the structure of the obtained polymer liquid crystal compound was confirmed by 1 H-NMR. The measurement of the phase transition temperature and the confirmation of the phase were performed using a DSC and a polarizing microscope, respectively.

相状態は、次の略号を用いて示した。(glass:ガラス
状態、Cry:結晶状態、SmX:未同定の高次のスメクチック
相、SmC:スメクチックC相、SmC:カイラルスメクチ
ックC相、SmA:スメクチックA相、N:ネマチック相、Is
o:等方相)また、相転移挙動を表す式において、数字は
相変化温度を℃で表したものである。
The phase states are indicated using the following abbreviations. (Glass: glassy state, Cry: crystalline state, SmX: unidentified higher-order smectic phase, SmC: smectic C phase, SmC * : chiral smectic C phase, SmA: smectic A phase, N: nematic phase, Is
o: Isotropic phase) Further, in the expression representing the phase transition behavior, the numbers represent the phase change temperature in ° C.

実施例1 高分子液晶化合物の合成 下記式で表される繰り返し単位を有する高分子液晶化
合物を合成した。
Example 1 Synthesis of Polymer Liquid Crystal Compound A polymer liquid crystal compound having a repeating unit represented by the following formula was synthesized.

4(9−デセニルオキシ)安息香酸10ミリモル(2.76
g)のクロロホルム(CHCl3)20ml溶液に、塩化チオニル
20ミリモル(2.38g)と数滴のピリジンを加えた。得ら
れた混合物を2時間加熱還流した後、溶媒及び過剰な塩
化チオニルを留去した。残った油状物質をテトラヒドロ
フラン10mlに溶解させ、4−ヒドロキシ安息香酸n−ブ
チルエステル10ミリモル(1.94g)とトリエチルアミン1
0ミリモル(1.01g)が溶解しているテトラヒドロフラン
20ml溶液に滴下し、室温で6時間撹拌した。得られた反
応溶液から溶媒を留去した後、エーテル抽出し、抽出液
を希塩酸水溶液で洗浄した。エーテル層を硫酸マグネシ
ウムで乾燥した後、エーテルを留去し、残渣をメタノー
ルから再結晶することにより、目的とするフェニルベン
ゾエート誘導体3.85gを得た。
4 (9-decenyloxy) benzoic acid 10 mmol (2.76
g) in 20 ml of chloroform (CHCl 3 )
20 mmol (2.38 g) and a few drops of pyridine were added. After the resulting mixture was refluxed for 2 hours, the solvent and excess thionyl chloride were distilled off. The remaining oil was dissolved in 10 ml of tetrahydrofuran, and 10 mmol (1.94 g) of 4-hydroxybenzoic acid n-butyl ester and triethylamine 1
0 mmol (1.01 g) dissolved in tetrahydrofuran
The solution was added dropwise to a 20 ml solution and stirred at room temperature for 6 hours. After the solvent was distilled off from the obtained reaction solution, the mixture was extracted with ether, and the extract was washed with a dilute hydrochloric acid aqueous solution. After the ether layer was dried over magnesium sulfate, the ether was distilled off, and the residue was recrystallized from methanol to obtain 3.85 g of the desired phenylbenzoate derivative.

(収率 85%) 得られたフェニルベンゾエート誘導体の1H−NMRの測
定結果を以下に示す。1 H−NMR(CDCl3) 8.10(d,4H)、7.25(d,2H)、 6.95(d,2H)、 6.20〜5.30(m,1H)、 5.15〜4.80(m,2H)、 4.30(t,2H)、4.00(t,2H)、 2.30〜0.80(m,21H) 1.(1)で得られたフェニルベンゾエート誘導体10ミ
リモル(4.53g)のジクロロメタン20ml溶液に、m−ク
ロロ過安息香酸15ミリモル(2.59g)を加え、室温で5
時間反応させた。反応混合物を一晩放置した後、炭酸カ
リウム30ミリモル(4.15g)が溶解している水溶液で洗
浄し、更に、シクロロメタン層を硫酸マグネシウムで乾
燥した。乾燥したジクロロメタン層から溶媒を留去し、
残渣をメタノールから再結晶することにより、目的とす
るエポキシ化合物4.12gを得た。
(Yield: 85%) The measurement results of 1 H-NMR of the obtained phenylbenzoate derivative are shown below. 1 H-NMR (CDCl 3) 8.10 (d, 4H), 7.25 (d, 2H), 6.95 (d, 2H), 6.20~5.30 (m, 1H), 5.15~4.80 (m, 2H), 4.30 (t , 2H), 4.00 (t, 2H), 2.30-0.80 (m, 21H) 1. To a solution of 10 mmol (4.53 g) of the phenylbenzoate derivative obtained in (1) in 20 ml of dichloromethane was added 15 mmol (2.59 g) of m-chloroperbenzoic acid, and the solution was added at room temperature.
Allowed to react for hours. After allowing the reaction mixture to stand overnight, it was washed with an aqueous solution in which 30 mmol (4.15 g) of potassium carbonate was dissolved, and the cyclomethane layer was dried over magnesium sulfate. The solvent is distilled off from the dried dichloromethane layer,
The residue was recrystallized from methanol to obtain 4.12 g of the desired epoxy compound.

(収率 88%) 得られたエポキシ化合物の1H−NMRの測定結果及び元
素分析の結果を以下に示す。1 H−NMR(CDCl3) 8.06(d,4H)、7.25(d,2H)、 6.92(d,2H)、4.30(t,2H)、 4.00(t,2H)、 3.00〜2.32(m,3H)、 2.10〜0.80(m,21H) 1.(2)で得られたエポキシ化合物5ミリモル(2.34
g)のジクロロメタン25ml溶液に、アルゴンガス雰囲気
下、塩化第二スズ0.25ミリモル(0.029ml)を滴下し、
室温で5日間反応させた。反応終了後、反応溶液から溶
媒を留去し、残渣をカラムクロマトグラフィー(シリカ
ゲル充填、酢酸エチル/n−ヘキサン 20〜50%展開)に
より精製し、目的とする高分子液晶化合物1.62gを得
た。(転化率 69%) 得られた高分子液晶化合物の相転移挙動及び数平均分
子量を第1表に示し、1H−NMR測定結果を以下に示す。1 H−NMR(CDCl3) 8.07(d,4H)、7.21(d,2H)、 6.87(d,2H)、4.28(t,2H)、 3.92(t,2H)、 3.25〜3.80(m,3H)、 2.05〜0.75(m,21H) 実施例2 高分子液晶化合物の合成 下記式で表される繰り返し単位を有する高分子液晶化
合物を合成した。
(Yield: 88%) The measurement results of 1 H-NMR and the results of elemental analysis of the obtained epoxy compound are shown below. 1 H-NMR (CDCl 3) 8.06 (d, 4H), 7.25 (d, 2H), 6.92 (d, 2H), 4.30 (t, 2H), 4.00 (t, 2H), 3.00~2.32 (m, 3H ), 2.10-0.80 (m, 21H) 1. 5 mmol (2.34) of the epoxy compound obtained in (2)
g) in a dichloromethane (25 ml) solution was added dropwise with stannic chloride (0.25 mmol, 0.029 ml) under an argon gas atmosphere.
The reaction was performed at room temperature for 5 days. After the completion of the reaction, the solvent was distilled off from the reaction solution, and the residue was purified by column chromatography (filled with silica gel, developing with ethyl acetate / n-hexane 20 to 50%) to obtain 1.62 g of the target polymer liquid crystal compound. . (Conversion rate: 69%) The phase transition behavior and the number average molecular weight of the obtained polymer liquid crystal compound are shown in Table 1 , and the 1 H-NMR measurement results are shown below. 1 H-NMR (CDCl 3) 8.07 (d, 4H), 7.21 (d, 2H), 6.87 (d, 2H), 4.28 (t, 2H), 3.92 (t, 2H), 3.25~3.80 (m, 3H ), 2.05 to 0.75 (m, 21H) Example 2 Synthesis of Polymer Liquid Crystal Compound A polymer liquid crystal compound having a repeating unit represented by the following formula was synthesized.

実施例1.(1)において、4−ヒドロキシ安息香酸n
−ブチルエステルの代わりに4−ヒドロキシ安息香酸n
−ヘキシルエステルを用い、実施例1.(1)及び(2)
と同様の操作を行うことにより、上記式で表されるエポ
キシ化合物を得た。
Example 1. In (1), 4-hydroxybenzoic acid n
4-hydroxybenzoic acid instead of -butyl ester
Example 1 (1) and (2) using hexyl ester
By performing the same operation as in the above, an epoxy compound represented by the above formula was obtained.

得られたエポキシ化合物の1H−NMR測定結果及び元素
分析の結果を以下に示す。1 H−NMR(CDCl3) 8.07(d,4H)、7.20(d,2H)、 6.88(d,2H)、4.30(t,2H)、 3.95(t,2H)、 3.10〜2.25(m,3H)、 2.05〜0.70(m,25H) 2(1)で得られたエポキシ化合物を用い、実施例1.
(3)と同様の操作を行うことにより、上記式で表され
る繰り返し単位を有する高分子液晶化合物を得た。
The results of 1 H-NMR measurement and the results of elemental analysis of the obtained epoxy compound are shown below. 1 H-NMR (CDCl 3) 8.07 (d, 4H), 7.20 (d, 2H), 6.88 (d, 2H), 4.30 (t, 2H), 3.95 (t, 2H), 3.10~2.25 (m, 3H ), 2.05-0.70 (m, 25H) Example 1. Using the epoxy compound obtained in (1), Example 1.
By performing the same operation as in (3), a polymer liquid crystal compound having a repeating unit represented by the above formula was obtained.

得られた高分子液晶化合物の相転移挙動及び数平均分
子量を第1表に示し、1H−NMR測定結果を以下に示す。1 H−NMR(CDCl3) 8.07(d,4H)、7.20(d,2H)、 6.88(d,2H)、4.30(t,2H)、 3.95(t,2H)、 3.26〜3.79(m,3H)、 2.10〜0.80(m,25H) 実施例3 高分子液晶化合物の合成 下記式で表される繰り返し単位を有する高分子液晶化
合物を合成した。
Table 1 shows the phase transition behavior and the number average molecular weight of the obtained polymer liquid crystal compound, and the 1 H-NMR measurement results are shown below. 1 H-NMR (CDCl 3) 8.07 (d, 4H), 7.20 (d, 2H), 6.88 (d, 2H), 4.30 (t, 2H), 3.95 (t, 2H), 3.26~3.79 (m, 3H ), 2.10 to 0.80 (m, 25H) Example 3 Synthesis of Polymer Liquid Crystal Compound A polymer liquid crystal compound having a repeating unit represented by the following formula was synthesized.

実施例1.(1)において、4−ヒドロキシ安息香酸n
−ブチルエステルの代わりに4−ヘキシルオキシフェノ
ールを用い、実施例1.(1)及び(2)と同様の操作を
行い、上記式で表されるエポキシ化合物を合成した。
Example 1. In (1), 4-hydroxybenzoic acid n
Using 4-hexyloxyphenol instead of -butyl ester, the same operation as in Examples 1. (1) and (2) was performed to synthesize an epoxy compound represented by the above formula.

得られたエポキシ化合物の1H−NMR測定結果及び元素
分析の結果を以下に示す。1 H−NMR(CDCl3) 8.05(d,2H)、 7.20〜6.70(m,6H)、 3.75〜4.15(m,4H)、 3.05〜2.30(m,3H)、 2.05〜0.70(m,25H) 3.(1)で得られたエポキシ化合物を用い、実施例1.
(3)と同様の操作を行うことにより、上記式で表され
る繰り返し単位を有する高分子液晶化合物を得た。
The results of 1 H-NMR measurement and the results of elemental analysis of the obtained epoxy compound are shown below. 1 H-NMR (CDCl 3) 8.05 (d, 2H), 7.20~6.70 (m, 6H), 3.75~4.15 (m, 4H), 3.05~2.30 (m, 3H), 2.05~0.70 (m, 25H) 3. Using the epoxy compound obtained in (1), Example 1.
By performing the same operation as in (3), a polymer liquid crystal compound having a repeating unit represented by the above formula was obtained.

得られた高分子液晶化合物の相転移挙動及び数平均分
子量を第1表に示し、1H−NMR測定結果を以下に示す。1 H−NMR(CDCl3) 8.05(d,2H)、 7.20〜6.70(m,6H)、 3.75〜4.15(m,4H)、 3.20〜3.75(m,3H)、 2.05〜0.70(m,25H) 実施例4 高分子液晶化合物の合成 下記式で表される繰り返し単位を有する高分子液晶化
合物を合成した。
Table 1 shows the phase transition behavior and the number average molecular weight of the obtained polymer liquid crystal compound, and the 1 H-NMR measurement results are shown below. 1 H-NMR (CDCl 3) 8.05 (d, 2H), 7.20~6.70 (m, 6H), 3.75~4.15 (m, 4H), 3.20~3.75 (m, 3H), 2.05~0.70 (m, 25H) Example 4 Synthesis of Polymer Liquid Crystal Compound A polymer liquid crystal compound having a repeating unit represented by the following formula was synthesized.

実施例1.(1)において、4−ヒドロキシ安息香酸n
−ブチルエステルの代わりに4−ヘキシルフェノールを
用い、実施例1.(1)及び(2)と同様の操作を行うこ
とにより、上記式で表されるエポキシ化合物を合成し
た。
Example 1. In (1), 4-hydroxybenzoic acid n
An epoxy compound represented by the above formula was synthesized by performing the same operation as in Example 1. (1) and (2) using 4-hexylphenol instead of -butyl ester.

得られたエポキシ化合物の1H−NMR測定結果及び元素
分析の結果を以下に示す。1 H−NMR(CDCl3) 8.10(d,2H)、7.10(d,4H)、 6.90(d,2H)、4.00(t,2H)、 3.00〜2.25(m,5H)、 2.10〜0.70(m,25H) 4.(1)で得られたエポキシ化合物を用い、実施例1.
(3)と同様の操作を行うことにより、上記式で表され
る繰り返し単位を有する高分子液晶化合物を得た。
The results of 1 H-NMR measurement and the results of elemental analysis of the obtained epoxy compound are shown below. 1 H-NMR (CDCl 3) 8.10 (d, 2H), 7.10 (d, 4H), 6.90 (d, 2H), 4.00 (t, 2H), 3.00~2.25 (m, 5H), 2.10~0.70 (m , 25H) 4. Using the epoxy compound obtained in (1), Example 1.
By performing the same operation as in (3), a polymer liquid crystal compound having a repeating unit represented by the above formula was obtained.

得られた高分子液晶化合物の相転移挙動及び数平均分
子量を第1表に示し、1H−NMR測定結果を以下に示す。1 H−NMR(CDCl3) 8.10(d,2H)、7.10(d,4H)、 6.90(d,2H)、4.00(t,2H)、 3.70〜3.30(m,3H)、 2.60(t,2H)、 2.10〜0.70(m,25H) 実施例5 高分子液晶化合物の合成 下記式で表される繰り返し単位を有する高分子液晶化
合物を合成した。
Table 1 shows the phase transition behavior and the number average molecular weight of the obtained polymer liquid crystal compound, and the 1 H-NMR measurement results are shown below. 1 H-NMR (CDCl 3) 8.10 (d, 2H), 7.10 (d, 4H), 6.90 (d, 2H), 4.00 (t, 2H), 3.70~3.30 (m, 3H), 2.60 (t, 2H ), 2.10 to 0.70 (m, 25H) Example 5 Synthesis of Polymer Liquid Crystal Compound A polymer liquid crystal compound having a repeating unit represented by the following formula was synthesized.

実施例1.(1)において、4−(9−デセニルオキ
シ)安息香酸の代わりに4−(7−オクテニルオキシ)
安息香酸を、4−ヒドロキシ安息香酸n−ブチルエステ
ルの代わりに4−ヒドロキシ安息香酸n−オクチルエス
テルを用い、実施例1.(1)及び(2)と同様の操作を
行うことにより、上記式で表されるエポキシ化合物を合
成した。
Example 1. In (1), 4- (7-octenyloxy) is used instead of 4- (9-decenyloxy) benzoic acid.
By performing the same operation as in Example 1. (1) and (2) by using 4-hydroxybenzoic acid n-octyl ester instead of 4-hydroxybenzoic acid n-butyl ester, the above formula was obtained. Was synthesized.

得られたエポキシ化合物の1H−NMR測定結果及び元素
分析の結果を以下に示す。1 H−NMR(CDCl3) 8.05(d,4H)、7.20(d,2H)、 6.88(d,2H)、4.25(t,2H)、 3.90(t,2H)、 3.05〜2.30(m,3H)、 2.10〜0.80(m,25H) 5.(1)で得られたエポキシ化合物を用い、実施例1.
(3)と同様の操作を行うことにより、上記式で表され
る繰り返し単位を有する高分子液晶化合物を得た。
The results of 1 H-NMR measurement and the results of elemental analysis of the obtained epoxy compound are shown below. 1 H-NMR (CDCl 3) 8.05 (d, 4H), 7.20 (d, 2H), 6.88 (d, 2H), 4.25 (t, 2H), 3.90 (t, 2H), 3.05~2.30 (m, 3H ), 2.10-0.80 (m, 25H) 5. Using the epoxy compound obtained in (1), Example 1.
By performing the same operation as in (3), a polymer liquid crystal compound having a repeating unit represented by the above formula was obtained.

得られた高分子液晶化合物の相転移挙動及び数平均分
子量を第1表に示し、1H−NMR測定結果を以下に示す。1 H−NMR(CDCl3) 8.05(d,4H)、7.20(d,2H)、 6.88(d,2H)、4.25(t,2H)、 3.90(t,2H)、 3.80〜3.25(m,3H)、 2.05〜0.75(m,25H) 実施例6 高分子液晶化合物の合成 下記式で表される繰り返し単位を有する高分子液晶化
合物を合成した。
Table 1 shows the phase transition behavior and the number average molecular weight of the obtained polymer liquid crystal compound, and the 1 H-NMR measurement results are shown below. 1 H-NMR (CDCl 3) 8.05 (d, 4H), 7.20 (d, 2H), 6.88 (d, 2H), 4.25 (t, 2H), 3.90 (t, 2H), 3.80~3.25 (m, 3H ), 2.05 to 0.75 (m, 25H) Example 6 Synthesis of Polymer Liquid Crystal Compound A polymer liquid crystal compound having a repeating unit represented by the following formula was synthesized.

実施例1.(1)において、4−(9−デセニルオキ
シ)安息香酸の代わりに4−(10−ウンデセニルオキ
シ)安息香酸を、4−ヒドロキシ安息香酸n−ブチルエ
ステルの代わりに4−n−ブチルフェノールを用い、実
施例1.(1)及び(2)と同様の操作を行い、上記式で
表されるエポキシ化合物を合成した。
Example 1. In (1), 4- (10-undecenyloxy) benzoic acid was used instead of 4- (9-decenyloxy) benzoic acid, and 4-n was used instead of 4-hydroxybenzoic acid n-butyl ester. Using -butylphenol, the same operation as in Example 1. (1) and (2) was performed to synthesize an epoxy compound represented by the above formula.

得られたエポキシ化合物の1H−NMR測定結果及び元素
分析の結果を以下に示す。1 H−NMR(CDCl3) 8.10(d,2H)、7.10(d,4H)、 6.95(d,2H)、4.05(t,2H)、 3.05〜2.30(m,5H)、 2.10〜0.70(m,23H) 6.(1)で得られたエポキシ化合物を用い、実施例1.
(3)と同様の操作を行うことにより、上記式で表され
る繰り返し単位を有する高分子液晶化合物を得た。
The results of 1 H-NMR measurement and the results of elemental analysis of the obtained epoxy compound are shown below. 1 H-NMR (CDCl 3) 8.10 (d, 2H), 7.10 (d, 4H), 6.95 (d, 2H), 4.05 (t, 2H), 3.05~2.30 (m, 5H), 2.10~0.70 (m , 23H) 6. Using the epoxy compound obtained in (1), Example 1.
By performing the same operation as in (3), a polymer liquid crystal compound having a repeating unit represented by the above formula was obtained.

得られた高分子液晶化合物の相転移挙動及び数平均分
子量を第1表に示し、1H−NMR測定結果を以下に示す。1 H−NMR(CDCl3) 8.10(d,2H)、7.10(d,4H)、 6.95(d,2H)、4.05(t,2H)、 3.75〜3.30(m,3H)、 2.60(t,2H)、 2.10〜0.75(m,23H) 実施例7 A:高分子液晶化合物(実施例2で得られた高分子液晶化
合物) B:強誘電性低分子液晶化合物(HS−78P、帝国化学社
製、商品名) 高分子液晶化合物Aと、強誘電性低分子液晶化合物B
から、次のような方法で、Bの含有量が70モル%の強誘
電性高分子液晶組成物を調製した。
Table 1 shows the phase transition behavior and the number average molecular weight of the obtained polymer liquid crystal compound, and the 1 H-NMR measurement results are shown below. 1 H-NMR (CDCl 3) 8.10 (d, 2H), 7.10 (d, 4H), 6.95 (d, 2H), 4.05 (t, 2H), 3.75~3.30 (m, 3H), 2.60 (t, 2H ), 2.10-0.75 (m, 23H) Example 7 A: Polymer liquid crystal compound (polymer liquid crystal compound obtained in Example 2) B: Ferroelectric low-molecular liquid crystal compound (HS-78P, manufactured by Teikoku Chemical Co., Ltd., trade name) High-molecular liquid crystal compound A and ferroelectric low-molecular liquid crystal compound B
Then, a ferroelectric polymer liquid crystal composition having a B content of 70 mol% was prepared by the following method.

即ち、高分子液晶化合物A1.41g(3ミリモル)と強誘
電性低分子液晶化合物B2.68g(7ミリモル)をジクロロ
メタン20mlに溶解させ、均一な溶液とした。この溶液を
常圧で50℃に加熱し、溶媒を除去した、更に、減圧下で
乾燥を行って溶媒を完全に除去し、目的とする強誘電性
高分子液晶組成物を得た。
That is, 1.41 g (3 mmol) of the high-molecular liquid crystal compound A and 2.68 g (7 mmol) of the ferroelectric low-molecular liquid crystal compound B were dissolved in 20 ml of dichloromethane to form a uniform solution. This solution was heated to 50 ° C. under normal pressure to remove the solvent, and further dried under reduced pressure to completely remove the solvent, thereby obtaining a desired ferroelectric polymer liquid crystal composition.

この強誘電性液晶組成物の相転移挙動を顕微鏡での観
察によって判定したところ、以下に示すとおりであっ
た。
When the phase transition behavior of this ferroelectric liquid crystal composition was determined by observation with a microscope, it was as shown below.

また、この強誘電性液晶組成物の電界に対する応答時
間を測定したところ、25℃で600μsであった。電界に
対する応答時間の測定は、次のようにして行った。
The response time of this ferroelectric liquid crystal composition to an electric field was 600 μs at 25 ° C. The measurement of the response time to the electric field was performed as follows.

即ち、2枚のITOガラス基板間に強誘電性液晶組成物
を挟み、シアリング法によって厚み約2μmの配向セル
を作製した。更にクロスニコル下で±20MV/mの電界を印
加して、その時の光透過率の変化量が0〜90%に達する
のに要する時間を測定した。
That is, a ferroelectric liquid crystal composition was sandwiched between two ITO glass substrates, and an alignment cell having a thickness of about 2 μm was formed by a shearing method. Further, an electric field of ± 20 MV / m was applied under crossed Nicols, and the time required for the amount of change in light transmittance to reach 0 to 90% at that time was measured.

実施例8 基板材料として2枚の透明電極付き可撓性連続基板を
用い、実施例7で調製した強誘電性高分子液晶組成物を
液晶材料とする液晶光学素子を作製した。作製に用いた
製造装置を第1図に略図する。
Example 8 A liquid crystal optical element using the ferroelectric polymer liquid crystal composition prepared in Example 7 as a liquid crystal material was produced using two flexible continuous substrates with transparent electrodes as substrate materials. The manufacturing apparatus used for the fabrication is schematically illustrated in FIG.

第1図に示される製造装置は、一方の連続基板上に強
誘電性高分子液晶組成物の溶融物又は溶液を塗布する塗
布工程A、強誘電性高分子液晶組成物からなる液晶層を
塗布された連続基板と対向基板とを積層するラミネート
工程B、得られた積層体中に挾持された強誘電性高分子
液晶組成物を配向処理する配向処理工程Cからなる。製
造ラインは一定速度vで運転される。
The manufacturing apparatus shown in FIG. 1 includes a coating step A of coating a melt or a solution of a ferroelectric polymer liquid crystal composition on one continuous substrate, and coating a liquid crystal layer made of the ferroelectric polymer liquid crystal composition. A laminating step B for laminating the formed continuous substrate and the counter substrate, and an alignment processing step C for aligning the ferroelectric polymer liquid crystal composition sandwiched in the obtained laminate. The production line is operated at a constant speed v.

透明電極付き可撓性基板25が基板繰り出しロール1か
ら繰り出されると同時に、基板25の両面に貼付されてい
た基板保護フィルム21及び22がそれぞれ保護フィルム巻
き取りロール2及び3により巻き取られ、基板25から剥
ぎ取られる。保護フィルムを除去された基板25は、補助
ロール4を経て塗布工程Aへ送られる。
At the same time as the flexible substrate 25 with the transparent electrode is fed out from the substrate feeding roll 1, the substrate protective films 21 and 22 attached to both surfaces of the substrate 25 are wound by the protective film winding rolls 2 and 3, respectively. Stripped from 25. The substrate 25 from which the protective film has been removed is sent to the coating step A via the auxiliary roll 4.

塗布工程Aで用いられる塗布装置は、強誘電性高分子
液晶組成物の溶融物又は溶液を定量的に吐出する定量吐
出器7、先端に含浸材を装着した含浸塗布用ヘッド5、
定量吐出器7から吐出された強誘電性高分子液晶組成物
の溶融物又は溶液を含浸塗布用ヘッド5へ送るシリコン
ゴムチューブ6からなる。含浸塗布用ヘッド5は、その
含浸材が基板25の透明電極層面に間欠的に接触するよう
に、シリコンゴムチューブ6側の端部を固定点として一
定の周期運動をする。含浸材が基板25の透明電極層に接
している間、定量吐出器7が含浸塗布用ヘッド5の動き
に連動して強誘電性高分子液晶組成物の溶融物又は溶液
を定量的に吐出し、吐出された強誘電性高分子液晶組成
物の溶融物又は溶液は、シリコンゴムチューブ6を経
て、基板25に接触している含浸塗布用ヘッド5の含浸材
に送られ、一定のライン速度vで移動している基板5の
透明電極層上に塗布される。
The coating apparatus used in the coating step A includes a quantitative discharging device 7 for quantitatively discharging a melt or a solution of the ferroelectric polymer liquid crystal composition, an impregnating coating head 5 having an impregnating material attached to a tip thereof,
It is composed of a silicone rubber tube 6 that sends the melt or solution of the ferroelectric polymer liquid crystal composition discharged from the metering discharger 7 to the impregnation coating head 5. The impregnation coating head 5 makes a fixed periodic movement with the end on the side of the silicone rubber tube 6 as a fixed point so that the impregnation material intermittently contacts the transparent electrode layer surface of the substrate 25. While the impregnating material is in contact with the transparent electrode layer of the substrate 25, the quantitative discharger 7 quantitatively discharges the melt or the solution of the ferroelectric polymer liquid crystal composition in conjunction with the movement of the impregnation coating head 5. The discharged melt or solution of the ferroelectric polymer liquid crystal composition is sent to the impregnation material of the impregnation coating head 5 that is in contact with the substrate 25 through the silicone rubber tube 6 and has a constant line speed v. Is applied on the transparent electrode layer of the substrate 5 moving.

強誘電性高分子液晶組成物の溶融物又は溶液を塗布さ
れた基板25は、補助ロール8及び9を経てラミネート工
程Bへ送られる。強誘電性高分子液晶組成物の溶液を塗
布された場合には、補助ロール8、9間に設けられた温
風乾燥器28内で、塗布層を乾燥し、溶液調製に用いられ
た溶媒を除去する。
The substrate 25 to which the melt or solution of the ferroelectric polymer liquid crystal composition has been applied is sent to the laminating step B via the auxiliary rolls 8 and 9. When the solution of the ferroelectric polymer liquid crystal composition is applied, the applied layer is dried in a warm air dryer 28 provided between the auxiliary rolls 8 and 9, and the solvent used for the solution preparation is removed. Remove.

ラミネート工程Bへは、強誘電性高分子液晶層を塗布
された基板25が送られるとともに、対向する透明電極付
き可撓性基板26が対向基板繰り出しロール18から繰り出
され、基板25と同様に保護フィルム巻き取りロール19及
び20によって基板保護フィルム23及び24を除去された
後、基板25と同じライン速度vで送られる。次いで、ラ
ミネート工程Bへ送られた基板25と対向基板26とを一対
のラミネートロール10、11間を通すことにより、基板25
の透明電極上に塗布された強誘電性高分子液晶組成物が
基板25と対向基板26上の透明電極間に挾持されるように
積層する。ラミネートロール10及び11は、液晶組成物の
塗布時に生じた小さな凹凸を平坦化し、気泡を噛み込ま
ないようにするため、加熱されている(ラミネートロー
ルの表面温度:T1)。得られた積層体は、補助ロール12
及び29を経て配合処理工程Cへ送られる。
In the laminating step B, the substrate 25 coated with the ferroelectric polymer liquid crystal layer is sent, and the opposing flexible substrate 26 with a transparent electrode is fed out from the opposing substrate feeding roll 18 and protected in the same manner as the substrate 25. After the substrate protection films 23 and 24 are removed by the film take-up rolls 19 and 20, the substrate is fed at the same line speed v as the substrate 25. Next, the substrate 25 and the opposing substrate 26 sent to the laminating step B are passed between a pair of laminating rolls 10 and 11 so that the substrate 25
The ferroelectric polymer liquid crystal composition applied on the transparent electrode is laminated so as to be sandwiched between the transparent electrodes on the substrate 25 and the counter substrate. The laminating rolls 10 and 11 are heated (surface temperature of the laminating rolls: T 1 ) in order to flatten small irregularities generated during application of the liquid crystal composition and to prevent air bubbles from being caught. The obtained laminate is provided with an auxiliary roll 12
And 29 to the compounding process C.

配向処理工程Cでは、積層体をまず赤外ヒータと送風
機を具備した加熱炉13を通して液晶が等方相又は等方相
と液晶相との混相を示すような温度まで加熱(加熱炉内
温度:T2)した後、配向用冷却ロール14及び15のロール
面に順次密着させて移動させることにより、積層体内の
強誘電性高分子液晶組成物に曲げ変形を与えて配向せし
める。この配向処理においては、液晶を冷却しながら剪
断によって配向させるために、配向用冷却ロール14及び
15の表面温度は、それぞれ液晶がスメクチックA相、カ
イラルスメクチックC相などの液晶相を示すような温度
(配向用冷却ロール14の表面温度:T3、配向用冷却ロー
ル15の表面温度:T4)に調節されている。
In the alignment treatment step C, the laminate is first heated to a temperature at which the liquid crystal shows an isotropic phase or a mixed phase of the isotropic phase and the liquid crystal phase through a heating furnace 13 equipped with an infrared heater and a blower (heating furnace temperature: After T 2 ), the ferroelectric polymer liquid crystal composition in the laminate is subjected to bending deformation to be aligned by sequentially moving the rolls of the cooling rolls for alignment 14 and 15 in close contact with each other. In this alignment treatment, in order to align the liquid crystal by shearing while cooling, alignment cooling rolls 14 and
The surface temperature of 15 is such that the liquid crystal shows a liquid crystal phase such as a smectic A phase and a chiral smectic C phase (the surface temperature of the cooling roll 14 for alignment: T 3 , the surface temperature of the cooling roll 15 for alignment: T 4). ) Is adjusted.

積層体を配向処理して得られた液晶光学素子27は補助
ロール16を経て巻き取りロール17に巻き取られる。巻き
取りロール17に巻き取られた液晶光学素子27は、その
後、適当な大きさに切断することができる。
The liquid crystal optical element 27 obtained by subjecting the laminate to an alignment treatment is wound around a winding roll 17 via an auxiliary roll 16. The liquid crystal optical element 27 taken up by the take-up roll 17 can then be cut into a suitable size.

このように、液晶光学素子の製造を連続基板及び第1
図に示される製造装置を用いて行うことにより、高分子
液晶組成物の塗布、積層、配向処理を連続的に行うこと
ができる。
As described above, the production of the liquid crystal optical element is performed by using the continuous substrate and the first substrate.
The application, lamination, and alignment treatment of the polymer liquid crystal composition can be performed continuously by using the manufacturing apparatus shown in the figure.

本実施例においては、可撓性連続基板としてITO付きP
ES(ポリエーテルスルフォン)基板(厚み:100μm、幅
28cm)(FST−1351、住友ベークライト(株)製、商品
名)を用い、下記の条件で液晶光学素子を製造した。
In this embodiment, P with ITO is used as a flexible continuous substrate.
ES (polyether sulfone) substrate (thickness: 100 μm, width
A liquid crystal optical element was manufactured under the following conditions using 28 cm) (FST-1351, manufactured by Sumitomo Bakelite Co., Ltd.).

ライン速度: v=2.2m/分 温風乾燥器内温度:T5=40℃ ラミネートロール10、11の表面温度:T1=40℃ 加熱炉13内温度:T2=85℃ 配向用冷却ロール14の表面温度:T3=76℃ 配向用冷却ロール15の表面温度:T4=70℃ 補助ロール4、8、9、12、16及び29としては、表面
をクロムメッキした鉄管(直径40mm、幅300mm)を用い
た。ラミネートロール10としては、ゴム製ロール(φ80
mm、幅300mm)を、ラミネートロール11としては、表面
をクロムメッキした鉄管(φ80mm、幅300mm)を用い
た。配向用冷却ロール14及び15としては、それぞれ表面
をクロムメッキされた鉄管(φ80mm、幅300mm)を用い
た。
Line speed: v = 2.2 m / min Temperature in hot air dryer: T 5 = 40 ° C Surface temperature of laminating rolls 10 and 11: T 1 = 40 ° C Temperature in heating furnace 13: T 2 = 85 ° C Cooling roll for orientation Surface temperature of 14: T 3 = 76 ° C. Surface temperature of cooling roll 15 for orientation: T 4 = 70 ° C. As auxiliary rolls 4, 8, 9, 12, 16 and 29, iron tubes whose surfaces are chrome-plated (diameter 40 mm, (Width 300 mm) was used. As the laminating roll 10, a rubber roll (φ80
mm, width 300 mm), and an iron tube (φ80 mm, width 300 mm) with a chrome-plated surface was used as the laminating roll 11. Iron tubes (φ80 mm, width 300 mm) each having a chrome-plated surface were used as the cooling rolls 14 and 15 for orientation.

実施例7で調製した強誘電性高分子液晶組成物のジク
ロロメタンの10重量%溶液を用いて、定量吐出器7から
1回の塗布ごとに2.7ccを含浸塗布用ヘッド5に送っ
た。含浸塗布用ヘッド5は含浸材として鐘紡(株)製の
ベルクリン(商品名)を幅25cmに切断したものを用いて
おり、1回の塗布ごとに、基板25の透明電極層上に約40
cmの長さで上記強誘電性高分子液晶組成物の溶液を塗布
した。次いで、上記の条件でラミネート工程、及び配向
処理工程を実施し、得られた液晶光学素子を巻き取りロ
ール17で巻き取った。巻き取り後、約30分経過後、ロー
ル状の液晶光学素子から25cm×40cmの液晶光学素子を切
り出した。切り出された液晶光学素子の液晶部の膜厚
は、約2.3μmであった。この液晶光学素子についてク
ロスニコル下でコントラストを測定したところ、±5Vの
印加で46という良好な値を得た。また、素子全体にわた
ってコントラストのむらや、液晶部の厚みのむらに基づ
く色むらも認められず、良好な配向フィルム得られてい
ることが確認された。
Using a 10% by weight solution of the ferroelectric polymer liquid crystal composition in dichloromethane prepared in Example 7, 2.7 cc was sent to the impregnation coating head 5 from the quantitative discharger 7 for each coating. The impregnating coating head 5 uses a material obtained by cutting Bellclean (trade name) manufactured by Kanebo Co., Ltd. to a width of 25 cm as an impregnating material.
A solution of the above ferroelectric polymer liquid crystal composition was applied in a length of cm. Next, a laminating step and an alignment step were performed under the above conditions, and the obtained liquid crystal optical element was taken up by a take-up roll 17. About 30 minutes after the winding, a 25 cm × 40 cm liquid crystal optical element was cut out from the rolled liquid crystal optical element. The thickness of the liquid crystal portion of the cut liquid crystal optical element was about 2.3 μm. When the contrast of this liquid crystal optical element was measured under crossed Nicols, a good value of 46 was obtained by applying ± 5 V. In addition, no unevenness in contrast or color unevenness due to unevenness in the thickness of the liquid crystal portion was observed over the entire device, confirming that a favorable oriented film was obtained.

〔発明の効果〕〔The invention's effect〕

本発明によって得られる高分子液晶化合物を光学活性
化合物と混合することにより、室温を含む広い温度範囲
で強誘電性を示し、製膜性、配向性に優れるのみなら
ず、外部電界に対する高速応答性において特に秀でた強
誘電性高分子液晶組成物を得ることができる。
By mixing the polymer liquid crystal compound obtained by the present invention with an optically active compound, it exhibits ferroelectricity over a wide temperature range including room temperature, and is excellent not only in film forming properties and orientation but also in high-speed response to an external electric field. And a particularly excellent ferroelectric polymer liquid crystal composition can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、実施例において使用した液晶光学素子の製造
装置を表す略図である。 符号の説明 A:塗布工程、B:ラミネート工程、 C:配向処理工程 1:基板繰り出しロール 2、3、19、20:保護フィルム巻き取りロール 4、8、9、12、16、29:補助ロール 5:含浸塗布用ヘッド 6:シリコンゴムチューブ、7:定量吐出器 10、11:ラミネートロール 13:赤外ヒータと送風機を具備した加熱炉 14、15:配向用冷却ロール 17:巻き取りロール 18:対向基板繰り出しロール 21、22、23、24:基板保護フィルム 25、26:透明電極付き可撓性連続基板 27:液晶光学素子(切断前) 28:温風乾燥器、v:ライン速度 T1:ラミネートロール10、11の表面温度 T2:加熱炉13内の温度 T3:配向用冷却ロール14の表面温度 T4:配向用冷却ロール15の表面温度 T5:温風乾燥器28内の温度
FIG. 1 is a schematic view showing a device for manufacturing a liquid crystal optical element used in Examples. Description of reference symbols A: coating step, B: laminating step, C: orientation step 1: substrate feeding roll 2, 3, 19, 20: protective film winding roll 4, 8, 9, 12, 16, 29: auxiliary roll 5: Head for impregnation coating 6: Silicon rubber tube, 7: Fixed amount discharger 10, 11: Laminating roll 13: Heating furnace equipped with infrared heater and blower 14, 15: Cooling roll for orientation 17: Winding roll 18: Counter substrate feeding rolls 21, 22, 23, 24: Substrate protective film 25, 26: Flexible continuous substrate with transparent electrode 27: Liquid crystal optical element (before cutting) 28: Hot air dryer, v: Line speed T 1 : Surface temperature of laminating rolls 10 and 11 T 2 : Temperature in heating furnace 13 T 3 : Surface temperature of cooling roll 14 for orientation T 4 : Surface temperature of cooling roll 15 for orientation T 5 : Temperature in hot air dryer 28

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−264629(JP,A) 特開 昭64−6088(JP,A) (58)調査した分野(Int.Cl.6,DB名) C07C 69/92 C09K 19/38 C07D 303/22 C08G 65/22 CA(STN) REGISTRY(STN) WPIDS(STN)────────────────────────────────────────────────── (5) References JP-A-63-264629 (JP, A) JP-A-64-6088 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C07C 69/92 C09K 19/38 C07D 303/22 C08G 65/22 CA (STN) REGISTRY (STN) WPIDS (STN)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記一般式からなる繰り返し単位を有し、
スメクチックC相を有する高分子液晶化合物。 (式中、pは6〜12の整数を表し、 Rは−Z(CH2qHを表し、 ただし、Zは単結合、−O−又は−COO−を表し、 qは4〜8の整数を表す。)
(1) having a repeating unit represented by the following general formula,
A polymer liquid crystal compound having a smectic C phase. (Wherein, p represents an integer of 6 to 12, R represents -Z (CH 2) q H, however, Z is a single bond, represents -O- or -COO-, q is 4-8 Represents an integer.)
【請求項2】下記一般式からなる構造を有するエポキシ
化合物。 (式中、pは6〜12の整数を表し、 Rは−Z(CH2qHを表し、 ただし、Zは単結合、−O−又は−COO−を表し、 qは4〜8の整数を表す。)
2. An epoxy compound having a structure represented by the following general formula. (Wherein, p represents an integer of 6 to 12, R represents -Z (CH 2) q H, however, Z is a single bond, represents -O- or -COO-, q is 4-8 Represents an integer.)
JP2013694A 1990-01-25 1990-01-25 Polymer liquid crystal compound and its intermediate epoxy compound Expired - Fee Related JP2806590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013694A JP2806590B2 (en) 1990-01-25 1990-01-25 Polymer liquid crystal compound and its intermediate epoxy compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013694A JP2806590B2 (en) 1990-01-25 1990-01-25 Polymer liquid crystal compound and its intermediate epoxy compound

Publications (2)

Publication Number Publication Date
JPH03220160A JPH03220160A (en) 1991-09-27
JP2806590B2 true JP2806590B2 (en) 1998-09-30

Family

ID=11840304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013694A Expired - Fee Related JP2806590B2 (en) 1990-01-25 1990-01-25 Polymer liquid crystal compound and its intermediate epoxy compound

Country Status (1)

Country Link
JP (1) JP2806590B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2338240B (en) * 1998-05-22 2002-08-14 Merck Patent Gmbh Polymerizable composition comprising epoxy compounds

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264629A (en) * 1986-12-29 1988-11-01 Idemitsu Kosan Co Ltd Polymer
JPH0778218B2 (en) * 1987-06-29 1995-08-23 出光興産株式会社 Liquid crystal polymer composition

Also Published As

Publication number Publication date
JPH03220160A (en) 1991-09-27

Similar Documents

Publication Publication Date Title
JPH0778218B2 (en) Liquid crystal polymer composition
JP4403362B2 (en) Light scattering type liquid crystal device
KR20070029100A (en) Polymer for liquid crystal aligning and liquid crystal display using the same
JPS63264629A (en) Polymer
JPS6372784A (en) Ferroelectric polymer liquid crystal
JP2806590B2 (en) Polymer liquid crystal compound and its intermediate epoxy compound
JP4766291B2 (en) Polymerizable liquid crystal compound, composition, and optical anisotropic body
JP3246935B2 (en) Novel polymer compound and ferroelectric liquid crystal composition using the same
JPH02101049A (en) Liquid crystal compound and liquid crystal polymer
KR0147616B1 (en) Liquid crystal display device with the side chain type polymer
JP3246931B2 (en) Novel polymer compound and ferroelectric liquid crystal composition using the same
JPS63161005A (en) Polymer
JPS62277412A (en) Novel polymer
JP2765942B2 (en) Liquid crystalline polymer and epoxy compound used for its production
JP4464100B2 (en) Method for producing optically active liquid crystalline polymer compound
JPS6399204A (en) Polymer
JP3054212B2 (en) Guest-host type liquid crystal optical element
JPH0820641A (en) High-molecular liquid crystal and liquid crystal element
JP2795918B2 (en) Liquid crystal compound and liquid crystal polymer
JPH0245450A (en) Liquid crystal compound and polymer
JPH0426679A (en) Liquid crystalline compound, liquid crystal composition containing the same and liquid crystal element using the same
JPH0269428A (en) Liquid crystal compound and liquid crystal polymer
JPH01156971A (en) Novel compound
JPS63280742A (en) Polymeric liquid crystal compound
JPH01234414A (en) Crosslinked polymer with liquid crystal nature

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees