JP2805202B2 - Method for producing titanium oxide fine powder - Google Patents

Method for producing titanium oxide fine powder

Info

Publication number
JP2805202B2
JP2805202B2 JP1012982A JP1298289A JP2805202B2 JP 2805202 B2 JP2805202 B2 JP 2805202B2 JP 1012982 A JP1012982 A JP 1012982A JP 1298289 A JP1298289 A JP 1298289A JP 2805202 B2 JP2805202 B2 JP 2805202B2
Authority
JP
Japan
Prior art keywords
titanium oxide
powder
titanium
organic solvent
hydrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1012982A
Other languages
Japanese (ja)
Other versions
JPH02196028A (en
Inventor
弘義 高木
正信 淡野
▲吉▼孝 窪田
雄二 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Tosoh Corp
Original Assignee
Nissan Chemical Corp
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp, Tosoh Corp filed Critical Nissan Chemical Corp
Priority to JP1012982A priority Critical patent/JP2805202B2/en
Publication of JPH02196028A publication Critical patent/JPH02196028A/en
Application granted granted Critical
Publication of JP2805202B2 publication Critical patent/JP2805202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化チタンの超微粒子から成る粉体の製造
方法に関するものである。本発明により得られた酸化チ
タン粉体は、PZT、PTC等の高品位な電子セラミックスの
製造原料や高級化粧品原料、プラスチック添加剤、塗
料、インキ、薬品等の原料として利用されるものであ
る。
Description: TECHNICAL FIELD The present invention relates to a method for producing a powder comprising ultrafine particles of titanium oxide. The titanium oxide powder obtained by the present invention is used as a raw material for producing high-quality electronic ceramics such as PZT and PTC, a raw material for high-grade cosmetics, a plastic additive, a paint, an ink, a chemical, and the like.

〔従来の技術〕[Conventional technology]

酸化チタン粉体の製造方法としては、従来から硫酸法
と塩素法がある。硫酸法は、イルメナイトを硫酸で蒸解
した後、分離された含水酸化チタンを洗浄の後、800〜1
000℃で仮焼、粉砕して粉体としている。塩素法では、T
iCl4を1000℃位で酸素と反応させて酸化チタン粒子を生
成させて粉体を製造している。
Conventional methods for producing titanium oxide powder include a sulfuric acid method and a chlorine method. In the sulfuric acid method, after ilmenite is digested with sulfuric acid, the separated hydrous titanium oxide is washed, and then 800 to 1
It is calcined and pulverized at 000 ° C to make powder. In the chlorine method, T
Powder is produced by reacting iCl 4 with oxygen at about 1000 ° C. to generate titanium oxide particles.

硫酸法では、含水酸化チタンを1000℃位の温度で焼い
ているため、生成した粒子は大きく成長し、堅く凝集し
ている。従って、その後の粉砕操作が必要であるが、機
械的粉砕では超微粒子まで粉砕することは現実には不可
能であり、また、粉砕によって不純物のはいる確度が高
く、純度の高い焼結性の優れた粉体を製造することは困
難である。塩素法は純度の高い粉体を作れるが、反応温
度が高いためやはり生成粒子が大きく、活性のある微粒
子粉体を作ることは出来ない。また、塩素法は塩素ガス
を利用するため反応装置の腐食が激しく、その維持管理
に多くの費用と労力を要する。
In the sulfuric acid method, the hydrated titanium oxide is baked at a temperature of about 1000 ° C., so that the generated particles grow large and are firmly aggregated. Therefore, a subsequent pulverizing operation is necessary, but it is actually impossible to pulverize to ultra fine particles by mechanical pulverization. It is difficult to produce excellent powders. The chlorine method can produce high-purity powder, but the reaction temperature is high, so that the produced particles are still large and active fine-particle powder cannot be produced. Further, the chlorine method uses chlorine gas, so that the corrosion of the reactor is severe, and maintenance and management thereof require a lot of cost and labor.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述したように、従来の技術ではいずれも高温熱処理
をしているため、生成された微粒子が強固に結合して大
きな粒子となり、焼結性に優れた高純度の超微粒子粉体
を製造することができなかった。
As described above, in all of the conventional techniques, high-temperature heat treatment is performed, so that the generated fine particles are firmly combined into large particles, and a high-purity ultrafine particle powder excellent in sinterability is manufactured. Could not.

本発明者等は、このような高温での熱処理を必要とせ
ずに超微粒子粉体を製造できる方法を鋭意研究して本発
明を完成した。
The present inventors have earnestly studied a method capable of producing ultrafine particle powder without requiring such a heat treatment at a high temperature, and have completed the present invention.

本発明の目的は、従来技術では得られない焼結性の優
れた高純度の超微粒子(約0.1μm以下)から成る粉体
を提供することにある。
An object of the present invention is to provide a powder composed of high-purity ultrafine particles (about 0.1 μm or less) having excellent sinterability, which cannot be obtained by the prior art.

本発明による超微粒子から成る焼結性の良い粉体を利
用することによって、PLZT、PZT、BaTiO3、PbTiO3、TiO
2等のエレクトロセラミックスを従来よりも効率良く、
しかも従来のものより品質の優れたものを製造すること
ができる。このほか、本発明による粉体は超微粒子より
成るため、高級化粧用原料等にも使用することができ、
従来品よりも紫外線特性において優れた製品を製造する
ことができる。
By utilizing a powder having good sinterability composed of ultrafine particles according to the present invention, PLZT, PZT, BaTiO 3 , PbTiO 3 , TiO
Electroceramics such as 2 are more efficient than before,
In addition, it is possible to manufacture a product having higher quality than the conventional one. In addition, since the powder according to the present invention is composed of ultrafine particles, it can be used as a raw material for high-grade cosmetics,
It is possible to manufacture a product having better ultraviolet characteristics than a conventional product.

本発明は、溶液反応は容器内で行い、塩素のような毒
性のあるガスの使用も発生もないため公害発生の心配も
なく微粒子粉体を製造することができる。また、本発明
は従来技術のような粉砕をする必要がないため経済的で
ある。
According to the present invention, the solution reaction is carried out in a container, and no toxic gas such as chlorine is used or generated. Further, the present invention is economical because there is no need to pulverize as in the prior art.

〔課題を解決するための手段〕[Means for solving the problem]

即ち、本発明の第一発明は、水酸化チタンを有機溶剤
中に分散させた後、共沸温度以上で蒸留し、ここに得ら
れる水和酸化チタンを母液から分離した後、乾燥、仮焼
することを特徴とする酸化チタン微粉体の製造方法に関
する。
That is, the first invention of the present invention is to disperse titanium hydroxide in an organic solvent, distill it at an azeotropic temperature or higher, separate the hydrated titanium oxide obtained from the mother liquor, and then dry and calcine it. And a method for producing fine titanium oxide powder.

また、本発明の第二発明は、チタンのハロゲン化物あ
るいは硫酸チタンを鉱酸酸性の水で稀釈し、加熱して加
水分解し、この加水分解された液に有機溶剤を加え共沸
温度以上で蒸留した後、生成した水和酸化チタンを分離
し、乾燥、仮焼することを特徴とする酸化チタン微粉体
の製造方法に関する。
In the second invention of the present invention, a titanium halide or titanium sulfate is diluted with mineral acid water, heated and hydrolyzed, an organic solvent is added to the hydrolyzed liquid, and the mixture is heated at an azeotropic temperature or higher. The present invention relates to a method for producing fine titanium oxide powder, which comprises separating, drying, and calcining hydrated titanium oxide formed after distillation.

第一発明に使用する水酸化チタンは、4ハロゲン化チ
タンあるいは硫酸チタン溶液に直接またはこれらを水と
反応させた後にアルカリを加える方法で得られる。アル
カリとしては、アンモニア水が好ましい。高純度のもの
が作れるからである。生成した水酸化チタンを母液と分
離してから直ちに有機溶剤中に分散させ、共沸蒸留を行
い共沸脱水する。
The titanium hydroxide used in the first invention is obtained by a method of adding an alkali directly to a titanium tetrahalide or titanium sulfate solution or by reacting them with water. As the alkali, aqueous ammonia is preferable. This is because high-purity products can be made. Immediately after the generated titanium hydroxide is separated from the mother liquor, it is dispersed in an organic solvent and subjected to azeotropic distillation for azeotropic dehydration.

分散させる水酸化チタンの濃度としては、TiO2として
0.1〜0.5mol/位がよい。分散に際しては、界面活性剤
を使用してもよい。
As the concentration of titanium hydroxide to be dispersed, as TiO 2
0.1 to 0.5 mol / order is good. Upon dispersion, a surfactant may be used.

共沸蒸留は、沸点が共沸点を越え溶剤自身の沸点迄の
間の任意の温度迄行うが、共沸点より少なくとも5〜10
℃上がった温度迄行うことが望ましい。この蒸留で脱水
を終了せしめた後、冷却し、生成された酸化チタンを有
機溶剤から分離し、その後100℃前後で乾燥、300〜800
℃で仮焼して粉体を得る。
The azeotropic distillation is performed at any temperature between the boiling point of the solvent and the boiling point of the solvent itself.
It is desirable to perform the process up to a temperature rise by ℃. After completing the dehydration by this distillation, it is cooled, the generated titanium oxide is separated from the organic solvent, and then dried at about 100 ° C., 300 to 800
Calcination at ℃ to obtain powder.

蒸留の際に用いられる有機溶剤としては、水と共沸蒸
留できるものであればよく、ベンゼン、トルエン、キシ
レン、炭素数10以下のアルコール類、安息香酸エチルの
ごとき有機酸エステルをあげることができ、これらの1
種または2種以上を使用することができる。蒸留は共沸
温度以上で使用溶剤自身の沸点までの範囲で行う。
The organic solvent used in the distillation may be any solvent that can be azeotropically distilled with water, and examples thereof include benzene, toluene, xylene, alcohols having 10 or less carbon atoms, and organic acid esters such as ethyl benzoate. , One of these
Species or two or more can be used. The distillation is carried out in a range from the azeotropic temperature to the boiling point of the solvent used.

共沸脱水された酸化チタンは完全に脱水されたもので
はなく、僅かの水が結合あるいは付着しているアモルフ
ァスの水和酸化物であればよい。この水和酸化物は、共
沸温度以上の沸点で蒸留すると得られる。得られた水和
酸化物の乾燥は常圧下100℃前後の温度で行えばよい
が、減圧下で行えばより効率的である。乾燥後の仮焼
は、温度が高い場合には得られる酸化チタン粉体が凝集
してしまう恐れがあるので、300〜800℃で行うことが望
ましい。
The azeotropically dehydrated titanium oxide is not completely dehydrated but may be any amorphous hydrated oxide to which a small amount of water is bound or attached. This hydrated oxide is obtained by distillation at a boiling point higher than the azeotropic temperature. Drying of the obtained hydrated oxide may be performed at a temperature of about 100 ° C. under normal pressure, but is more efficient when performed under reduced pressure. The calcination after drying is preferably performed at 300 to 800 ° C., since if the temperature is high, the obtained titanium oxide powder may aggregate.

第二発明の4ハロゲン化チタンあるいは硫酸チタン溶
液を鉱酸酸性溶液で稀釈する際の、これらのチタン化合
物の濃度はTiO2として0.1〜0.5mol/で、稀釈後の酸濃
度は2N以上であればよいが、好ましくは4N以上とする。
このように稀釈したTi4+含有溶液を加熱沸騰して、Ti4+
と水との加水分解を十分に行う。加水分解後に有機溶剤
を加えて共沸蒸留を行う。
When diluting the titanium tetrahalide or titanium sulfate solution of the second invention with a mineral acid solution, the concentration of these titanium compounds should be 0.1 to 0.5 mol / as TiO 2 and the acid concentration after dilution should be 2N or more. However, it is preferably 4N or more.
The diluted Ti 4+ -containing solution is heated and boiled to obtain Ti 4+
And water are sufficiently hydrolyzed. After the hydrolysis, an organic solvent is added to carry out azeotropic distillation.

共沸蒸留は、第一発明の時と同様に行う。使用する有
機溶剤としては、第一発明と同じでよいが、水への溶解
度の小さいものを用いるのがこの方法の後の操作に都合
がよい。
The azeotropic distillation is performed in the same manner as in the first invention. The organic solvent to be used may be the same as that of the first invention, but using a solvent having low solubility in water is convenient for the operation after this method.

蒸留操作の終了後、生成した水和酸化物を濾過あるい
は遠心分離等の方法により分離後、第一発明と同様の操
作を行い粉体を得る。
After completion of the distillation operation, the produced hydrated oxide is separated by a method such as filtration or centrifugation, and the same operation as in the first invention is performed to obtain a powder.

(作 用) 本発明の特徴は、水酸化チタンあるいは水和酸化チタ
ンそのまま乾燥するのでなく、有機溶剤に接しせしめな
がら脱水を行い、有機溶剤分子に包まれた水和酸化物粒
子を取り出して乾燥させている点にある。このような方
法を行っているため、コロイドとしての粒子の一つ一つ
が互いに強固に結合することなく粉体とすることができ
るのである。また、仮焼温度も300〜800℃でよいため、
強固に凝集した粒子のない粉体を得ることができる。
(Operation) The feature of the present invention is that instead of drying titanium hydroxide or hydrated titanium oxide as it is, dehydration is performed while being in contact with an organic solvent, and hydrated oxide particles wrapped in organic solvent molecules are taken out and dried. Is in the point that By performing such a method, it is possible to form a powder without each of the colloidal particles being strongly bonded to each other. Also, since the calcining temperature can be 300-800 ° C,
A powder without strongly aggregated particles can be obtained.

以下、実施例をもって本発明を更に詳細に説明する
が、本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1 TiO2として0.3mol/に相当するTiCl4を水500mlに加
えてから十分に攪拌しながらアンモニア水を加えて水酸
化チタンを得た。この水酸化チタンを母液から遠心分離
法で分離後、直ちに1リットルのイソアミルアルコール
中に分散させ、加熱蒸留して、沸点が105℃の点で蒸留
を停止し、静置後、沈降物を濾過分離し、100℃で十分
に乾燥の後、500℃で1時間仮焼してTiO2の超微粒子粉
体を得た。
Example 1 TiCl 4 equivalent to 0.3 mol / TiO 2 was added to 500 ml of water, and then ammonia water was added with sufficient stirring to obtain titanium hydroxide. Immediately after separating the titanium hydroxide from the mother liquor by centrifugation, the titanium hydroxide is dispersed in 1 liter of isoamyl alcohol, distilled by heating, the distillation is stopped at a point having a boiling point of 105 ° C., and after standing, the precipitate is filtered. After separating and drying sufficiently at 100 ° C., it was calcined at 500 ° C. for 1 hour to obtain ultrafine TiO 2 powder.

得られた酸化チタン微粉体の電子顕微鏡写真を第1図
に示す。また、比較のため市販の酸化チタン微粉体(チ
タン工業(株)製)の電子顕微鏡写真を第2図に示す。
第1図の顕微鏡写真からわかるように、本実施例で得ら
れたTiO2は粒径0.1μm以下、より具体的には0.02μm
〜0.05μmの超微粒子粉体である。
FIG. 1 shows an electron micrograph of the obtained titanium oxide fine powder. FIG. 2 shows an electron micrograph of a commercially available fine titanium oxide powder (manufactured by Titanium Industry Co., Ltd.) for comparison.
As can be seen from the micrograph of FIG. 1, the TiO 2 obtained in this example had a particle size of 0.1 μm or less, more specifically 0.02 μm.
It is an ultra-fine particle powder of about 0.05 μm.

実施例2 実施例1と同様にして、遠心分離後の水酸化チタンを
1リットル中のオクタノール中に入れ、界面活性剤を10
ml加えてから攪拌したのち蒸留し、沸点が110℃となっ
た時点で蒸留を止め、以後は実施例1と同様に行いTiO2
の超微粒子粉体を得た。得られた超微粒子粉体は粒径0.
1μm以下で、大部分が0.02μm〜0.05μmのものであ
った。
Example 2 In the same manner as in Example 1, the titanium hydroxide after centrifugation was placed in octanol in 1 liter, and the surfactant was added to 10%.
ml of distilled After stirring from, stopping the distillation when the boiling point became 110 ° C., thereafter performed in the same manner as in Example 1 TiO 2
Was obtained. The resulting ultrafine powder has a particle size of 0.
It was less than 1 μm and mostly 0.02 μm to 0.05 μm.

実施例3 TiO2として0.5mol/に相当する量のTiCl4を水1000ml
中に加えてから塩酸で4Nに調整し、10時間加熱沸騰させ
て十分に白濁させる。次いで、ブタノールを500ml加え
て蒸留し、沸点が100℃の点で蒸留を停止し、遠心分離
法で沈降物を分離した後、実施例1と同様に行いTiO2
超微粒子粉体を得た。得られた超微粒子粉体は、上記実
施例1および2と同様に粒径0.1μm以下で、90%以上
が0.02μm〜0.05μmのものであった。
Example 3 An amount of TiCl 4 corresponding to 0.5 mol / as TiO 2 in 1000 ml of water
After adding to the mixture, adjust to 4N with hydrochloric acid and heat to boiling for 10 hours to make it sufficiently cloudy. Then, butanol distilled by adding 500ml of boiling point stops distilled at point 100 ° C., after separation of the precipitate by centrifugation, to obtain ultrafine particles powder of TiO 2 carried out in the same manner as in Example 1 . The obtained ultrafine particle powder had a particle size of 0.1 μm or less and 0.02 μm to 0.05 μm in 90% or more as in Examples 1 and 2.

実施例4 上記実施例で得られたTiO2超微粒子粉体を静水圧法で
成形後、1300℃で2時間焼成した。得られた焼結体のカ
サ比重は、4.18であった。これに対し、市販品のTiO2
体を同様にして成形し、焼成した焼結体のカサ比重は3.
85であった。この結果が示すように、本発明により得ら
れた超微粉体の焼結体は、比重が大きく緻密であり、非
常に優れた物性および機械特性を示す。
Example 4 The TiO 2 ultrafine particle powder obtained in the above example was molded by a hydrostatic method, and then fired at 1300 ° C. for 2 hours. The bulk specific gravity of the obtained sintered body was 4.18. In contrast, a commercially available TiO 2 powder was similarly molded and fired, and the sintered body had a bulk specific gravity of 3.
It was 85. As shown by these results, the sintered body of the ultrafine powder obtained according to the present invention has a large specific gravity and is dense, and exhibits extremely excellent physical and mechanical properties.

以上述べたように、上記各実施例で得られた酸化チタ
ン微粉体は、いずれも粒径0.1μm以下の超微粒子粉体
であり、焼結材料として使用したとき良好な圧粉性を示
し、得られた焼結体は真比重に近い高密度体であった。
As described above, the titanium oxide fine powder obtained in each of the above examples is an ultrafine powder having a particle size of 0.1 μm or less, and exhibits good compactibility when used as a sintered material. The obtained sintered body was a high-density body close to the true specific gravity.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例1によって得た酸化チタン微粉体の粒子
構造を示す電子顕微鏡写真、 第2図は市販の酸化チタン微粉体の粒子構造を示す電子
顕微鏡写真である。
FIG. 1 is an electron micrograph showing the particle structure of the titanium oxide fine powder obtained in Example 1, and FIG. 2 is an electron micrograph showing the particle structure of a commercially available titanium oxide fine powder.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 窪田 ▲吉▼孝 神奈川県相模原市相模大野7―37―17 (72)発明者 星 雄二 千葉県船橋市坪井町722番地1 日産化 学工業株式会社中央研究所内 審査官 後谷 陽一 (56)参考文献 特公 昭28−6277(JP,B1) (58)調査した分野(Int.Cl.6,DB名) C01G 23/00 - 23/08 C04B 35/46──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kubota ▲ Yoshi ▼ Takashi 7-37-17 Sagamiono, Sagamihara-shi, Kanagawa (72) Inventor Yuji Hoshi 722-1, Tsuboi-cho, Funabashi-shi, Chiba Nissan Chemical Industry Co., Ltd. Examiner in Central Research Institute Yoichi Gotani (56) References JP-B-28-6277 (JP, B1) (58) Fields investigated (Int. Cl. 6 , DB name) C01G 23/00-23/08 C04B 35 / 46

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水酸化チタンを有機溶剤中に分散させた
後、共沸温度以上で蒸留し、ここに得られる水和酸化チ
タンを母液から分離した後、乾燥、仮焼することを特徴
とする酸化チタン微粉体の製造方法。
(1) dispersing titanium hydroxide in an organic solvent, distilling the mixture at an azeotropic temperature or higher, separating the hydrated titanium oxide obtained from a mother liquor, drying and calcining the titanium oxide; Of producing fine titanium oxide powder.
【請求項2】チタンのハロゲン化物あるいは硫酸チタン
を鉱酸酸性の水で稀釈し、加熱して加水分解し、この加
水分解された液に有機溶剤を加え共沸温度以上で蒸留し
た後、生成した水和酸化チタンを分離し、乾燥、仮焼す
ることを特徴とする酸化チタン微粉体の製造方法。
2. A titanium halide or titanium sulfate is diluted with water of mineral acidity, heated and hydrolyzed, and an organic solvent is added to the hydrolyzed liquid and distilled at an azeotropic temperature or higher. A method for producing fine titanium oxide powder, comprising separating, drying and calcining the hydrated titanium oxide.
JP1012982A 1989-01-21 1989-01-21 Method for producing titanium oxide fine powder Expired - Lifetime JP2805202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1012982A JP2805202B2 (en) 1989-01-21 1989-01-21 Method for producing titanium oxide fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1012982A JP2805202B2 (en) 1989-01-21 1989-01-21 Method for producing titanium oxide fine powder

Publications (2)

Publication Number Publication Date
JPH02196028A JPH02196028A (en) 1990-08-02
JP2805202B2 true JP2805202B2 (en) 1998-09-30

Family

ID=11820413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1012982A Expired - Lifetime JP2805202B2 (en) 1989-01-21 1989-01-21 Method for producing titanium oxide fine powder

Country Status (1)

Country Link
JP (1) JP2805202B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3819069B2 (en) * 1995-06-02 2006-09-06 三好化成株式会社 Cosmetics
JP3686166B2 (en) * 1996-05-16 2005-08-24 三好化成株式会社 Cosmetic composition and cosmetics
KR100343395B1 (en) * 1999-05-28 2002-07-15 유석범 Method for production of titanium dioxide ultrafine powders with rutile phase from titanium sulfate
JP3959213B2 (en) * 1999-06-30 2007-08-15 住友化学株式会社 Titanium oxide, photocatalyst body using the same, and photocatalyst body coating agent
JP2001335321A (en) * 2000-05-24 2001-12-04 Sumitomo Chem Co Ltd Titanium hydroxide, and photocatalyst and coating agent prepared therewith
KR100450225B1 (en) * 2001-08-31 2004-09-24 재단법인 포항산업과학연구원 Fabrication method of nanoscale-porous body

Also Published As

Publication number Publication date
JPH02196028A (en) 1990-08-02

Similar Documents

Publication Publication Date Title
CN1128106C (en) Method for prodn. of mono-dispersed and crystalline TiO2 ultrafine powders from aqueous TiOCl2 solution using homogeneous precipitation
Wang et al. Synthesis of nanocrystalline TiO2 in alcohols
Yang et al. Preparation of rutile titania nanocrystals by liquid method at room temperature
Baldassari et al. Microwave-hydrothermal process for the synthesis of rutile
JPS6317221A (en) Crystalline titanium oxide sol and production thereof
JPS62207718A (en) Sol of crystalline titanium oxide and its preparation
US20080311031A1 (en) Methods For Production of Metal Oxide Nano Particles With Controlled Properties, and Nano Particles and Preparations Produced Thereby
JP3198494B2 (en) Conductive oxide particles and method for producing the same
JP2805202B2 (en) Method for producing titanium oxide fine powder
CN1038188C (en) Preparation method of high-purity micro-fine rutile-type titanium dioxide
KR100708812B1 (en) Manufacturing method of anatase type titanium dioxide photocatalyst
JPS61106414A (en) Fine powder of electroconductive titanium oxide of low oxidation state and its preparation
JPS5939366B2 (en) Manufacturing method of zirconium oxide fine powder
JPH05163022A (en) Spherical anatase titanium oxide and its production
JPH1111947A (en) Production of antimony doped tin oxide powder and coating material containing the same
JPS62278125A (en) Production of fine particles of crystalline titanium oxide
JP3418015B2 (en) Pigment and its production method
JP2003095657A (en) Titanium oxide sol dispersed in organic solvent and method of manufacturing it
CN1597534A (en) Preparation method of nanometer rutile type titanium dioxide
KR20000075055A (en) Method for production of titanium dioxide ultrafine powders with rutile phase from titanium sulfate
JPH026332A (en) Production of indium oxide-tim oxide powder
JP2005263533A (en) Method for producing titanium oxide-based fine wire-like product
KR100424069B1 (en) Preparation of TiO2 ultrafine powders from titanium tetrachloride with inorganic acid solution by the advanced washing method
JPH04280816A (en) Production of porous fine particulate titanium oxide
JPS61251517A (en) Production of perovskite type oxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term