JPS62278125A - Production of fine particles of crystalline titanium oxide - Google Patents

Production of fine particles of crystalline titanium oxide

Info

Publication number
JPS62278125A
JPS62278125A JP12177486A JP12177486A JPS62278125A JP S62278125 A JPS62278125 A JP S62278125A JP 12177486 A JP12177486 A JP 12177486A JP 12177486 A JP12177486 A JP 12177486A JP S62278125 A JPS62278125 A JP S62278125A
Authority
JP
Japan
Prior art keywords
titanium oxide
water
fine particles
solution
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12177486A
Other languages
Japanese (ja)
Inventor
Juichi Nishii
西井 重一
Tadayoshi Shimizu
清水 忠義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP12177486A priority Critical patent/JPS62278125A/en
Publication of JPS62278125A publication Critical patent/JPS62278125A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain spherical fine particles of crystalline titanium oxide having high monodispersibility by low-temperature heat treatment, by hydrolyzing a titanium alkoxide under a specific controlled condition to give fine particles of amorphous titanium oxide and further dispersing the fine particles into water under a specified condition. CONSTITUTION:(1) <=1.2mol/l titanium alkoxide is dissolved in an alcohol having <=3g/l water content to give a titanium alkoxide solution. (2) The solution is mixed with <=100g/l solution of water in alcohol containing <= an equivalent amount of water required for hydrolysis of the titanium alkoxide and hydrolysis is started. (3) At a stage of formation of colloidal particles of titanium oxide, >=0.5 as much as 2-10g/l solution of water in alcohol as the total amount of the reaction solution is added to the solution. (4) Formed fine particles of titanium oxide are grown. (5) Prepared fine particles of amorphous titanium oxide are dispersed in water at >=40 deg.C and heat-treated in air or oxygen.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、結晶質酸化チタン微粒子の製造方法に関し、
特に、単分散で真球度の高い結晶質酸化チタン微粒子を
、高収量で製造する方法に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing crystalline titanium oxide fine particles,
In particular, the present invention relates to a method for producing monodisperse and highly spherical crystalline titanium oxide fine particles in high yield.

〔従来の技術〕[Conventional technology]

結晶質酸化チタン微粒子は、日焼は止めクリーム、ファ
ンデーションなどの化粧品の原料1合成繊維のつや消し
剤、チタン酸バリウム、ジルコン酸チタン酸鉛などのエ
レクトロニクス材料の原料等として用いられており、微
細で単分散性の高い球状粒子のものが求められている。
Crystalline titanium oxide fine particles are used as raw materials for cosmetics such as sunscreen creams and foundations, as matting agents for synthetic fibers, and as raw materials for electronic materials such as barium titanate and lead zirconate titanate. There is a demand for spherical particles with high monodispersity.

従来、このような結晶質酸化チタン微粒子の製造には、
硫酸チタニルを熱加水分解して得られる含水酸化チタン
を400〜500℃程度の温度で焼成する硫酸法や四塩
化チタン蒸気を酸素と1000℃程度の温度で反応させ
る塩素法が用いられている。
Conventionally, in the production of such crystalline titanium oxide fine particles,
The sulfuric acid method, in which hydrous titanium oxide obtained by thermally hydrolyzing titanyl sulfate is calcined at a temperature of about 400 to 500°C, and the chlorine method, in which titanium tetrachloride vapor is reacted with oxygen at a temperature of about 1000°C, are used.

また、チタンアルコキシドの加水分解を制御してサブミ
クロンオーダーの非晶質微粒子を合成し、この微粒子を
500℃以上の温度で焼成する方法も報告されている。
Furthermore, a method has been reported in which submicron-order amorphous fine particles are synthesized by controlling the hydrolysis of titanium alkoxide, and the fine particles are fired at a temperature of 500° C. or higher.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、これらの方法で得られる結晶質の酸化チ
タン微粒子は、粒度分布の幅が広くて単分散性が低(、
形状も不定形あるいは不揃いであるという問題を有して
いる。
However, the crystalline titanium oxide fine particles obtained by these methods have a wide particle size distribution and low monodispersity (
There is also a problem that the shape is irregular or irregular.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、チタンアルコキシドを特定の制iTj 
した条件下で加水分解することにより得られる非晶質酸
化チタン微粒子を、更に特別の条件で分散処理すること
により、従来術えられなかった低温の加熱処理でも目的
とする、粒径がサブミクロンオーダーで単分散性の高い
球状の結晶質酸化チタン微粒子を得ることができること
を見出し、本発明に到達した。
The present inventors have developed titanium alkoxide with specific control iTj
By further dispersing the amorphous titanium oxide particles obtained by hydrolyzing them under special conditions, we can achieve the desired submicron particle size even with low-temperature heat treatment, which was previously impossible. We have discovered that it is possible to obtain spherical crystalline titanium oxide fine particles with high monodispersity in an orderly manner, and have arrived at the present invention.

すなわち、本発明は、水の含有量が3g71以下である
アルコールにチタンアルコキシドを濃度1.2mol/
 j!以下に溶解し、 得られたチタンアルコキシド溶液に、該チタンアルコキ
シドの加水分解に要する当量以下の水を濃度100g/
 1以下で含有する水のアルコール溶液を添加して加水
分解を開始せしめ、 酸化チタンのコロイド粒子が生成した段階で、水の濃度
が2〜10g/ 1である水のアルコール溶液を反応溶
液全量の0.5重量倍以上添加し、次いで前記生成した
酸化チタン微粒子を成長させ、 得られた非晶質酸化チタン微粒子を40℃以上の水中で
分散処理した後、空気中または酸素中で加熱処理するこ
とからなる結晶質酸化チタン微粒子の製法を提供するも
のである。
That is, in the present invention, titanium alkoxide is added to alcohol with a water content of 3g71 or less at a concentration of 1.2mol/
j! To the obtained titanium alkoxide solution, add water at a concentration of 100 g/less than the equivalent amount required for hydrolysis of the titanium alkoxide.
Hydrolysis is started by adding an alcoholic solution of water with a concentration of 2 to 10 g/1 to start hydrolysis, and at the stage when colloidal particles of titanium oxide are formed, an alcoholic solution of water with a water concentration of 2 to 10 g/1 is added to the total amount of the reaction solution. Add 0.5 times more by weight or more, then grow the generated titanium oxide fine particles, disperse the obtained amorphous titanium oxide fine particles in water at 40°C or higher, and then heat treat in air or oxygen. The present invention provides a method for producing crystalline titanium oxide fine particles consisting of the following.

本発明の方法によれば、加水分解段階で一定量の酸化チ
タン微粒子の核が生成した後は、それらを核とする粒成
長のみが促進され、後続の核生成が抑制される結果、単
分散性の高いチタン酸化物微粒子が得られる。
According to the method of the present invention, after a certain amount of titanium oxide fine particle nuclei are generated in the hydrolysis step, only grain growth using these as nuclei is promoted, and subsequent nucleation is suppressed, resulting in a monodisperse Titanium oxide fine particles with high properties are obtained.

なお、この段階で得られる加熱処理前の酸化チタンは一
般に水和した非晶質のものである。
Note that the titanium oxide obtained at this stage before heat treatment is generally hydrated and amorphous.

本発明の方法においては、まず第1の工程で、原料であ
るチタンアルコキシドを水の含有量の3g/l以下のア
ルコールを溶媒として1.2mol/ i!以下、好ま
しくは0.05〜O,’J+ol/ 1の濃度の溶液に
調製する。
In the method of the present invention, in the first step, titanium alkoxide as a raw material is mixed with 1.2 mol/i! of titanium alkoxide using alcohol containing 3 g/l or less of water as a solvent. Hereinafter, the solution is preferably prepared at a concentration of 0.05 to O,'J+ol/1.

ここで用いられるチタンアルコキシドとしては、例えば
、チタンメトキシド、チタンエトキシド、チタンプロポ
キシド、チタンブトキシド等、好ましくはチタンエトキ
シド、チタンイソブロボキシドカ(挙げられる。またン
容媒として用いられるアルコールはチタンアルコキシド
の良溶媒であり、かつ水と相溶性を有するものが適して
おり、具体例としては、メタノール、エタノール、エタ
ノール変性アルコール(エタノール−プロパノールの9
:l混合物)、プロパツール等、好ましくはエタノール
を挙げることができる。
The titanium alkoxide used here includes, for example, titanium methoxide, titanium ethoxide, titanium propoxide, titanium butoxide, etc., and preferably titanium ethoxide, titanium isobroboxoxide, etc. Also, the alcohol used as the medium is a good solvent for titanium alkoxide and is compatible with water. Specific examples include methanol, ethanol, ethanol-denatured alcohol (ethanol-propanol).
:l mixture), propatool, etc., preferably ethanol.

上記アルコールは、水の含有量が3 g/ e以下、好
ましくは2871以下のものを用いる。水の含有量が3
g/βを超えると原料であるチタンアルコキシドをアル
コールに溶解直後から急激なチタンアルコキシドの加水
分解反応が生起し、酸化チタン微粒子の核生成と粒子成
長を制御することが困難となるため、単分散性の高い酸
化チタン微粒子を得ることができない。
The alcohol used has a water content of 3 g/e or less, preferably 2,871 g/e or less. Water content is 3
If g/β is exceeded, a rapid hydrolysis reaction of titanium alkoxide occurs immediately after dissolving the raw material titanium alkoxide in alcohol, making it difficult to control the nucleation and particle growth of titanium oxide fine particles. It is not possible to obtain titanium oxide fine particles with high properties.

なお、通常、アルコールは、その種類、嚢造方法等にも
よるが、水を0.2〜2g/lの範囲で含有している0
本発明では、水の含有量がこの範囲を超える量であって
も3 g/ 1以下であるアルコールであれば使用する
ことができるため、一度使用したアルコールを再生利用
する場合の条件が緩和さ゛れているという利点がある。
Note that alcohol usually contains water in the range of 0.2 to 2 g/l, depending on its type, cyst preparation method, etc.
In the present invention, even if the water content exceeds this range, alcohol with a content of 3 g/1 or less can be used, which eases the conditions for recycling used alcohol. It has the advantage of being

前記チタンアルコキシドの濃度が1.2mol/ 1を
超エルと、チタンアルコキシドの加水分解反応における
反応生成物の濃□度が高くなり過ぎて、酸化チタン微粒
子の核生成と粒成長を制御することが困難となるため、
単分散性の高い酸化チタン微粒子を得ることができない
When the concentration of titanium alkoxide exceeds 1.2 mol/1, the concentration of the reaction product in the hydrolysis reaction of titanium alkoxide becomes too high, making it difficult to control the nucleation and grain growth of titanium oxide fine particles. Because it becomes difficult,
It is not possible to obtain titanium oxide fine particles with high monodispersity.

次に、第2の工程で、上記のようにして得られたチタン
アルコキシドのアルコール7 ルコール溶液を添加してチタンアルコキシドの加水分解
反応を開始させる。このとき添加する水の量は、チタン
アルコキシドの加水分解反応に必要な当量(化学量論量
)以下とする必要があり、好ましくは当量の0.7〜0
.8倍量、特に好ましくは約0.75倍量に制御する。
Next, in the second step, the alcohol solution of the titanium alkoxide obtained as described above is added to start the hydrolysis reaction of the titanium alkoxide. The amount of water added at this time needs to be equal to or less than the equivalent (stoichiometric amount) required for the hydrolysis reaction of titanium alkoxide, preferably 0.7 to 0.0 of the equivalent.
.. The amount is controlled to 8 times, particularly preferably about 0.75 times.

水の量が反応当量より多いと、得られる酸化チタン微粒
子の粒径の均一性が低下し、多分散となる。なお、水の
量が少な過ぎると酸化チタンのコロイド粒子の析出に時
間がかかり好ましくない。例えば、チタンテトラアルコ
キシドを原料として用いる場合、加水分解反応は、下記
反応式: %式% (但し、Rはアルキル基) に従うと考えられ、この場合チタンアルコキシド1mo
lに対しては、水の反応当量は4mo+であるから、本
発明によると水は4mol以下の量で添加される。
When the amount of water is greater than the reaction equivalent, the uniformity of the particle size of the obtained titanium oxide fine particles decreases, resulting in polydispersity. It should be noted that if the amount of water is too small, it will take time for the colloidal particles of titanium oxide to precipitate, which is not preferable. For example, when titanium tetraalkoxide is used as a raw material, the hydrolysis reaction is considered to follow the following reaction formula: % formula % (where R is an alkyl group); in this case, 1 mo of titanium alkoxide
1, the reaction equivalent of water is 4 mol+, so according to the invention water is added in an amount of 4 mol or less.

また、チタンアルコキシドの加水分解に必要な水は、ア
ルコールで希釈して水のアルコール溶液として添加する
ことが必要であり、その濃度は100g/ 1以下、好
ましくは20〜75g/ 1である。
Further, the water required for hydrolysis of titanium alkoxide needs to be diluted with alcohol and added as an alcoholic solution of water, and its concentration is 100 g/1 or less, preferably 20 to 75 g/1.

100g/ lを超えると、水のアルコール溶液をチタ
ンアルコキシド溶液に添加した直後から、急激にチタン
アルコキシドの加水分解反応が生起し、酸化チタン微粒
子の核生成と粒成長を制御することが困難となるため、
単分散性の高い酸化チタン微粒子を得ることができない
。また、20g/’j!未満の濃度の水のアルコール溶
液では、加水分解による核生成に時間がかかり、不均一
な核生成となり、生成物の単分散性がそこなわれ易くな
り好ましくない。
If it exceeds 100 g/l, a hydrolysis reaction of titanium alkoxide will occur immediately after adding the water-alcoholic solution to the titanium alkoxide solution, making it difficult to control the nucleation and grain growth of titanium oxide fine particles. For,
It is not possible to obtain titanium oxide fine particles with high monodispersity. Also, 20g/'j! A water-alcohol solution having a concentration lower than that is not preferred because it takes time for nucleation by hydrolysis, resulting in non-uniform nucleation, which tends to impair the monodispersity of the product.

次に、第3の工程として、上記の加水分解反応の進行に
よって酸化チタンコロイド粒子が生成した段階で水の濃
度が2〜lOg/ 1 、好ましくは2〜5g/lの水
のアルコール溶液を添加し、反応溶液を希釈して、核生
成を抑制し、粒成長を促進する。
Next, as a third step, at the stage where colloidal titanium oxide particles are generated by the progress of the above hydrolysis reaction, an alcoholic solution of water with a water concentration of 2 to 1 Og/1, preferably 2 to 5 g/l is added. and dilute the reaction solution to suppress nucleation and promote grain growth.

反応溶液を希釈するために添加する上記水のアルコール
溶液中の水の濃度が2g71未満であると、酸化チタン
微粒子の収率が低く、また10g/βを超えると、生成
する酸化チタン微粒子が凝集し、微粒子の粒径分布が多
分散になるおそれが大きい。
If the concentration of water in the alcoholic solution of the water added to dilute the reaction solution is less than 2 g/β, the yield of titanium oxide fine particles will be low, and if it exceeds 10 g/β, the produced titanium oxide fine particles will aggregate. However, there is a large possibility that the particle size distribution of the fine particles will become polydisperse.

酸化チタンコロイドの生成は、反応溶液の白濁を伴なう
ので、この僅かな白濁を視認した後に水のアルコール溶
液の添加を行なえばよい。通常、先の第2工程における
水のアルコール溶液の添加後、室温で数十秒程度経過す
ると白濁が認められる。この白濁は、加水分解により生
成したTi(OH)。
Since the production of colloidal titanium oxide is accompanied by clouding of the reaction solution, the water-alcohol solution may be added after visualizing this slight cloudiness. Usually, cloudiness is observed after approximately several tens of seconds have passed at room temperature after the addition of the water-alcohol solution in the second step. This white turbidity is Ti(OH) generated by hydrolysis.

の濃度が臨界飽和点を超え、Ti(OH)4が核生成の
前駆体となって縮合反応により酸化チタンの核を形成し
てコロイド粒子になり成長して視認できる程度に至った
ものと考えられる。従って、この第3工程で水のアルコ
ール溶液を添加するまでの時間を適当に選定することに
よって核の生成数を制御し、それらの核だけを成長させ
ることによって任意の粒径の酸化チタン微粒子を製造す
ることが可能である。
It is thought that the concentration of Ti(OH)4 exceeds the critical saturation point, and Ti(OH)4 becomes a precursor for nucleation, forming titanium oxide nuclei through a condensation reaction, growing into colloidal particles, and reaching a level where they can be visually recognized. It will be done. Therefore, by appropriately selecting the time until the addition of the water-alcohol solution in this third step, the number of nuclei generated can be controlled, and by growing only those nuclei, titanium oxide fine particles of any particle size can be produced. It is possible to manufacture.

水のアルコール溶液の添加量は、溶液全体の0.5重量
倍量以上必要で、好ましくは0.8〜1.5重量倍量で
ある。このアルコールの添加によって後続の酸化チタン
の核生成が抑制されて、得られる粒子は単分散性の高い
ものとなる。水のアルコール溶液の添加量が0.5重量
倍量未満であると、得られる粒子は単分散性の低いもの
となる。これは、生成するTi(OH)4?W度が再び
、臨界飽和点以上となってコロイド粒子の析出が再開さ
れ、より微小な粒子が混在することになるためと考えら
れる。
The amount of the water-alcoholic solution added must be 0.5 times the weight of the entire solution, preferably 0.8 to 1.5 times the weight of the entire solution. The addition of alcohol suppresses subsequent nucleation of titanium oxide, and the resulting particles have high monodispersity. If the amount of the water-alcohol solution added is less than 0.5 times the weight, the resulting particles will have low monodispersity. This is the Ti(OH)4? This is considered to be because the degree of W becomes higher than the critical saturation point again, and the precipitation of colloidal particles restarts, resulting in the coexistence of finer particles.

なお、この水のアルコール溶液の添加量が多過ぎても、
あまり粒子の単分散化に寄与せず、むしろTi(OH)
、の濃度が低くなることによって酸化チタンの収率が低
下したり、粒成長に要する時間が長くなるなど製造上の
不利が生じる。なお、添加する水のアルコール溶液は、
溶液を希釈するためのものであり、上記加水分解に関し
て例示のものを用いることができるが、加水分解時に用
いたアルコールと異なるものでも差し支えない。
Furthermore, even if the amount of alcohol solution added to this water is too large,
It does not contribute much to the monodispersion of particles, but rather Ti(OH)
A decrease in the concentration of titanium oxide causes disadvantages in production, such as a decrease in the yield of titanium oxide and an increase in the time required for grain growth. The alcoholic solution of water to be added is
It is for diluting the solution, and the alcohols exemplified above for hydrolysis can be used, but alcohols different from the alcohol used during hydrolysis may also be used.

前記水のアルコール溶液の添加によってコロイド粒子の
新たな生成を停止させたのち、好ましくは溶液を攪拌し
ながら、粒成長を行なわセる。この攪拌は、加水分解に
よって1成した核を溶液全体に均一に分散せしめて粒子
の凝集を防ぐための陛作であり、また核を新鮮なTi(
OH)4溶液と接触させて真球状の粒成長を促すために
行なわれる。
After stopping new production of colloidal particles by adding an alcoholic solution of the water, grain growth is carried out, preferably while stirring the solution. This stirring is done to uniformly disperse the nuclei formed by hydrolysis throughout the solution and prevent particle aggregation, and also to mix the nuclei with fresh Ti (
This is done to promote the growth of truly spherical grains by bringing them into contact with an OH)4 solution.

攪拌方法は特に制限されず、通常のプロペラ型攬拌機に
よってもよいし、超音波によって行なってもよい。
The stirring method is not particularly limited, and may be carried out using an ordinary propeller-type stirrer or ultrasonic waves.

酸化チタンの粒成長速度は、水のアルコール)8液を添
加した後ある時間までは早いが、粒子の成長と共に緩慢
となる。従ってその時間を適当に選択することによって
も粒径の異る酸化チタン微粒子を得ることができ、粒径
をサブミクロンオーダーで制御することも容易である。
The grain growth rate of titanium oxide is fast until a certain time after addition of the water-alcohol solution, but it slows down as the grains grow. Therefore, titanium oxide fine particles having different particle sizes can be obtained by appropriately selecting the time, and the particle size can be easily controlled to the submicron order.

次の工程では、こうして粒径を制御しつつ得られた非晶
質の酸化チタン微粒子を固液分離後、40℃以上、好ま
しくは80℃以上の水中にて分散処理する。このとき、
使用する水の温度によりこの段階でも結晶化の進行が起
り、水温が高い程進み・易い。分散処理水の温度が40
℃未満であると、次工程における完全な結晶化に高温を
必要とするばかりでなく、粒径がサブミクロンオーダー
で単分散性の高い微粒子が得られ難い不利がある。また
、分散処理水にアンモニア水、界面活性剤などを添加す
ると、生成物に窒素、炭素などの不純物が混入する上に
、結晶化に高温を必要とするので好ましくない。分散処
理の方法は、特に限定されず、例えば、撹拌機による撹
拌、超音波による分散などが挙げられる。
In the next step, the amorphous titanium oxide fine particles thus obtained while controlling the particle size are subjected to solid-liquid separation and then dispersed in water at a temperature of 40° C. or higher, preferably 80° C. or higher. At this time,
Crystallization progresses at this stage depending on the temperature of the water used, and the higher the water temperature, the easier it is to progress. The temperature of the dispersion treatment water is 40
If the temperature is less than 0.degree. C., it is disadvantageous that not only a high temperature is required for complete crystallization in the next step, but also that it is difficult to obtain fine particles with a submicron-order particle size and high monodispersity. Further, it is not preferable to add ammonia water, a surfactant, etc. to the dispersion-treated water, since impurities such as nitrogen and carbon are mixed into the product and high temperatures are required for crystallization. The method of dispersion treatment is not particularly limited, and examples thereof include stirring using a stirrer, dispersion using ultrasonic waves, and the like.

次に、酸化チタン微粒子は、通常乾燥後、空気中または
酸素中で加熱処理に供されるが、乾燥と加熱処理を同時
に行なってもよい。結晶化に必要な加熱処理の温度は、
前記分散処理の水′温によるが、40〜50℃以上でよ
い。一般に、前記分散処理の水温が高い程、必要な加熱
処理の温度は低くてすむ。前記の温度以上の加熱処理に
より、非晶質微粒子はアナターゼ型結晶質へ転化し、さ
らに約600℃以上での処理によるとルチル型結晶質へ
転化する。したがって、加熱処理の温度を選択すること
により、結晶型を決定することができる。ただし、加熱
処理の温度が高過ぎると粒子間の焼結や粒成長が起るの
で、温度は900℃以下が望ましい、加熱処理の時間は
、温度によるが、通常30分〜1時間でよい。
Next, the titanium oxide fine particles are usually subjected to heat treatment in air or oxygen after drying, but drying and heat treatment may be performed simultaneously. The heat treatment temperature required for crystallization is
Although it depends on the temperature of the water used in the dispersion treatment, it may be 40 to 50°C or higher. Generally, the higher the water temperature in the dispersion treatment, the lower the required heat treatment temperature. The amorphous fine particles are converted into anatase-type crystalline particles by heat treatment at the above-mentioned temperature or higher, and further converted into rutile-type crystalline particles by treatment at about 600° C. or higher. Therefore, the crystal type can be determined by selecting the heat treatment temperature. However, if the temperature of the heat treatment is too high, sintering between particles and grain growth will occur, so the temperature is preferably 900° C. or less. The time of the heat treatment depends on the temperature, but is usually 30 minutes to 1 hour.

こうして得られる本発明の結晶質酸化チタン微粒子は、
真球度及び単分散性が高いものであり、化粧品の材料、
合成繊維のつや消し剤のほか、顔料、塗料、触媒担体、
宝石などの原料として最適である。また、焼結セラミッ
クスの原料粉末としても最適であるため、エレクトロニ
クス材料、例えばチタン酸バリウム(BaTiO3)、
ジルコン酸チタン酸鉛(PZT)などの原料酸化チタン
として有用である。
The crystalline titanium oxide fine particles of the present invention thus obtained are:
It has high sphericity and monodispersity, and is used as a material for cosmetics,
In addition to matting agents for synthetic fibers, pigments, paints, catalyst carriers,
It is ideal as a raw material for jewelry, etc. It is also ideal as a raw material powder for sintered ceramics, so it is suitable for electronic materials such as barium titanate (BaTiO3),
It is useful as a raw material titanium oxide such as lead zirconate titanate (PZT).

〔実施例〕〔Example〕

以下、実施例および比較例によって本発明を具体的に説
明する。
Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples.

以下の各実験において、まず、チタンイソプロポキシド
Ti(OCJt)<を0.12moLの濃度で、含水量
1.2g/ 1 (Dエタノールに)8解させたl8液
720m1に、蒸留水を55g/ /含有せしめたエタ
ノール溶液80m1を添加した。いずれの実験でも、添
加後、約1分間経過した時、溶液が白l蜀した。
In each of the following experiments, first, 55 g of distilled water was added to 720 ml of l8 solution prepared by dissolving titanium isopropoxide Ti (OCJt) at a concentration of 0.12 moL with a water content of 1.2 g/1 (in D ethanol). 80 ml of ethanol solution containing / was added. In both experiments, the solution turned white approximately 1 minute after addition.

次、各実験別に、水の1度がそれぞれ0.3.1.2゜
1.7.2.L  3. 5.10または15g/ j
!であるエタノール800m1を添加した。次いで反応
溶液を攪拌して生成した酸化チタン微粒子の粒成長を行
なわしめ、約1時間経過後に反応溶液を遠心分、?!機
によって固液分離した。
Next, for each experiment, 1 degree of water is 0.3, 1.2 degrees, 1.7.2 degrees, respectively. L 3. 5.10 or 15g/j
! 800 ml of ethanol was added. Next, the reaction solution was stirred to allow grain growth of the generated titanium oxide fine particles, and after about 1 hour, the reaction solution was centrifuged. ! Solid-liquid separation was performed using a machine.

次に、いずれの実験の場合も、得られた酸化チタン微粒
子を20℃の水中において30分間撹拌する分散処理を
2回繰返した後、固液分離し、80’cで16時間真空
乾燥した。
Next, in all experiments, the obtained titanium oxide fine particles were stirred twice in water at 20° C. for 30 minutes, followed by solid-liquid separation, and vacuum-dried at 80° C. for 16 hours.

各実験で得られた酸化チタン微粒子の走査型電子顕微鏡
(SEM)写真を撮影し、真球度、単分散性、粒径を測
定し、下記の基準で評価した。
A scanning electron microscope (SEM) photograph of the titanium oxide fine particles obtained in each experiment was taken, and the sphericity, monodispersity, and particle size were measured and evaluated according to the following criteria.

結果を表1に示す(*を付した実験は、本発明の範囲外
の条件による。以下、同し。)。
The results are shown in Table 1 (experiments marked with * were based on conditions outside the scope of the present invention. The same applies hereinafter).

(1)  真球度 I:掻めて高い。(1) Sphericity I: Extremely high.

[I:高い。[I: High.

■:低い。■: Low.

(2)  粒径の測定法 SEM写真によりランダムに50個の粒子の粒径を測定
し、それらの平均粒径のまゎりに40個の粒子が含まれ
る粒径の範囲を求める。
(2) Measurement method of particle size The particle size of 50 particles was randomly measured using a SEM photograph, and the range of particle sizes that included 40 particles around the average particle size was determined.

(3)  分散系の性質 単分散:測定全粒子の70%以上の粒子が、モード径の
±20%以内に含まれる。
(3) Characteristics of the dispersion system: Monodisperse: 70% or more of all particles measured are within ±20% of the mode diameter.

はぼ単分散:測定全粒子の50〜70%の粒子が、モー
ド径の±20%以内に含ま れる。
Monodisperse: 50 to 70% of all particles measured are within ±20% of the mode diameter.

多分散コ測定全粒子の50%未満の粒子が、モード径の
±20%以内に含まれる。
Polydispersity: Less than 50% of all particles measured fall within ±20% of the mode diameter.

また、上記酸化チタン微粒子の乾燥粉末は、X線回折に
よって非晶質であることがわがった。
Moreover, the dry powder of the titanium oxide fine particles was found to be amorphous by X-ray diffraction.

実験陽9〜11 チタンイソプロポキシドをi8解せしめるエタノールと
して含水12.8g//のちのを使用し第3の工程で添
加する水のアルコール溶液の水の含有量をそれぞれ1.
7.3または5 g/ lとした以外は実験階1〜8と
同様にして非晶質酸化チタン微粒子を製造し、評価した
。結果を表1に示す。
Experiments 9 to 11 ethanol containing 12.8 g of water was used as ethanol for i8 decomposition of titanium isopropoxide, and the water content of the alcoholic solution of water added in the third step was adjusted to 1.
Amorphous titanium oxide fine particles were produced and evaluated in the same manner as in Experimental Floors 1 to 8, except that the concentration was 7.3 or 5 g/l. The results are shown in Table 1.

・WユU 含水1t1.2g/j+のエタノールに溶解せしめるチ
タンイソプロポキシドの濃度を0.8mol/ 1と変
え、第3の工程で添加する水のアルコール溶液の水の含
存量をそれぞれ3または5 g/ 12とした以外は実
験寛1〜8と同様にして非晶層酸化チタン微粒子を製造
し、評価した。結果を表1に示す。
・W Yu U The concentration of titanium isopropoxide dissolved in ethanol with a water content of 1 t 1.2 g/j+ was changed to 0.8 mol/1, and the water content of the alcoholic solution of water added in the third step was changed to 3 or 3, respectively. Amorphous titanium oxide fine particles were produced and evaluated in the same manner as Experiments 1 to 8 except that the weight was 5 g/12. The results are shown in Table 1.

表1 (ンリ*は、本発明の範囲外の条件による実験であるこ
とを示し、他は本発明の条件による。
Table 1 (* indicates that the experiment was conducted under conditions outside the scope of the present invention; other conditions were determined under the conditions of the present invention.

表1から明らかなように、本発明の条件により得られた
実験漱4〜7,10〜13の非晶質酸化チタン微粒子は
、収率、真球度および単分散性が高いことがわかる。こ
れらの微粒子を用いて、結晶化する実験を以下において
進めた。
As is clear from Table 1, the amorphous titanium oxide fine particles of experimental samples 4 to 7 and 10 to 13 obtained under the conditions of the present invention have high yield, sphericity, and monodispersity. A crystallization experiment using these fine particles was carried out below.

(B)  4±1  化チタンの一1゛吉実施例1 反応溶液中に生成した酸化チタン微粒子を固液分離後に
行なう水中での2回の分散処理を、実験隨5と同様の2
0℃にした外、35.40.60.90℃および煮沸状
態の各温度の水中で行なった以外は、実験!l&L5と
同様の操作により非晶質酸化チタン微粒子(上記温度2
0.35℃)および結晶質酸化チタン微粒子(上記温度
40.60.90℃および煮沸)を得た。
(B) 4±1 titanium oxide Example 1 The titanium oxide fine particles generated in the reaction solution were subjected to two dispersion treatments in water after solid-liquid separation in the same manner as in Experiment No. 5.
This is an experiment except that it was conducted in water at 0℃, 35, 40, 60, and 90℃, and boiling water! Amorphous titanium oxide fine particles (above temperature 2
0.35°C) and crystalline titanium oxide fine particles (at the above temperature of 40.60.90°C and boiling) were obtained.

次に、得られた各微粒子を空気中、80.120゜20
0、300.500.600.700または900℃で
1時間加熱した。焼成前後の微粒子をX線回折法により
調べたところ、表2に示す結果が得られた。また、いず
れの場合も、真球度1粒径、草分散性とも加熱処理前と
変わらなかった。
Next, each of the obtained fine particles was placed in the air at 80.120°20
Heated at 0, 300.500.600.700 or 900°C for 1 hour. When the fine particles before and after firing were examined by X-ray diffraction, the results shown in Table 2 were obtained. Furthermore, in both cases, the sphericity and the grass dispersibility remained the same as before the heat treatment.

なお、上記の実施例で得られた結晶質酸化チタン微粒子
のBET法による比表面積は、300℃で加熱処理した
もので約150 rd /g、500℃および600℃
で加熱処理したもので100〜12Off?/gであっ
た。
Note that the specific surface area of the crystalline titanium oxide fine particles obtained in the above examples determined by the BET method is approximately 150 rd/g when heat treated at 300°C, and 500°C and 600°C.
100~12 off for heat treated ones? /g.

煮沸水中で分散処理後500℃で加熱処理して得た結晶
質酸化チタン強粒子の5口写真(5,000倍)を第1
図として示す、単分散性、真球度とも極めて高いことが
わかる。
The first photo is a 5-portion photograph (5,000x) of strong crystalline titanium oxide particles obtained by dispersion treatment in boiling water and heat treatment at 500°C.
As shown in the figure, both monodispersity and sphericity are extremely high.

実施例2 実験阻4. 6. 7.10.11.12および13で
得られた非晶質酸化チタン微粒子を、80℃の水中で2
回分散処理した後、空気中において200℃で1時間加
熱処理した。得られた微粒子をx1回折法で調べたとこ
ろ、アナターゼ型の結晶型を有するものであり、真球度
1粒径、単分散性とも加熱前と変わらなかった。
Example 2 Experimental experiment 4. 6. The amorphous titanium oxide fine particles obtained in 7.10.11.12 and 13 were soaked in water at 80°C for 2 hours.
After the repeated dispersion treatment, the mixture was heat-treated at 200° C. for 1 hour in air. When the obtained fine particles were examined by x1 diffraction method, they were found to have anatase crystal type, and both the sphericity 1 particle size and monodispersity were unchanged from before heating.

比較例 実験寛5において、生成した非晶質酸化チタン微粒子を
温水中で分散処理する代りに、pHo、sのアンモニア
水中で15分間分散処理し固液分離する操作を3回繰返
した。得られた微粒子を空気中において80℃で16時
間加熱し乾燥させたが、XvA回折によると加熱処理後
の微粒子はなお非晶質であった。この酸化チタン微粒子
はアナターゼ型に結晶化するのに約400℃以上、ルチ
ル型に結晶化するのに約950℃以上の高温を必要とす
ることがわかった。また、この微粒子をLECO法によ
り分析したところ、0.8重量%の窒素を含有していた
。なお、実施例1において、40′Cの水中で分散処理
し、加熱処理して得た結晶質酸化チタン微粒子の窒素分
は0.旧重量%未満であった。
Comparative Example In Experiment Kan 5, instead of dispersing the generated amorphous titanium oxide fine particles in hot water, the operation of dispersing them in ammonia water of pHo, s for 15 minutes and performing solid-liquid separation was repeated three times. The obtained fine particles were heated and dried in air at 80° C. for 16 hours, but according to XvA diffraction, the fine particles after the heat treatment were still amorphous. It has been found that these titanium oxide fine particles require a high temperature of about 400° C. or higher to crystallize into an anatase type, and about 950° C. or higher to crystallize into a rutile type. Further, when this fine particle was analyzed by the LECO method, it was found that it contained 0.8% by weight of nitrogen. In Example 1, the nitrogen content of crystalline titanium oxide fine particles obtained by dispersion treatment in 40'C water and heat treatment was 0. It was less than the old weight percent.

〔発明の効果〕〔Effect of the invention〕

本発明の方法は、真球度と単分散性の高い、粒径がサブ
ミクロンオーダーである酸化チタン微粒子を収量良く、
低温の加熱処理で製造することができ、該方法は工業的
実用性の高い製造方法である。
The method of the present invention produces fine titanium oxide particles with high sphericity and monodispersity and a particle size on the submicron order in a good yield.
It can be produced by low-temperature heat treatment, and this method is a production method with high industrial practicality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1の煮沸水による分散処理後、500
℃の加熱処理で得られた酸化チタン微粒子の走査型電子
顕微鏡写真(5000倍)を示す。 代 理 人   弁理士 岩見谷 周志第1図
Figure 1 shows the results after the dispersion treatment with boiled water in Example 1.
A scanning electron micrograph (5000x magnification) of titanium oxide fine particles obtained by heat treatment at .degree. C. is shown. Representative Patent Attorney Shushi Iwamiya Figure 1

Claims (1)

【特許請求の範囲】 水の含有量が3g/l以下であるアルコールにチタンア
ルコキシドを濃度1.2mol/l以下に溶解し、得ら
れたチタンアルコキシド溶液に、該チタンアルコキシド
の加水分解に要する当量以下の水を濃度100g/l以
下で含有する水のアルコール溶液を添加して加水分解を
開始せしめ、 酸化チタンのコロイド粒子が生成した段階で、水の濃度
が2〜10g/lである水のアルコール溶液を反応溶液
全量の0.5重量倍以上添加し、次いで前記生成した酸
化チタン微粒子を成長させ、 得られた非晶質酸化チタン微粒子を40℃以上の水中で
分散処理した後、空気中または酸素中で加熱処理するこ
とからなる結晶質酸化チタン微粒子の製法。
[Scope of Claims] Titanium alkoxide is dissolved in alcohol having a water content of 3 g/l or less to a concentration of 1.2 mol/l or less, and the resulting titanium alkoxide solution is added with the equivalent amount required for hydrolysis of the titanium alkoxide. Hydrolysis is started by adding an alcoholic solution of water containing the following water at a concentration of 100 g/l or less, and at the stage when colloidal particles of titanium oxide are generated, an alcoholic solution of water containing the following water at a concentration of 2 to 10 g/l is added. An alcohol solution is added at least 0.5 times the total amount of the reaction solution by weight, and then the generated titanium oxide fine particles are grown, and the obtained amorphous titanium oxide fine particles are dispersed in water at a temperature of 40°C or higher, and then dispersed in air. Alternatively, a method for producing crystalline titanium oxide fine particles comprising heat treatment in oxygen.
JP12177486A 1986-05-27 1986-05-27 Production of fine particles of crystalline titanium oxide Pending JPS62278125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12177486A JPS62278125A (en) 1986-05-27 1986-05-27 Production of fine particles of crystalline titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12177486A JPS62278125A (en) 1986-05-27 1986-05-27 Production of fine particles of crystalline titanium oxide

Publications (1)

Publication Number Publication Date
JPS62278125A true JPS62278125A (en) 1987-12-03

Family

ID=14819552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12177486A Pending JPS62278125A (en) 1986-05-27 1986-05-27 Production of fine particles of crystalline titanium oxide

Country Status (1)

Country Link
JP (1) JPS62278125A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0391447A2 (en) * 1989-04-07 1990-10-10 Nippon Shokubai Kagaku Kogyo Co. Ltd. Method for production of inorganic oxide particles
JP2007022886A (en) * 2005-07-20 2007-02-01 Univ Of Tokyo Polymer-coated particle
US7524439B2 (en) 2002-02-25 2009-04-28 Bridgestone Corporation Positive electrode for non-aqueous electrolyte battery and method of producing the same as well as non-aqueous electrolyte battery
US7858553B2 (en) 2006-12-21 2010-12-28 E.I. Du Pont De Nemours And Company Suspensions of surface treated titanium (IV) oxides and processes for making them
US7887779B2 (en) 2006-12-21 2011-02-15 E. I. Du Pont De Nemours And Company Process for making anatase titanium (IV) oxide
US7998453B2 (en) 2006-12-21 2011-08-16 E.I. Du Pont De Nemours And Company Suspensions of titanium (IV) oxide particles and process for their production
US8114804B2 (en) 2006-12-21 2012-02-14 E. I. Du Pont De Nemours And Company Self-deagglomerating suspensions of titanium (IV) oxides and methods for making them
CN105152210A (en) * 2015-10-23 2015-12-16 云南千盛实业有限公司 Substitution reaction method of titanium dioxide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0391447A2 (en) * 1989-04-07 1990-10-10 Nippon Shokubai Kagaku Kogyo Co. Ltd. Method for production of inorganic oxide particles
US7524439B2 (en) 2002-02-25 2009-04-28 Bridgestone Corporation Positive electrode for non-aqueous electrolyte battery and method of producing the same as well as non-aqueous electrolyte battery
JP2007022886A (en) * 2005-07-20 2007-02-01 Univ Of Tokyo Polymer-coated particle
US7858553B2 (en) 2006-12-21 2010-12-28 E.I. Du Pont De Nemours And Company Suspensions of surface treated titanium (IV) oxides and processes for making them
US7887779B2 (en) 2006-12-21 2011-02-15 E. I. Du Pont De Nemours And Company Process for making anatase titanium (IV) oxide
US7998453B2 (en) 2006-12-21 2011-08-16 E.I. Du Pont De Nemours And Company Suspensions of titanium (IV) oxide particles and process for their production
US8114804B2 (en) 2006-12-21 2012-02-14 E. I. Du Pont De Nemours And Company Self-deagglomerating suspensions of titanium (IV) oxides and methods for making them
CN105152210A (en) * 2015-10-23 2015-12-16 云南千盛实业有限公司 Substitution reaction method of titanium dioxide

Similar Documents

Publication Publication Date Title
KR101233703B1 (en) Titanium oxide sol and process for producing same, ultrafine particulate titanium oxide, process for producing same, and uses of same
AU2002319587B2 (en) Process for making lithium titanate
JP2972752B1 (en) Method for producing ultrafine crystalline titanium oxide monodispersed powder
JP4200427B2 (en) Method for producing composite oxide powder
AU2002319587A1 (en) Process for making lithium titanate
JPS62278125A (en) Production of fine particles of crystalline titanium oxide
JP2709222B2 (en) Method for producing spherical fine powder comprising titanate and spherical fine powder obtained thereby
KR101621831B1 (en) Ultrafine particles of titanium dioxide and process for producing the same
US9409789B2 (en) Strontium titanate powder and method of preparing the same
JPH0791065B2 (en) Method for producing titanium oxide fine particles
JP3319807B2 (en) Perovskite-type compound fine particle powder and method for producing the same
JP2709206B2 (en) Spherical porous anatase-type titanium dioxide fine particles and method for producing the same
JPH01133940A (en) Production of fine titanium oxide particles
JPH03159903A (en) Production of perovskite ceramic powder
JPH0524865B2 (en)
KR100395218B1 (en) METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
JPH0524864B2 (en)
JPH10236824A (en) Titania-zirconia multiple oxide fine powder and its production
WO2001010781A1 (en) METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
JPS62226816A (en) Production of fine zirconium oxide particle
JPH0472776B2 (en)
JPS61174116A (en) Production of perovskite type oxide
JP4247812B2 (en) Plate-like titanic acid composite oxide particles and method for producing the same
KR20040038443A (en) Preparation of Nano-sized Crystalline Titanic Acid Strontium Powder from Aqueous Titanium Tetrachloride and Strontium Carbonate Solutions Prepared by Use of Inorganic Acids
JPH01126229A (en) Production of porous zirconium oxide fine particle