JP2800973B2 - Method for producing oxide garnet single crystal - Google Patents

Method for producing oxide garnet single crystal

Info

Publication number
JP2800973B2
JP2800973B2 JP63246832A JP24683288A JP2800973B2 JP 2800973 B2 JP2800973 B2 JP 2800973B2 JP 63246832 A JP63246832 A JP 63246832A JP 24683288 A JP24683288 A JP 24683288A JP 2800973 B2 JP2800973 B2 JP 2800973B2
Authority
JP
Japan
Prior art keywords
single crystal
film
garnet single
oxide garnet
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63246832A
Other languages
Japanese (ja)
Other versions
JPH0294607A (en
Inventor
俊彦 流王
雅行 丹野
達生 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP63246832A priority Critical patent/JP2800973B2/en
Publication of JPH0294607A publication Critical patent/JPH0294607A/en
Application granted granted Critical
Publication of JP2800973B2 publication Critical patent/JP2800973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物ガーネット単結晶の製造方法、特に周
波数100MHzから数10GHzのマイクロ波帯で使用されるマ
イクロ波素子、例えばアイソレーター、サーキュレータ
ー用の磁性膜や磁気光学素子用の磁性膜として有用な厚
膜状の酸化物ガーネット単結晶の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to a method for producing an oxide garnet single crystal, particularly for a microwave element used in a microwave band of a frequency of 100 MHz to several tens of GHz, such as an isolator and a circulator. The present invention relates to a method for producing a thick oxide garnet single crystal useful as a magnetic film or a magnetic film for a magneto-optical element.

(従来の技術とその問題点) 従来、マイクロ波素子用の磁性材料としてはフラック
ス法で育成されたYIG結晶が使われていたが、フラック
ス法で作られたマイクロ波素子は製造コストが高いとい
う不利があるため半導体工業で開発されたウェーハプロ
セス技術を応用した液相エピタキシャル法で育成したYI
G結晶や(YBiFe)8O12結晶を使用することが提案されて
いる。
(Conventional technology and its problems) Conventionally, YIG crystals grown by the flux method have been used as magnetic materials for microwave devices. However, microwave devices manufactured by the flux method are expensive. YI grown by liquid phase epitaxial method applying wafer process technology developed in semiconductor industry due to disadvantage
It has been proposed to use G crystals or (YBiFe) 8 O 12 crystals.

しかし、この方法で得られた酸化物ガーネット単結晶
は膜厚が100μm以上のものは、厚みにバラツキがあ
り、膜表面に無数の欠陥があり、さらには磁気共鳴半値
巾ΔHが一定でなく、しかも高い値を示すという欠点が
あるために実用に供することができないという不利があ
った。
However, the oxide garnet single crystal obtained by this method has a thickness of 100 μm or more, has a variation in thickness, has numerous defects on the film surface, and further has a non-uniform magnetic resonance half width ΔH, In addition, there is a disadvantage that it cannot be put to practical use because it has a drawback of showing a high value.

(発明の構成) 本発明はこのような不利を解決した高品質のマイクロ
波素子用材料や磁気光学素子用材料として有用な厚さが
10μm以上の厚膜状の酸化物ガーネット単結晶の製造方
法に関するもので、これは液相エピタキシャル法で基板
上に育成された酸化物ガーネット単結晶膜の表面層の遷
移相を除去することにより、上記の欠点が除去されるこ
とを見出したので、本発明は液相エピタキシャル法で基
板上に厚さ10μm以上の酸化物ガーネット単結晶を育成
したのち、該膜を研磨し、必要に応じエッチングして、
該表面層を2μm以上除去して該表面層の遷移相を除去
することを特徴とするものである。
(Constitution of the Invention) The present invention has a thickness which is useful as a high quality material for a microwave device or a material for a magneto-optical device which has solved such disadvantages.
The present invention relates to a method for producing a thick oxide garnet single crystal having a thickness of 10 μm or more, which removes a transition phase of a surface layer of an oxide garnet single crystal film grown on a substrate by a liquid phase epitaxial method. Since it has been found that the above-mentioned disadvantages are eliminated, the present invention grows an oxide garnet single crystal having a thickness of 10 μm or more on a substrate by a liquid phase epitaxial method, and then polishes the film and etches it as necessary. hand,
The method is characterized in that the surface layer is removed by 2 μm or more to remove a transition phase of the surface layer.

すなわち、本発明者らは前記したような不利を伴わな
い酸化物ガーネット単結晶の製造方法について種々検討
した結果、酸化物ガーネット単結晶の育成を希土類元素
・ガリウム・ガーネットからなる基板を融液中に浸漬
し、基板上に液相エピタキシャル法で厚さ10μm以上の
酸化物ガーネット単結晶膜を育成させたのち、得られた
膜を研磨し、必要に応じエッチングして、該膜の表面層
を2μm以上除去すると表面層の遷移相が除去され、酸
化物ガーネット単結晶膜は厚みのバラツキも小さく、膜
表面の欠陥もなく、さらには磁気共鳴半値巾ΔHも2.0O
e以下になることを見出すと共に、マイクロ波素子用材
料や磁気光学素子用材料として有用であることを確認し
て本発明を完成させた。
That is, the present inventors have conducted various studies on a method for producing an oxide garnet single crystal without the disadvantages as described above. After growing an oxide garnet single crystal film having a thickness of 10 μm or more on the substrate by liquid phase epitaxy, the obtained film is polished and, if necessary, etched to form a surface layer of the film. When the thickness is removed by 2 μm or more, the transition phase of the surface layer is removed, and the oxide garnet single crystal film has small variation in thickness, no defect on the film surface, and has a magnetic resonance half width ΔH of 2.0O.
The present invention has been completed by finding that it is less than or equal to e and confirming that it is useful as a material for a microwave device or a material for a magneto-optical device.

以下にこれをさらに詳述する。 This will be described in more detail below.

本発明の酸化物ガーネット単結晶を育成するために使
用するガーネット基板単結晶はガドリニウム・ガリウム
・ガーネット(以下GGGと略記する)、サマリウム・ガ
リウム・ガーネット(以下SGGと略記する)、ネオジム
・ガリウム・ガーネット(以下NGGと略記する)、GGGの
一部をCa、Zr、MgまたはYの1種又は2種以上で置換し
たGGG系のSOG、NOG、YOG[いずれも信越化学工業(株)
商品名]とすればよい。これらはGd2O3、Sm2O3、Nd2O3
または必要に応じCaO、MgO、ZrO2、Y2O3などの置換材を
それぞれGa2O3の所定量と共にルツボに仕込み、高周波
誘導でそれぞれの融点以上に加熱して溶融した融液から
チョクラルスキー法で単結晶を引上げることによって得
ることができる。
The garnet substrate single crystal used for growing the oxide garnet single crystal of the present invention is gadolinium gallium garnet (hereinafter abbreviated as GGG), samarium gallium garnet (hereinafter abbreviated as SGG), neodymium gallium. Garnet (hereinafter abbreviated as NGG), GGG-based SOG, NOG and YOG in which part of GGG is substituted with one or more of Ca, Zr, Mg or Y [all Shin-Etsu Chemical Co., Ltd.
[Product name]. These are Gd 2 O 3 , Sm 2 O 3 , Nd 2 O 3
Alternatively, if necessary, a replacement material such as CaO, MgO, ZrO 2 , and Y 2 O 3 is charged into a crucible together with a predetermined amount of Ga 2 O 3 , and is heated to a melting point or higher by a high frequency induction to a temperature higher than the melting point thereof. It can be obtained by pulling a single crystal by the Ralsky method.

また、この基板単結晶上に液相エピタキシャル法でエ
ピタキシャル成長させる酸化物ガーネット結晶膜は組成
式がY3Fe5O12、(YM)aFe8−aO12または(YM)a(Fe
N)−aO12(ここでMはLa、Gd、Bi、Lu、NはGa、A
l、Sc、Inの少なくとも1種の元素から選択され、aは
3.1≧a≧3.0)で示される。
The oxide garnet crystal film epitaxially grown on the substrate single crystal by the liquid phase epitaxial method has a composition formula of Y 3 Fe 5 O 12 , (YM) aFe 8 -aO 12 or (YM) a (Fe
N) 8 -aO 12 (where M is La, Gd, Bi, Lu, N is Ga, A
l, Sc, selected from at least one element of In, a is
3.1 ≧ a ≧ 3.0).

式Y3Fe5O12、(YM)aFe8−aO12または(YM)a(Fe
N)−aO12(M、N、aは前記のとおり)で示される
酸化物ガーネット単結晶は白金ルツボ中に必要に応じて
Y2O3、Fe2O3、M2O3またはN2O3をフラックス成分のPbO、
B2O3と共に仕込み、900〜1,300℃に加熱して融解させた
融液から液相エピタキシャル法で基板上に厚さ10μm以
上に引上げることによって育成できる。
Wherein Y 3 Fe 5 O 12, ( YM) aFe 8 -aO 12 or (YM) a (Fe
N) 8 -aO 12 (M, N, a is optionally the oxide garnet single crystal in a platinum crucible represented by the as)
Y 2 O 3 , Fe 2 O 3 , M 2 O 3 or N 2 O 3 are flux components of PbO,
It can be grown by being charged together with B 2 O 3 , heated from 900 to 1,300 ° C. and melted, and pulled on a substrate to a thickness of 10 μm or more by a liquid phase epitaxial method.

次いで酸化物ガーネット単結晶厚膜を研磨し、あるい
はこれにエッチングを組合わせるのであるが、研磨はガ
ーネット単結晶を研磨材を用いて研磨する。研磨剤とし
てはAl2O3、Sic、ダイヤモンド粉などの硬質微粉末を使
用すればよい。なお、このあとの洗浄は公知の方法で行
えばよい。またエッチングはリン酸、硫酸、硝酸、フッ
酸などの鉱酸を用いて行えばよく、例えば鉱酸液を100
〜250℃に加熱し、液中に酸化物ガーネット単結晶を浸
漬すればよい。
Next, the oxide garnet single crystal thick film is polished or combined with etching, and the garnet single crystal is polished using an abrasive. A hard fine powder such as Al 2 O 3 , Sic, or diamond powder may be used as the abrasive. The subsequent cleaning may be performed by a known method. The etching may be performed using a mineral acid such as phosphoric acid, sulfuric acid, nitric acid, and hydrofluoric acid.
Heat to ~ 250 ° C and immerse the oxide garnet single crystal in the liquid.

上記したような方法で表面層を2μm以上除去して遷
移相を除去した酸化物ガーネット単結晶厚膜は、表面が
フラットで、膜面にピットを生じることがなく、厚みは
均一で、しかも磁気共鳴半値巾ΔHが2.0Oe以下と小さ
いので、マイクロ波素子用材料や磁気光学素子用材料と
してすぐれた物性をもつもので、例えば周波数100MHzか
ら数10GHzのマイクロ波帯で使用されるマイクロ波素子
や、光アイソレーター、サーキュレーター等の磁気光学
素子用の磁性膜として有用とされる。
The oxide garnet single crystal thick film from which the transition layer has been removed by removing the surface layer by 2 μm or more by the method as described above has a flat surface, no pits are generated on the film surface, the thickness is uniform, and the magnetic film is uniform. Since the resonance half width ΔH is as small as 2.0 Oe or less, the material has excellent physical properties as a material for a microwave element or a material for a magneto-optical element, such as a microwave element used in a microwave band of a frequency of 100 MHz to several tens of GHz. It is useful as a magnetic film for a magneto-optical element such as an optical isolator and a circulator.

次に本発明の実施例をあげる。 Next, examples of the present invention will be described.

(実施例1) 基板としてGGG単結晶ウェーハを用い、エピタキシャ
ル膜を形成させる成分としての所定量のY2O3、Fe2O3、B
i2O3をフラックス成分のPbO、B2O3と共に白金ルツボに
仕込み、1,100℃に加熱して溶融させた融液から液相エ
ピタキシャル法でGGG単結晶ウェーハの(111)方向に式
Y2.9Bi0.1Fe5O12で示される酸化物ガーネット単結晶膜
を厚さ110μmに成長させ、ついでこの膜を砥粒下O#1
200を用いて70分×6回の研磨を行い、洗浄したのち、1
80℃のリン酸液中でエッチングしたところ、膜厚が100
μmで厚みのバラツキが2.6μmであり、ΔHが1.6Oeで
ある酸化物ガーネット単結晶膜が得られた。その表面を
顕微鏡で観察したとろ第1図に示したようにクラック、
ヒビはみられなかった。
(Example 1) A GGG single crystal wafer was used as a substrate, and predetermined amounts of Y 2 O 3 , Fe 2 O 3 , and B as components for forming an epitaxial film were used.
i 2 O 3 was charged into a platinum crucible together with the flux components PbO and B 2 O 3 , heated from 1,100 ° C and melted, and the liquid crystal epitaxial method was applied to the (111) direction of the GGG single-crystal wafer.
Y 2. 9 Bi 0. 1 Fe 5 the oxide garnet single crystal film represented by O 12 is grown to a thickness of 110 [mu] m, then the abrasive grains under O # 1 this film
After polishing for 70 minutes x 6 times using 200, and after washing, 1
Etching in phosphoric acid solution at 80 ° C resulted in a film thickness of 100
An oxide garnet single crystal film having a thickness of 2.6 μm, a thickness variation of 2.6 μm, and a ΔH of 1.6 Oe was obtained. When the surface was observed with a microscope, cracks were observed as shown in FIG.
No cracks were found.

しかし、比較のために研磨、エッチング工程前の酸化
物ガーネット単結晶膜の表面を顕微鏡で調べたところ、
第2図に示したような無数のピットが認められ、△Hは
2.6Oeであった。
However, for comparison, the surface of the oxide garnet single crystal film before polishing and etching steps was examined with a microscope,
An infinite number of pits as shown in FIG.
2.6 Oe.

(実施例2) 所定量のY2O3、Fe2O3を用いて実施例1と同一の方法
でGGGウェーハの(111)方向にY3Fe5O12で示される酸化
物ガーネット単結晶膜を得たが、これは膜厚のバラツ
キ、ΔH値共、実施例1と同様、良好な結果を示した。
(Example 2) An oxide garnet single crystal represented by Y 3 Fe 5 O 12 in the (111) direction of a GGG wafer in the same manner as in Example 1 using predetermined amounts of Y 2 O 3 and Fe 2 O 3 A film was obtained, which showed good results in the same manner as in Example 1 in both the variation in the film thickness and the ΔH value.

(実施例3) 所定量のY2O3、Bi2O3、Fe2O3、Ga2O3を用いて実施例
1と同一の方法でGGGウェーハの(111)方向にY2.9Bi0.
1Fe4.1Ga0.9O12で示される酸化物ガーネット単結晶膜を
得たが、これは膜厚のバラツキ、ΔH値共、実施例1と
同様、良好な結果を示した。
(Example 3) a predetermined amount of Y 2 O 3, Bi 2 O 3, Fe 2 O 3, Ga 2 O 3 GGG wafer (111) in the same manner as in Example 1 using the direction Y 2. 9 Bi 0 .
1 Fe 4. 1 Ga 0. Were obtained oxide garnet single crystal film represented by 9 O 12, which is the thickness variation, [Delta] H value co, as in Example 1, showed good results.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例1で得られた酸化物ガーネット単結晶膜
の表面の顕微鏡写真を示したものであり、第2図は比較
例としての研磨、エッチング工程前の酸化物ガーネット
単結晶膜の表面の顕微鏡写真を示したものである。
FIG. 1 shows a micrograph of the surface of the oxide garnet single crystal film obtained in Example 1, and FIG. 2 shows a comparative example of the oxide garnet single crystal film before the polishing and etching steps. It is a microscope picture of the surface.

フロントページの続き (72)発明者 森 達生 群馬県安中市磯部2丁目13番1号 信越 化学工業株式会社精密機能材料研究所内 (56)参考文献 特開 昭58−80618(JP,A) 特開 昭50−22294(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01F 1/34Continuation of the front page (72) Inventor Tatsuo Mori 2-3-1-1, Isobe, Annaka-shi, Gunma Prefecture Shin-Etsu Chemical Co., Ltd. Precision Functional Materials Laboratory (56) References JP-A-58-80618 (JP, A) Kaisho 50-22294 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) H01F 1/34

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】液相エピタキシャル法で基板上に厚さ10μ
m以上の酸化物ガーネット単結晶膜を育成したのち、該
膜を研磨し、必要に応じエッチングして、該膜の表面層
を2μm以上除去して該表面層の遷移相を除去すること
を特徴とする酸化物ガーネット単結晶の製造方法。
1. A substrate having a thickness of 10 μm on a substrate by a liquid phase epitaxial method.
After growing an oxide garnet single crystal film having a thickness of at least m, the film is polished and, if necessary, etched to remove a surface layer of the film by 2 μm or more to remove a transition phase of the surface layer. For producing an oxide garnet single crystal.
【請求項2】基板がガドリニウム・ガリウム・ガーネッ
ト(GGG)、一部をCa、Zr、MgまたはYの1種又は2種
以上で置換したGGG系、サマリウム・ガリウム・ガーネ
ット(SGG)またはネオジム・ガリウム・ガーネット(N
GG)のいずれかであり、酸化物ガーネット単結晶膜が式
Y3Fe5O12、(YM)aFe8O12、(YM)a(FeN)−aO
12(ここにMはLa、Gd、Bi、Luから、NはGa、Al、Sc、
Inから選択される少なくとも1つの元素、aは3.1≧a
≧3.0)で示されるものである請求項1に記載の酸化物
ガーネット単結晶の製造方法。
2. A substrate wherein the substrate is gadolinium gallium garnet (GGG), a GGG system partially substituted with one or more of Ca, Zr, Mg or Y, samarium gallium garnet (SGG) or neodymium. Gallium Garnet (N
GG), wherein the oxide garnet single crystal film has the formula
Y 3 Fe 5 O 12, ( YM) aFe 8 O 12, (YM) a (FeN) 8 -aO
12 (where M is La, Gd, Bi, Lu, N is Ga, Al, Sc,
At least one element selected from In, a is 3.1 ≧ a
The method for producing an oxide garnet single crystal according to claim 1, which is represented by ≧ 3.0).
JP63246832A 1988-09-30 1988-09-30 Method for producing oxide garnet single crystal Expired - Fee Related JP2800973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63246832A JP2800973B2 (en) 1988-09-30 1988-09-30 Method for producing oxide garnet single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63246832A JP2800973B2 (en) 1988-09-30 1988-09-30 Method for producing oxide garnet single crystal

Publications (2)

Publication Number Publication Date
JPH0294607A JPH0294607A (en) 1990-04-05
JP2800973B2 true JP2800973B2 (en) 1998-09-21

Family

ID=17154356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63246832A Expired - Fee Related JP2800973B2 (en) 1988-09-30 1988-09-30 Method for producing oxide garnet single crystal

Country Status (1)

Country Link
JP (1) JP2800973B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69307559T2 (en) * 1992-03-02 1997-05-07 Tdk Corp Process for producing a thin film by epitaxial growth
JP6451555B2 (en) * 2015-08-25 2019-01-16 住友金属鉱山株式会社 Faraday rotator manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022294A (en) * 1973-07-02 1975-03-10
JPS6016900A (en) * 1983-07-04 1985-01-28 Nec Corp Preparation of magnetic thin film

Also Published As

Publication number Publication date
JPH0294607A (en) 1990-04-05

Similar Documents

Publication Publication Date Title
JP2002503885A (en) Crystal ion slice method for single crystal thin film
US4624901A (en) Intermediary layers for epitaxial hexagonal ferrite films
US4544438A (en) Liquid phase epitaxial growth of bismuth-containing garnet films
JP2800973B2 (en) Method for producing oxide garnet single crystal
CA1078971A (en) Yttrium iron garnet disks on gadolinium gallium substrates for microwave applications
US4372808A (en) Process for removing a liquid phase epitaxial layer from a wafer
EP0743660B1 (en) Magnetostatic wave device and material for the same
JPH0748425B2 (en) Microwave device
JP2869951B2 (en) Magnetic garnet single crystal and microwave device material
JP4348539B2 (en) Nonmagnetic garnet substrate manufacturing method, nonmagnetic garnet substrate, and bismuth-substituted magnetic garnet film obtained using the substrate
JP2784926B2 (en) Oxide garnet single crystal and method for producing the same
JP2756273B2 (en) Oxide garnet single crystal and method for producing the same
US6368401B1 (en) Method of producing magnetic garnet single crystal film and magnetic garnet single crystal film having a nonuniform thickness
JP3649935B2 (en) Magnetic garnet material and Faraday rotator using the same
JPH0549638B2 (en)
US3085981A (en) Ferrimagnetic crystals
JP3059332B2 (en) Microwave device material
JPS5849520B2 (en) garnet
JP3089742B2 (en) Materials for magnetostatic wave devices
JP3387341B2 (en) Surface magnetostatic wave device
JPS61242986A (en) Production of magneto-optical crystal
JP3089741B2 (en) Materials for magnetostatic wave devices
JPH07183114A (en) Microwave element material and manufacture thereof
JP2794673B2 (en) Oxide garnet single crystal magnetic film and method of manufacturing the same
JP2543997B2 (en) Bismuth-substituted oxide garnet single crystal and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees