JPS6016900A - Preparation of magnetic thin film - Google Patents

Preparation of magnetic thin film

Info

Publication number
JPS6016900A
JPS6016900A JP58121311A JP12131183A JPS6016900A JP S6016900 A JPS6016900 A JP S6016900A JP 58121311 A JP58121311 A JP 58121311A JP 12131183 A JP12131183 A JP 12131183A JP S6016900 A JPS6016900 A JP S6016900A
Authority
JP
Japan
Prior art keywords
thin film
film
etching
film thickness
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58121311A
Other languages
Japanese (ja)
Inventor
Osamu Okada
修 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58121311A priority Critical patent/JPS6016900A/en
Publication of JPS6016900A publication Critical patent/JPS6016900A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To prepare a magnetic thin film easily and in high accuracy, by subjecting a thin film of garnet having larger thickness than that of specifications produced by epitaxial growth method to ion injection with a specific ion seed, followed by finishing it by chemical etching. CONSTITUTION:A thin film of garnet having film thickness about 0.05-0.2mu thicker than that of specifications is grown by epitaxial thin film. It is subjected to ion injection with an ion seed having an atomic number >= that of He, and the thin film having a film thickness of specifications is finished by chemical etching. This process can eliminate the surface layer prepared by epitaxial growth method, and finish the film thickness in a range of specifications in good accuracy easily.

Description

【発明の詳細な説明】 本発明は磁性薄膜の製造方法に係り、よシ詳しくは磁気
バブル素子用ガーネット薄膜の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a magnetic thin film, and more particularly to a method of manufacturing a garnet thin film for a magnetic bubble element.

磁気バブル素子用ガーネット薄膜は、 、 Gd3 G
a。
The garnet thin film for magnetic bubble elements is Gd3G
a.

O12などの非磁性ガーネット基板を酸化鉛などを主成
分とする融液中で回転させることによりエピタキシャル
法で成長させるが、基板回転停止後、融液中よりひきあ
げ高速回転させ融液をスピンオフする過程で、膜表面に
は、表面層として、特性の異った層が形成される。この
表面層は通常約0.1μmつくられる。表面層による影
響はバブル径が大きく、磁性膜の膜厚が厚い場合にはほ
とんど問題とならなかったが、バブル径、膜厚が1μn
1のオーダーとなることに伴ない、この表面層がバブル
素子特性、特に機能部特性にバラツキを与える原因とな
ることが明らかとなってきた。一方従来がら、エピタキ
シャル膜厚を制御してバブルのコラップス磁場のバラツ
キを小さくすることを主な目的として、化学エツチング
又はイオンミリングによりエピタキシャル膜表面を削除
する方法は知られている。しかしながら、前者の方法で
は膜表面を鏡面に仕上げるためには高温のエツチング液
を用いる必要があるためエツチング速度が速すぎ膜厚制
御が困難である。後者の方法では、公開特許公報昭54
.−83690にのべられているようにエツチング速度
がおそいので膜厚制御性はよいが、量産には適しないと
いう欠点があった。
A non-magnetic garnet substrate such as O12 is grown by the epitaxial method by rotating it in a melt containing lead oxide as its main component. After the substrate rotation has stopped, it is pulled up from the melt and rotated at high speed to spin off the melt. A layer with different characteristics is formed on the surface of the film as a surface layer. This surface layer is usually approximately 0.1 μm thick. The effect of the surface layer was almost not a problem when the bubble diameter was large and the magnetic film was thick, but when the bubble diameter and film thickness were 1 μn
1, it has become clear that this surface layer causes variations in bubble element characteristics, particularly in functional section characteristics. On the other hand, a method is conventionally known in which the surface of an epitaxial film is removed by chemical etching or ion milling, the main purpose of which is to control the epitaxial film thickness and reduce variations in the bubble collapse magnetic field. However, in the former method, it is necessary to use a high-temperature etching solution in order to finish the film surface to a mirror finish, so the etching rate is too high and it is difficult to control the film thickness. In the latter method, the published patent publication 1983
.. As described in No. 83690, the etching speed is slow and the film thickness controllability is good, but it has the disadvantage that it is not suitable for mass production.

本発明は、上記表面層を容易にかつ制御性よく除去する
方法を提供するものである。すなわち、本発明はエピタ
キシャル成長あがりの膜厚を0.05μin以上0.2
μm以下仕様膜厚より厚く成長させ、これにHe以上の
原子番号をもつイオン種にてイオン注入を行い、しかる
のちに化学エツチング法にて仕様膜厚に仕上げることに
よシ仕様膜厚の磁性薄膜を製造する方法である。
The present invention provides a method for easily and controllably removing the above-mentioned surface layer. That is, the present invention reduces the film thickness after epitaxial growth to 0.05 μin or more and 0.2
By growing the film thicker than the specified film thickness of µm or less, implanting ions with ion species having an atomic number greater than He, and then finishing the film to the specified film thickness using a chemical etching method, the magnetic properties of the specified film thickness can be achieved. This is a method for manufacturing thin films.

以下に実施例をあげて詳細に説明する。A detailed explanation will be given below using examples.

実施例: GGG基板に(YSmLvBiOa) 3(、PeGe
)、0.2組成の1μmバブル用ガーネット膜をエピタ
キシャル成長させた。成長あが9膜厚が133μrn及
び1.28μmのウェハーに対し、前者にはNe+11
0kV、 3 Xi O”7cm” 、後者にはNe”
 5 Q kV。
Example: GGG substrate (YSmLvBiOa) 3(, PeGe
), a 1 μm bubble garnet film with a composition of 0.2 was epitaxially grown. For wafers with grown Ag9 film thicknesses of 133 μrn and 1.28 μm, the former had Ne+11
0kV, 3 Xi O"7cm", Ne" for the latter
5 Q kV.

1、5 X 1014/cm2イオン注入した。しかる
のち、120℃のH3P0.液中で20秒間化学エツチ
ングした。エツチング後前者の膜厚は0.11μm減少
して1.22μmとなり、後者は0.07μm減少して
1.21μinとなった。この両者のウェハーは膜厚仕
様1.20μm±0.05μmを満足し、これらの膜を
用いてバブル素子を作成したところ、両者には有意差の
ある特性差はあられれなかった。
Ions were implanted at 1.5 x 1014/cm2. After that, H3P0. Chemical etching was performed in a solution for 20 seconds. After etching, the film thickness of the former decreased by 0.11 μm to 1.22 μm, and the thickness of the latter decreased by 0.07 μm to 1.21 μin. Both wafers satisfied the film thickness specification of 1.20 μm±0.05 μm, and when bubble devices were fabricated using these films, no significant difference in characteristics was found between the two.

本発明においては、イオン注入するイオン種及び注入エ
ネルギー、注入量とエツチング液の組成。
In the present invention, the ion species to be implanted, the implantation energy, the implantation amount, and the composition of the etching solution.

温度及びエツチング時間は相互に密接な関係がある。イ
オン種はNe+などの重いイオン種が望ましく、H+又
はH+は好ましくない。これはイオン注入層のエツチン
グ速度を増加させる効果が重いイオンでは顕著(Ne+
では数百倍、 He+で数十倍のエツチング速度となる
。)であること及びH”又はH2では同じダメージレベ
ルの注入をするのに要する時間が長く、生産性が悪いか
らである。注入エネルギーは注入深さを決め、これはエ
ツチング深さを規定するので、重要である。Ne+を注
入イオン種とする場合には実施例に示すように100 
kVでO,l pm、 5 Q kVで0.Q5μmの
エツチングに適していた。注入層はエツチング速度を規
定する。
Temperature and etching time are closely related to each other. The ionic species is preferably a heavy ionic species such as Ne+, and H+ or H+ is not preferred. This is noticeable for heavy ions (Ne+
The etching speed is several hundred times faster when using He+, and several tens times faster when using He+. ) and H'' or H2 requires a long time to implant the same damage level, resulting in poor productivity.The implant energy determines the implant depth, which in turn determines the etching depth. , is important.When Ne+ is used as the implanted ion species, as shown in the example, 100
O, l pm at kV, 0 at 5 Q kV. It was suitable for etching of Q5 μm. The injection layer defines the etch rate.

注入量の多い場合の方がエツチング速度は速くなるが、
仕上りが悪くなりがちであった。また注入量が少ない場
合にも仕上9の膜厚制御がむずかしかった。エツチング
液の温度と時間は、H,PO。
The etching speed becomes faster when the injection amount is large, but
The finish tends to be poor. Furthermore, it was difficult to control the thickness of the finishing layer 9 even when the amount of injection was small. The etching solution temperature and time are H and PO.

をエツチング液とするときには実施例に示すように、1
20°G、20秒間が適当であった。この場合、時間の
方には余裕度がちシ、±2〜3秒の変化があっても同一
の結果が得られた。温度は、イオン注入されていない膜
に対してはエツチング速度がおそいように、やや低温に
するのがよい。
When using as an etching solution, as shown in the example, 1
20°G for 20 seconds was appropriate. In this case, there was a large degree of margin in time, and the same result was obtained even if there was a change of ±2 to 3 seconds. The temperature is preferably set to a slightly lower temperature so that the etching rate is slow for a film that has not been ion-implanted.

イオン注入においては注入深さ方向にガウス分布様のダ
メージレベルの分布がある。このため、注入深さを深く
(注入エネルギーを犬きく)シたときにはこの分布の効
果がよシ顕著となり、エツチング後にイオン注入層を残
さないようにエツチングを制御することが困離となり、
本発明の有効性が失われる。この理由よシエッチング深
さは0.2μmが限度であった。またエツチング深さが
0.05μm以下の場合においても本発明の有効性はみ
られなかった。したがってエツチング液さは0.05μ
mから0.2μmの間に制限される。この量(はと9の
ぞくべき表面層膜厚に対応している。
In ion implantation, there is a Gaussian-like damage level distribution in the implantation depth direction. For this reason, when the implantation depth is increased (the implantation energy is increased), the effect of this distribution becomes more pronounced, and it becomes difficult to control the etching so that no ion-implanted layer remains after etching.
The effectiveness of the invention is lost. For this reason, the etching depth was limited to 0.2 μm. Further, the effectiveness of the present invention was not observed even when the etching depth was 0.05 μm or less. Therefore, the etching solution thickness is 0.05μ
m to 0.2 μm. This amount (corresponds to the thickness of the surface layer that should be removed from the dove 9).

本発明はイオン注入によって形成される欠陥により非イ
オン注入層に比ベイオン注入層のエツチング速度が大き
く増大する効果を用いるものであるから他のイオン種の
場合でも注入エネルギーと注入量を選択することにより
同様の効果が得られる。ただし前にものべたように水素
イオンの場合にはエツチング速度増大効果が小さくよい
結果は得られなかった。He+などの軽いイオンの場合
には0.1μmよシ深いエツチングをする場合に特に有
効であった。
Since the present invention utilizes the effect that the etching rate of the ion-implanted layer is greatly increased compared to the non-ion-implanted layer due to defects formed by ion implantation, the implantation energy and implantation amount can be selected even in the case of other ion species. A similar effect can be obtained. However, as mentioned earlier, in the case of hydrogen ions, the effect of increasing the etching rate was small and good results could not be obtained. In the case of light ions such as He+, it was particularly effective when performing etching as deep as 0.1 μm.

以上のべたように、本発明により、エピタキシャル成長
あがりの表面層を除去するとともに、膜厚を仕様範囲に
精度よく容易に仕上げることができ、バブル素子製造上
有用である。
As described above, the present invention makes it possible to remove the epitaxially grown surface layer and easily finish the film thickness within the specified range with accuracy, which is useful in the production of bubble devices.

Claims (1)

【特許請求の範囲】[Claims] ガーネット磁性薄膜の製造方法において、ガーネット薄
膜をエピタキシャル成長法により膜厚が仕様膜厚より厚
くなるように作製する工程、及びHe以上の原子番号を
もつイオン種にて該ガーネット薄膜にイオン注入を行い
、しかるのちに化学エツチング法にて仕様膜厚に仕上げ
る工程を具備することを特徴とする磁性薄膜の製造方法
A method for manufacturing a garnet magnetic thin film includes a step of manufacturing a garnet thin film using an epitaxial growth method so that the film thickness is thicker than a specified film thickness, and implanting ions into the garnet thin film with an ion species having an atomic number of He or more, A method for producing a magnetic thin film, comprising the step of finishing the film to a specified thickness using a chemical etching method.
JP58121311A 1983-07-04 1983-07-04 Preparation of magnetic thin film Pending JPS6016900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58121311A JPS6016900A (en) 1983-07-04 1983-07-04 Preparation of magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58121311A JPS6016900A (en) 1983-07-04 1983-07-04 Preparation of magnetic thin film

Publications (1)

Publication Number Publication Date
JPS6016900A true JPS6016900A (en) 1985-01-28

Family

ID=14808097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58121311A Pending JPS6016900A (en) 1983-07-04 1983-07-04 Preparation of magnetic thin film

Country Status (1)

Country Link
JP (1) JPS6016900A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294607A (en) * 1988-09-30 1990-04-05 Shin Etsu Chem Co Ltd Oxide garnet single crystal and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294607A (en) * 1988-09-30 1990-04-05 Shin Etsu Chem Co Ltd Oxide garnet single crystal and manufacture thereof

Similar Documents

Publication Publication Date Title
EP1402567B1 (en) Film or layer made of semi-conductive material and method for producing said film or layer
US4092209A (en) Silicon implanted and bombarded with phosphorus ions
JPS5863121A (en) Method of forming uniform flat magnetized layer in ferry magnetic garnet film
US4460412A (en) Method of making magnetic bubble memory device by implanting hydrogen ions and annealing
JPS6271217A (en) Manufacture of semiconductor thin film
US8303745B2 (en) Process for transferring films
JPS6016900A (en) Preparation of magnetic thin film
US4476152A (en) Method for production of magnetic bubble memory device
US6803028B2 (en) Method of making stoichiometric lithium niobate
JPS5918196A (en) Preparation of thin film of single crystal
JP2800060B2 (en) Method for manufacturing semiconductor film
JPS60127594A (en) Ion implantation magnetic bubble element
JP2825676B2 (en) Crystal formation method
JP2000031079A (en) Production of soi substrate
JPH01268009A (en) Formation of composite film of magnetic garnet
Weber et al. Precipitation studies in oxygen-and nitrogen-rich silicon formed by high dose implantation
Giles et al. Characterization of crystallographic defects in thermally oxidized SIMOX materials
JPH02143414A (en) Formation of single crystal film
JP2833878B2 (en) Method of forming semiconductor thin film
JPS6038810A (en) Method for forming semiconductor thin film
JPH0629168A (en) Manufacture of lsi substrate
JPS58112324A (en) Manufacture of semiconductor device
JPH0456125A (en) Forming method for thin crystalline film and thin crystalline film obtained by the same method
JPS6072219A (en) Fabrication of semiconductor single crystal thin film
JPS61284919A (en) Method for ion implantation