JP2796806B2 - Joining method of metal base material and ceramics - Google Patents

Joining method of metal base material and ceramics

Info

Publication number
JP2796806B2
JP2796806B2 JP63131314A JP13131488A JP2796806B2 JP 2796806 B2 JP2796806 B2 JP 2796806B2 JP 63131314 A JP63131314 A JP 63131314A JP 13131488 A JP13131488 A JP 13131488A JP 2796806 B2 JP2796806 B2 JP 2796806B2
Authority
JP
Japan
Prior art keywords
joining
ceramics
metal base
base material
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63131314A
Other languages
Japanese (ja)
Other versions
JPH01301568A (en
Inventor
弘記 杉山
弘 鈴木
一茂 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP63131314A priority Critical patent/JP2796806B2/en
Publication of JPH01301568A publication Critical patent/JPH01301568A/en
Application granted granted Critical
Publication of JP2796806B2 publication Critical patent/JP2796806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属母材とセラミックスとの接合方法に関す
る。
The present invention relates to a method for joining a metal base material and ceramics.

〔従来の技術〕[Conventional technology]

最近、激しい摩耗や高熱を受ける金属部品・部材の一
部に、いわゆるファインセラミックスの部品を組合わせ
ることで、部品全体の耐摩耗性や耐熱性を向上させる手
段が採られている。このような組合わせによる金属とセ
ラミックスとの接合構造体は、両者の間に金属中間層を
介して一体的に接合するもので、金属母材とセラミック
スとの熱膨張係数の大きな差を金属中間層で吸収し、金
属母材とセラミックスとの電気炉中で加熱接合した後、
常温下で冷却する過程で発生する熱応力や熱歪が緩和さ
れ、これによって接合面での剥離が防止されることにな
る。
In recent years, means for improving the wear resistance and heat resistance of the entire part by employing a so-called fine ceramic part in combination with a part of a metal part or member subjected to severe wear or high heat has been adopted. The joint structure of metal and ceramics formed by such a combination is integrally joined with a metal intermediate layer between them, and the large difference in the coefficient of thermal expansion between the metal base material and ceramics is caused by the metal intermediate. After absorbing with a layer and joining by heating in an electric furnace of a metal base material and ceramics,
Thermal stress and thermal strain generated in the process of cooling at room temperature are alleviated, thereby preventing peeling at the joint surface.

従来から行われている接合方法としては、例えば第4
図に示すように、セラミックス1の表面にメタライズ層
2を形成すると共に、このメタライズ層2の上に金属中
間層3を接合し、これを金属母材4の上にロウ材5を介
して乗せ、両者を一体に加熱接合するものである。上記
金属中間層3には、例えばFe−Ni−Co合金[コバール、
スーパーインバー(商品名)]6をロウ材7a,7bを介し
て銅板8,9で挟んだサンドイッチ構造のものが用いら
れ、この金属中間層3によって金属母材4とセラミック
ス1との熱膨張係数の差に基づく熱応力の緩和を図って
いる。
Conventional joining methods include, for example, the fourth method.
As shown in the figure, a metallized layer 2 is formed on the surface of a ceramic 1, a metal intermediate layer 3 is joined on the metallized layer 2, and this is put on a metal base material 4 via a brazing material 5. The two are integrally joined by heating. The metal intermediate layer 3 includes, for example, a Fe—Ni—Co alloy [Kovar,
Super Invar (trade name)] has a sandwich structure in which copper sheets 8 and 9 are sandwiched between brazing materials 7a and 7b, and a thermal expansion coefficient between the metal base material 4 and the ceramics 1 by the metal intermediate layer 3. The thermal stress is relaxed based on the difference between the two.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところで、セラミックス1で被覆しようとする金属母
材4の接合面4aは、第4図に示すような一つの単純平面
だけではなく、一般には曲面であったり、面方向の異な
る複数の平面であるなど、一つの金属母材の中にいくつ
もの接合面を持っていることが多い。
Incidentally, the bonding surface 4a of the metal base material 4 to be coated with the ceramics 1 is not limited to one simple plane as shown in FIG. 4, but is generally a curved surface or a plurality of planes having different surface directions. For example, one metal base material often has several joint surfaces.

しかしながら、従来の接合方法は、上述したように、
予めセラミックス1の上にメタライズ層2と金属中間層
3とを設けておき、これを真空中で金属母材4にロウ材
5を介して高温で接合するものであったから、例えば第
5図に示すようにコ字状断面からなる金属母材10の内周
面をセラミックス11で被覆したようとする場合、金属母
材10の底壁面12は高強度の接合が得られるものの、左右
の側壁面13a,13bでは接合加熱時において溶融したロウ
材5が流下してしまい、ロウ付け自体が難かしく、また
ロウ付けできたとしても信頼性の低いものとなってい
た。
However, the conventional joining method, as described above,
Since the metallized layer 2 and the metal intermediate layer 3 were previously provided on the ceramics 1 and joined to the metal base material 4 in a vacuum with the brazing material 5 at a high temperature, for example, as shown in FIG. As shown in the figure, when the inner peripheral surface of a metal base material 10 having a U-shaped cross section is covered with ceramics 11, the bottom wall surface 12 of the metal base material 10 can obtain high-strength bonding, but the left and right side wall surfaces In the case of 13a and 13b, the brazing material 5 melted at the time of joining heating flows down, so that the brazing itself is difficult, and even if the brazing can be performed, the reliability is low.

そのため、従来にあっては金属母材10の接合面の形状
に制約があって適用範囲が狭くなってしまっていたり、
又は金属母材10を接合面毎に分割し、セラミックス11を
分割部材毎に接合した後に再び組み付けるなど煩雑な作
業を強いられる結果となっていた。
For this reason, in the past, there were restrictions on the shape of the joining surface of the metal base material 10 and the application range was narrowed,
Alternatively, complicated work such as dividing the metal base material 10 for each joining surface, joining the ceramics 11 for each divided member, and then assembling the ceramics 11 again has been required.

そこで本発明の技術的課題は、方向の異なる二以上の
接合面を有する金属母材にセラミックスを接合する場合
に、簡易な手段により、しかも信頼性の高い接合強度を
持ち得る接合方法を提供するものである。
Therefore, a technical problem of the present invention is to provide a joining method capable of having a highly reliable joining strength by simple means when joining ceramics to a metal base material having two or more joining surfaces in different directions. Things.

〔課題を解決するための手段〕[Means for solving the problem]

上記課題を解決するために、本発明に係る金属母材と
セラミックスとの接合方法は、向きの異なる二以上の接
合面を有する金属母材に、接合補助材を介してセラミッ
クスを配置し、これらを加熱炉中で加熱接合する方法に
おいて、前記接合面の一つを水平に配置し、この水平な
接合面に前記セラミックスを接合する操作を、順次繰り
返し、前記接合面全域に前記セラミックスを接合するこ
とを特徴とするものである。
In order to solve the above problems, a method for joining a metal base material and ceramics according to the present invention includes disposing ceramics on a metal base material having two or more bonding surfaces having different directions via a bonding auxiliary material. In a method of heating and joining in a heating furnace, one of the joining surfaces is horizontally arranged, and the operation of joining the ceramics to the horizontal joining surface is sequentially repeated to join the ceramics to the entire joining surface. It is characterized by the following.

また、金属母材セラミックスを接合する時の雰囲気温
度を、接合面の配置を変える毎に順次低くなるように調
整したことを特徴とするものが望ましい。
In addition, it is desirable that the ambient temperature at the time of joining the metal base ceramics is adjusted so as to gradually decrease as the arrangement of the joining surface is changed.

〔作用〕[Action]

上述の手段によれば、まず、接合面の一つに対して向
きを水平に配置し、この水平にした接合面のセラミック
スを加熱接合して、次に、他の向きの接合面を水平にし
てセラミックスを加熱接合する操作を、全ての向きの接
合面に対して順次繰り返し、接合面全域にセラミックス
を接合する。
According to the above-described means, first, the orientation is horizontally arranged with respect to one of the joining surfaces, and the ceramics of the joining surface that has been made horizontal are heated and joined, and then the joining surface in the other direction is made horizontal. The operation of heating and joining the ceramics is sequentially repeated for the joining surfaces in all directions, and the ceramics are joined over the entire joining surface.

これにより、一の面を加熱接合させた時に接合補助材
の一部が組成変化して溶融温度が上がり、次の面を加熱
接合する時には、先に接合した面での接合補助材は同一
の接合温度では溶けにくくなっているので、先の接合面
が垂直方向に配置されていたとしても、接合補助材が溶
け出したり、また接合したセラミックスが剥がれ落ちる
といった不具合が生じることがなく、製造が容易になる
とともに製品品質が向上する。
By this, when one surface is heated and joined, a part of the joining auxiliary material changes in composition and the melting temperature rises, and when the next surface is heated and joined, the joining auxiliary material on the previously joined surface is the same. Since it is difficult to melt at the joining temperature, even if the previous joining surface is arranged in the vertical direction, there is no problem that the joining auxiliary material melts out and the joined ceramics peels off It is easier and product quality is improved.

また、接合温度を順次低くなるように調整することに
よって、先に接合した面での接合補助材は更に溶融しに
くくなるので、接合強度の信頼性が一段と向上する。
In addition, by adjusting the joining temperature so as to be gradually lowered, the joining auxiliary material on the previously joined surface is more difficult to be melted, so that the reliability of the joining strength is further improved.

〔実施例〕〔Example〕

以下添付図面に基づいて本発明の実施例を詳細に説明
する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図乃至第3図は本発明の接合方法を示したもので
あり、断面コ字状の金属母材10の内側面、即ち底壁面12
およびこれと直交する左右の側壁面13a,13bにセラミッ
クスを接合する場合の例である。
1 to 3 show a joining method according to the present invention, in which an inner surface of a metal base material 10 having a U-shaped cross section, that is, a bottom wall surface 12 is formed.
This is an example of a case in which ceramics are joined to left and right side wall surfaces 13a and 13b orthogonal to this.

まず、第1図に示すように、金属母材10を真空炉中の
台座14の上に左側壁面13aが下になるように載置し、こ
の左側壁面13aにセラミックス11aを加熱接合する。この
場合、セラミックス11aには、予め各小片毎に接合補助
材としてのメタライズ層と金属中間層3を接合してお
き、金属母材10の左側壁面13a上に接合補助材としての
ロウ材5aを介して敷き詰め、真空中で約800〜950℃で10
分間加熱し、ロウ材5aを溶融して金属母材10にセラミッ
クス11aを一体的に接合する。尚、金属中間層3もFe−N
i−Co合金とこれを両面から挟む銅板とがロウ材によっ
て接合されるが、上記金属母材10のと接合時にこれら金
属中間層3自体の接合を同時に行ってもよく、また金属
母材10への接合時には金属中間層3の接合は既に終了し
ていてもよい。
First, as shown in FIG. 1, a metal base material 10 is placed on a pedestal 14 in a vacuum furnace such that a left wall surface 13a faces down, and a ceramic 11a is heated and joined to the left wall surface 13a. In this case, the metallized layer as a joining auxiliary material and the metal intermediate layer 3 are joined to the ceramics 11a in advance for each small piece, and the brazing material 5a as the joining auxiliary material is provided on the left wall surface 13a of the metal base material 10. Padding through, about 800-950 ° C in vacuum at 10
After heating for one minute, the brazing material 5a is melted and the ceramics 11a is integrally joined to the metal base material 10. The metal intermediate layer 3 is also made of Fe-N
The i-Co alloy and the copper plate sandwiching the i-Co alloy are joined by a brazing material. When joining with the metal base material 10, the metal intermediate layer 3 itself may be joined at the same time. At the time of joining, the joining of the metal intermediate layer 3 may be already finished.

上記のロウ材5aには、例えば銀ロウ(BAg−8)が用
いられ、600〜950℃溶融するといった特性を有する。従
って、約800〜950℃に加熱した場合にロウ材5aが十分に
溶融して金属母材10と金属中間層3との接合を可能にす
る。
For example, silver brazing (BAg-8) is used as the brazing material 5a, and has a characteristic of melting at 600 to 950 ° C. Therefore, when heated to about 800 to 950 ° C., the brazing material 5 a is sufficiently melted to enable joining of the metal base material 10 and the metal intermediate layer 3.

一方、このロウ材5aの溶融時に、これと接する金属中
間層3、具体的には第4図で示した銅板9がロウ材5a中
に一部拡散し、これがロウ材5aと反応してその組成を若
干変化させ、ロウ材5aの融点を高める。因みに同の融点
は1083℃である。
On the other hand, when the brazing material 5a is melted, the metal intermediate layer 3 in contact with the brazing material, specifically, the copper plate 9 shown in FIG. 4 partially diffuses into the brazing material 5a, and reacts with the brazing material 5a to cause the diffusion. The composition is slightly changed to increase the melting point of the brazing material 5a. Incidentally, the same melting point is 1083 ° C.

上述の接合が終了したら、次いで第2図に示すよう
に、金属母材10を90゜回転させて底壁面12が水平になる
ように台座14上に配置し、上述と同様の手段でセラミッ
クス11bを加熱接合する。この場合にも先程と略同じ温
度に加熱して底壁面12に接するロウ材5bを溶融するが、
左側壁面13aでの既にセラミックス11aを接合してあるロ
ウ材5aは、上述したように組成変化していて底壁面12で
のロウ材5bに比べて溶融する温度が多少高くなっている
ために、ロウ材5aが流れ出したり、また一旦接合したセ
ラミックス11aの小片が剥れ落ちるといった不都合がな
い。
After the above-mentioned joining is completed, as shown in FIG. 2, the metal base material 10 is rotated by 90 ° and placed on the pedestal 14 so that the bottom wall surface 12 is horizontal. Are joined by heating. In this case as well, the brazing material 5b in contact with the bottom wall surface 12 is melted by heating to substantially the same temperature as before,
Since the brazing material 5a which has already joined the ceramics 11a on the left side wall 13a has a composition change as described above and has a slightly higher melting temperature than the brazing material 5b on the bottom wall 12, There is no inconvenience that the brazing material 5a flows out and small pieces of the ceramics 11a that have been joined once come off.

底壁面12での接合が終了したら、更に第3図に示すよ
うに、金属母材10を90゜回転させて右側壁面13bが下に
なるように配置し、前回と同様ロウ材5cを介してセラミ
ックス片を敷き詰め、略同じ温度でセラミックス11cを
加熱接合する。そして、この場合にも底壁面12でのロウ
材5bは一部組成変化していて溶融温度が高くなっている
ため、左側壁面13aを含めてロウ材5bが流れ出すといっ
たことがなく、セラミックス11bの剥離を確実に防止し
得る。
After the joining at the bottom wall surface 12 is completed, the metal base material 10 is further rotated by 90 ° to arrange the right wall surface 13b downward as shown in FIG. Ceramic pieces are spread, and the ceramics 11c are heated and joined at substantially the same temperature. And also in this case, since the brazing material 5b on the bottom wall surface 12 partially changes in composition and the melting temperature is high, the brazing material 5b including the left side wall surface 13a does not flow out, and the ceramics 11b Peeling can be reliably prevented.

このように本実施例によれば、コ字状断面をなす金属
母材10の内側面に強度的に信頼性の高いセラミックス11
の接合を比較的簡易な手段で行なうことができることに
なり、上述の金属母材10のような3つの接合面に限られ
ず、更に複雑な形状の接合面にも同様の手段で接合でき
ることになる。
As described above, according to the present embodiment, the ceramic 11 having high strength and reliability is provided on the inner surface of the metal base material 10 having the U-shaped cross section.
Can be performed by relatively simple means, and the present invention is not limited to the three bonding surfaces such as the metal base material 10 described above, and can be bonded to the bonding surfaces having more complicated shapes by the same means. .

また、上記実施例では、3つの接合面を全て同じ温度
で加熱接合したが、接合面の配置を変える毎に順次温度
が低くなるように調整し、先の接合面での接合温度より
若干低い温度で加熱接合することにより、信頼性はより
一段と向上する。
Further, in the above embodiment, all three bonding surfaces were heated and bonded at the same temperature. However, each time the arrangement of the bonding surfaces was changed, the temperature was sequentially adjusted to be lower, and was slightly lower than the bonding temperature at the previous bonding surface. By performing the heat bonding at the temperature, the reliability is further improved.

上記実施例で説明すれば、最初に接合する金属母材10
の左側壁面13aを900〜950℃で加熱接合した場合に、底
壁面12は850〜900℃で、また最初に接合する右側壁面13
bは800〜850℃で加熱接合しようとするものである。こ
の場合、最初に接合する接合面での加熱温度がロウ材の
溶融温度を上回るように温度調整する必要がある。
According to the above embodiment, the metal base material 10 to be joined first
When the left side wall 13a is heated and joined at 900 to 950 ° C., the bottom wall 12 is at 850 to 900 ° C.
b is the one to be heated and joined at 800 to 850 ° C. In this case, it is necessary to adjust the temperature so that the heating temperature at the joint surface to be joined first exceeds the melting temperature of the brazing material.

上記ロウ材5には、銀ロウ材(BAg−8)の他に、り
ん銅ロウ材やニッケルロウ材を使用することもできる。
りん銅ロウ材は700〜950℃の間で溶融状態にあり使用可
能であるので、例えば上記実施例におけるセラミックス
の接合の場合には、第一の接合(金属母材の左側壁面の
接合)を850〜900℃で行、第二の接合(金属母材の底壁
面の接合)を800〜850℃で行い、第三の接合(金属母材
の右側壁面の接合)を750〜800℃で行うことにより、ロ
ウ材が流出することのない強度の大きさ接合を得ること
ができる。一方、ニッケルロウ材は900℃〜1050℃の間
で溶融するので、例えば第一の接合を1000〜1050℃で、
第二の接合を950〜1000℃で、第三の接合を900〜950℃
でそれぞれ行うことで確実な接合を得ることができる。
As the brazing material 5, a phosphor copper brazing material or a nickel brazing material can be used in addition to the silver brazing material (BAg-8).
Since the phosphor copper brazing material is in a molten state between 700 and 950 ° C. and can be used, for example, in the case of joining ceramics in the above embodiment, the first joining (joining of the left wall surface of the metal base material) is performed. Perform at 850-900 ° C, perform the second joining (joining the bottom wall of the metal base material) at 800-850 ° C, and perform the third joining (joining the right wall surface of the metal base material) at 750-800 ° C This makes it possible to obtain a high-strength joint that does not allow the brazing material to flow out. On the other hand, since the nickel brazing material melts between 900 ° C and 1050 ° C, for example, the first joining is performed at 1000-1050 ° C,
Second bonding at 950-1000 ° C, third bonding at 900-950 ° C
By doing so, reliable bonding can be obtained.

尚、本発明の金属母材には、炭素鋼(例えばS45C)そ
の他種々のものが適用でき、また、セラミックスは酸化
アルミニウムや酸化ジルコニウム等の酸化物系セラミッ
クスおよび窒化ケイ素や炭化ケイ素等の非酸化物系セラ
ミックスのいずれにも適用できる。
In addition, carbon steel (for example, S45C) and other various materials can be applied to the metal base material of the present invention, and ceramics include oxide-based ceramics such as aluminum oxide and zirconium oxide and non-oxidized ceramics such as silicon nitride and silicon carbide. It can be applied to any material-based ceramics.

また、上記実施例では、ロウ材5a,5b,5cと接触する金
属中間層3は銅板9であるが、必ずしもこに限定される
ものではなく、銅と同様の性質を有する高展延性金属の
銀や、銅又は銀を含む合金なども用いることができる。
Further, in the above embodiment, the metal intermediate layer 3 in contact with the brazing materials 5a, 5b, 5c is the copper plate 9, but it is not necessarily limited to this, and the metal intermediate layer 3 is made of a highly ductile metal having the same properties as copper. Silver or an alloy containing copper or silver can also be used.

更に接合補助材も、上記第4図で示した構成のものに
限定されるものではなく、少なくともメタライズ層2と
ロウ材5を有するものであればよい。
Further, the joining auxiliary material is not limited to the configuration shown in FIG. 4 as long as it has at least the metallized layer 2 and the brazing material 5.

次に金属母材に接合したセラミックスの圧縮せん断強
度を調べた結果を示す。
Next, the results of examining the compressive shear strength of ceramics bonded to a metal base material are shown.

平板状の炭素鋼材(32(l)×60(w)×6(t)mm)上に、メ
タライズ層を表面に形成したアルミナセラミック(30
(l)×15(w)×5(t)mm)をロウ材を介して載せ置き、900
〜950℃で約10分間加熱し両者を接合した。これを試料
1とする。次に試料1を垂直に保ち、前記接合面を垂直
方向にして850〜900℃で約10分間加熱処理をした。これ
を試料2とする。更に試料2を再び同じ状態に保ち、80
0〜850℃で約10分間再加熱処理をした。これを試料3と
する。
An alumina ceramic (30 mm) with a metallized layer formed on a flat carbon steel (32 (l) x 60 (w) x 6 (t) mm)
(l) × 15 (w) × 5 (t) mm) with a brazing filler
The two were joined by heating at 950950 ° C. for about 10 minutes. This is designated as Sample 1. Next, the sample 1 was kept vertical, and heat-treated at 850 to 900 ° C. for about 10 minutes with the above-mentioned bonding surface being vertical. This is designated as Sample 2. Sample 2 is kept in the same state again,
Reheating treatment was performed at 0 to 850 ° C. for about 10 minutes. This is designated as Sample 3.

次に、上記試料1〜3のそれぞれについて、常温での
圧縮せん断強度および熱衝撃後の常温圧縮せん断強度調
べた。熱衝撃は、大気中において400℃と室温との間を5
00回繰り返すことにより加えたものである。
Next, for each of the samples 1 to 3, the compressive shear strength at room temperature and the compressive shear strength at room temperature after thermal shock were examined. Thermal shock is between 400 ° C and room temperature in air.
It is added by repeating 00 times.

表−1に測定の結果を示す。なお、nは測定回数であ
る。
Table 1 shows the measurement results. Note that n is the number of measurements.

以上の結果より、試料1に対して、2度加熱の試料2
および3度加熱の試料3とも、圧縮せん断強はほとんど
変わらず(熱衝撃後のものはむしろ強度が大きくなって
いる)、セラミックスの接合強度に何ら問題のないこと
が確認できた。
Based on the above results, the sample 2 was heated twice with respect to the sample 1.
Also, in Sample 3 heated three times, the compressive shear strength hardly changed (the strength after the thermal shock was rather large), and it was confirmed that there was no problem in the bonding strength of the ceramics.

〔効果〕〔effect〕

以上説明したように、本発明に係る金属母材とセラミ
ックスとの接合方法によれば、向きの異なる二以上の接
合面を有する金属母材にセラミックスの配置し、これら
を加熱炉中で加熱接合する場合に、各接合面に対して、
接合面の一つを水平向きに配置してセラミックスを加熱
接合し、次に、他の向きの接合面を水平にしてセラミッ
クスを加熱接合する操作を、全ての向きの接合面に対し
て順次繰り返すことにより、接合面全域にセラミックス
を接合するものであるから、先に接合した面の接合補助
材がセラミックスを加熱接合させた時に接合補助材の一
部が組成変化して溶融温度が上がり、その後の接合面を
加熱接合する時には、先に接合した面の接合補助材が同
一接合温度では溶けにくくなって、先に接合した面がい
かなる向きに変わろうとも接合補助材が流れ出ることが
なくなり、簡易な接合方法で信頼性の高い接合強度を得
ることができるので、その適用範囲を飛躍的に拡大させ
ることができる。
As described above, according to the method for bonding a metal base material and ceramics according to the present invention, ceramics are arranged on a metal base material having two or more bonding surfaces in different directions, and these are heated and bonded in a heating furnace. If you do, for each joint surface,
One of the joining surfaces is placed horizontally and the ceramics are joined by heating, and then the operation of heating and joining the ceramics with the joining surfaces in the other direction horizontal is sequentially repeated for the joining surfaces in all directions As a result, the ceramics are joined to the entire joining surface, so that when the joining auxiliary material on the surface joined first heats and joins the ceramics, a part of the joining auxiliary material changes in composition and the melting temperature rises. When the joint surfaces are heated and joined together, the auxiliary joining material of the previously joined surface becomes difficult to melt at the same joining temperature, so that the joining auxiliary material does not flow out regardless of the orientation of the previously joined surface, making it simple. Since a highly reliable bonding strength can be obtained by a simple bonding method, the applicable range can be dramatically expanded.

また、先に加熱接合させた雰囲気温度よりも、後に加
熱接合させる雰囲気温度が順次低くなるように調整する
ことにより、後の接合面を加熱接合する時には、先に接
合した接合面における接合補助材は同一の接合温度では
溶けにくくなっているので、先の接合面の向きが変わ
り、垂直方向に配置されたとしても、後の接合面に対す
る加熱接合時には、先の接合面の接合補助材が溶け出し
たり、また接合されたセラミックスが剥がれ落ちるとい
った不具合を生じることがなく、金属母材とセラミック
スとの接合製品が容易に製造できるとともに製品品質を
向上させることができる。
Also, by adjusting the temperature of the atmosphere to be subsequently heated and joined so as to be lower sequentially than the temperature of the atmosphere to be heated and joined earlier, when the subsequent joining surface is to be joined by heating, the joining auxiliary material at the joining surface joined earlier is used. Is difficult to melt at the same bonding temperature, so the direction of the previous bonding surface changes, and even if it is arranged vertically, the bonding auxiliary material of the previous bonding surface melts during heating bonding to the subsequent bonding surface. The jointed product of the metal base material and the ceramic can be easily manufactured, and the quality of the product can be improved without causing a problem that the ceramics come out and the bonded ceramics come off.

【図面の簡単な説明】[Brief description of the drawings]

第1図乃至第3図は本発明に係る接合方法の工程を示す
図、第4図は金属部材とセラミックスとの接合部位を示
す模式図、第5図は従来の接合方法の一例を示す図であ
る。 1,11a,11b,11c……セラミックス 2……メタライズ層(接合補助材) 3……金属中間層(接合補助材) 4,10……金属母材 5,5a,5b,5c,7……ロウ材(接合補助材) 6……Fe−Ni−Co合金(接合補助材) 8,9……銅板(接合補助材)
1 to 3 are views showing steps of a bonding method according to the present invention, FIG. 4 is a schematic view showing a bonding portion between a metal member and ceramics, and FIG. 5 is a view showing an example of a conventional bonding method. It is. 1,11a, 11b, 11c ... Ceramics 2 ... Metalized layer (joining auxiliary material) 3 ... Metal intermediate layer (joining auxiliary material) 4,10 ... Metal base material 5,5a, 5b, 5c, 7 ... Brazing material (joining auxiliary material) 6 ... Fe-Ni-Co alloy (joining auxiliary material) 8,9 ... Copper plate (joining auxiliary material)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】向きの異なる二以上の接合面を有する金属
母材に、接合補助材を介してセラミックスを配置し、こ
れらを加熱炉中で加熱接合する方法において、 前記接合面の一つを水平に配置し、この水平な接合面に
前記セラミックスを接合する操作を、順次繰り返し、前
記接合面全域に前記セラミックスを接合することを特徴
とする金属母材とセラミックスとの接合方法。
1. A method of arranging ceramics on a metal base material having two or more joining surfaces having different directions via a joining auxiliary material and heating and joining them in a heating furnace, wherein one of the joining surfaces is A method of joining a metal base material and ceramics, wherein the operation of joining the ceramics to the horizontal joining surface is sequentially repeated, and the ceramics is joined to the entire joining surface.
【請求項2】金属母材にセラミックスを接合する時の雰
囲気温度を、接合面の配置を変える毎に順次低くなるよ
うに調整したことを特徴とする請求項1記載の金属母材
とセラミックスとの接合方法。
2. The metal base material and ceramics according to claim 1, wherein the ambient temperature at the time of bonding the ceramics to the metal base material is adjusted so as to become lower each time the arrangement of the bonding surface is changed. Joining method.
JP63131314A 1988-05-31 1988-05-31 Joining method of metal base material and ceramics Expired - Fee Related JP2796806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63131314A JP2796806B2 (en) 1988-05-31 1988-05-31 Joining method of metal base material and ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63131314A JP2796806B2 (en) 1988-05-31 1988-05-31 Joining method of metal base material and ceramics

Publications (2)

Publication Number Publication Date
JPH01301568A JPH01301568A (en) 1989-12-05
JP2796806B2 true JP2796806B2 (en) 1998-09-10

Family

ID=15055059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63131314A Expired - Fee Related JP2796806B2 (en) 1988-05-31 1988-05-31 Joining method of metal base material and ceramics

Country Status (1)

Country Link
JP (1) JP2796806B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673932B2 (en) * 1986-04-11 1994-09-21 住金鋼材工業株式会社 Decorative building material and method for manufacturing decorative steel material used for manufacturing the same

Also Published As

Publication number Publication date
JPH01301568A (en) 1989-12-05

Similar Documents

Publication Publication Date Title
JPS59232693A (en) Clad brazing filler metal for joining ceramics and metal or the like and composite body composed of ceramics and metal or the like using said brazing filler metal
JPH02175673A (en) Joined body of ceramics and metal
JPH0474306B2 (en)
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
JP2796806B2 (en) Joining method of metal base material and ceramics
JPS58120578A (en) Selective brazing method for inorganic base material
JPH0729859B2 (en) Ceramics-Metal bonding material
JPS59232692A (en) Brazing filler metal for joining ceramics and metal or the like and composite body composed of ceramics and metal or the like using said brazing filler metal
JP3872379B2 (en) Package for housing semiconductor element and manufacturing method thereof
JPH05319946A (en) Ceramic substrate joined to metallic plate
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
EP0162700A2 (en) Nitride ceramic-metal complex material and method of producing the same
JPS62296959A (en) Envelope for rectifying element
JPH0223498B2 (en)
JPS6338244A (en) Manufacture of ceramic substrate for semiconductor device and clad material used for the same
JPH05201777A (en) Ceramic-metal joined body
JP3298235B2 (en) Joining method of ceramics and nickel
JP2001048670A (en) Ceramics-metal joined body
JPS63179733A (en) Joining structure of ceramics and metal and manufacture thereof
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JP3365575B2 (en) Joint of ceramic and metal
JPH0649620B2 (en) Method for joining ceramic member and metal member
JP2984395B2 (en) Nitride ceramic joined body and joining method thereof
JP3176015B2 (en) Joint of ceramic and metal
JP2848867B2 (en) Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees