JP2792097B2 - Manufacturing method of battery case used for explosion-proof sealed battery - Google Patents

Manufacturing method of battery case used for explosion-proof sealed battery

Info

Publication number
JP2792097B2
JP2792097B2 JP1104907A JP10490789A JP2792097B2 JP 2792097 B2 JP2792097 B2 JP 2792097B2 JP 1104907 A JP1104907 A JP 1104907A JP 10490789 A JP10490789 A JP 10490789A JP 2792097 B2 JP2792097 B2 JP 2792097B2
Authority
JP
Japan
Prior art keywords
battery
punch
explosion
battery case
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1104907A
Other languages
Japanese (ja)
Other versions
JPH02284347A (en
Inventor
真治 浜田
知一 三田村
政彦 多田
隆文 藤井
敏夫 讃岐谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1104907A priority Critical patent/JP2792097B2/en
Publication of JPH02284347A publication Critical patent/JPH02284347A/en
Application granted granted Critical
Publication of JP2792097B2 publication Critical patent/JP2792097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、防爆型密閉電池に使用する電池ケースの製
造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a battery case used for an explosion-proof sealed battery.

従来の技術 塩化チオニル−リチウム電池で代表されるような正極
活物質としてオキシハロゲン化物を用い、負極活物質と
してアルカリ金属を用いる電池では、活物質が水分と非
常に反応しやすいため、電池ケースをハーメチックシー
ルにより封口する完全密閉構造が採用されている。
2. Description of the Related Art In a battery using an oxyhalide as a positive electrode active material as represented by a thionyl chloride-lithium battery and an alkali metal as a negative electrode active material, the active material is very easily reacted with moisture. A completely hermetic structure that closes with a hermetic seal is adopted.

このようなハーメチックシールを採用した電池では、
密閉性が高い反面、高温加熱下に置かれたり、高電圧で
充電されるなどの事態に遭遇すると、電池の内部圧力が
異常に上昇して破裂に至り、電池使用機器を破損するお
それがある。そこで、種々の防爆安全装置が提案されて
きたが、特に電池ケースの底部に溝加工を施し薄肉部を
形成したものが多かった。
In a battery using such a hermetic seal,
Despite the high sealing performance, if the battery is exposed to high-temperature heating or is charged with high voltage, the internal pressure of the battery rises abnormally, which may lead to rupture and damage to battery-powered equipment. . Therefore, various explosion-proof safety devices have been proposed, but many of them have a groove formed on the bottom of the battery case to form a thin portion.

従来、この種の密閉形電池は、第5図に示すような構
成であった。、第5図に於いて、塩化チオニル−リチウ
ム電池の発電要素、例えばリチウム負極11,セパレータ1
2,炭素多孔質形成体正極13などを収納した電気容器1の
開口部にガラス層16を介して正極端子17を設けた電池蓋
15を溶接してあり、正極端子17はパイプ状をしていて、
その上端部は電解液18を注入した後、正極集電体14の上
部と溶接して封止してあった。一方電池容器1の底部2
には平面形状が十字状の溝3が形成されていた。第6図
はこの電池容器の底部の、プレス形成による薄肉加工の
状態を示す要部拡大断面図である。第6図において、金
型D:溝加工用ポンチと金型E:受台とによるプレス成形に
よって、電池容器1の底部2の外面に、底部に平坦部3a
を有する断面倒立台形状の溝3を形成していた(特開昭
63−86243号公報)。
Conventionally, this type of sealed battery has a configuration as shown in FIG. In FIG. 5, a power generating element of a thionyl chloride-lithium battery, for example, a lithium negative electrode 11, a separator 1
2, a battery lid in which a positive electrode terminal 17 is provided at the opening of the electric container 1 containing a carbon porous formed body positive electrode 13 and the like via a glass layer 16
15 is welded, the positive electrode terminal 17 is in the shape of a pipe,
After the electrolyte 18 was injected into the upper end portion, the upper end portion was sealed by welding to the upper portion of the positive electrode current collector 14. On the other hand, the bottom 2 of the battery container 1
Was formed with a cross-shaped groove 3 in plan view. FIG. 6 is an enlarged sectional view of a main part of the bottom of the battery container, showing a state of a thin wall processing by press forming. In FIG. 6, a flat portion 3a is formed on the outer surface of the bottom portion 2 of the battery container 1 by press molding using a die D: a groove-forming punch and a die E: a pedestal.
A groove 3 having an inverted trapezoidal cross section having a groove is formed.
63-86243).

発明が解決しようとする課題 このような従来の構成では、溝底部に平坦部を設けた
ことによる切欠効果と、平面形状において複数の溝が交
点を持つことにより電池の内部圧力が該交点に集中して
かかるようになり、薄肉部の厚さをある程度維持して
も、比較的低い圧力で、溝底部の端部から切裂破壊が生
じるようになっている。しかし、プレス成形により溝加
工をして量産対応を行なう場合、どうしても溝形成用の
ポンチの損傷が避けられず、溝底部の端部における薄肉
部の厚さがポンチの損傷に伴い厚くなり、前記切欠効果
が期待できなくなるおそれがあった。即ち、第6図にお
いて、溝底部3aの端部3a2において、電池の内部圧力上
昇時の曲げによる引張力に対する抵抗が大きくなり、切
裂破壊が生じる箇所が溝底部3aの端部3a2から中央部3a1
になるものもあり、防爆機能の作動圧力にバラツキを生
じた。特に、電池ケースの材質がステンレス鋼である場
合、その加工硬化のためにポンチの破損が著しかった。
そこで薄肉部4の厚さtを比較的薄い状態で安定して量
産することがやはり基本となる。このような観点から、
溝底部に幅広い平坦部があったり、平面形状に見る溝の
交点近傍においては、プレス成形による薄肉加工時にケ
ース材料が逃げにくいので、薄くつぶそうとすればする
ほど加工荷重が大きくなり、ポンチに負担がかかり、金
型寿命が短くなるという課題があった。
In such a conventional configuration, the notch effect due to the provision of the flat portion at the bottom of the groove and the internal pressure of the battery concentrated at the intersection due to the plurality of grooves having intersections in the planar shape. As a result, even if the thickness of the thin portion is maintained to some extent, a relatively small pressure causes a breakage at the end of the groove bottom at a relatively low pressure. However, in the case of mass production by performing groove processing by press molding, damage to the punch for groove formation is unavoidable, the thickness of the thin portion at the end of the groove bottom increases with the damage to the punch, There was a possibility that the notch effect could not be expected. That is, in FIG. 6, at the end 3a 2 of the groove bottom 3a, resistance to tension due to the bending when the internal pressure rise of the battery is increased, locations Setsu裂breakdown occurs from the end portion 3a 2 of the groove bottom 3a Central part 3a 1
In some cases, the operating pressure of the explosion-proof function fluctuated. In particular, when the material of the battery case was stainless steel, the punch was significantly damaged due to its work hardening.
Therefore, it is fundamental to stably mass-produce the thickness t of the thin portion 4 in a relatively thin state. From this perspective,
There is a wide flat portion at the bottom of the groove, or near the intersection of the grooves seen in a planar shape, the case material is difficult to escape during thin processing by press molding, so the thinner it is, the greater the processing load becomes, There was a problem that a burden was imposed and the mold life was shortened.

本発明はこのような課題を解決するもので、電池ケー
スの底部のプレス成形による薄肉加工を安定化させるこ
とにより、安全性及び量産性の高い防爆機能を備えた密
閉形電池の製造法を提供することを目的とするものであ
る。
The present invention solves such a problem, and provides a method of manufacturing a sealed battery having an explosion-proof function with high safety and mass productivity by stabilizing thin-wall processing by press-forming the bottom of a battery case. It is intended to do so.

課題を解決するための手段 本発明は、電池に防爆機能を備えさせるための薄肉部
を電池ケースの底部に形成するにあたり、薄肉部形成用
金型として、先端に一定面積の平坦部を有するポンチお
よび、上記ポンチ平坦部と相似形状で、かつその80〜98
%の面積の押出し孔を有する平坦な受け型を用いるもの
である。
Means for Solving the Problems The present invention relates to a punch having a flat portion having a fixed area at a tip as a thin portion forming mold when forming a thin portion for providing a battery with an explosion-proof function at the bottom of a battery case. And a shape similar to the punch flat portion, and 80 to 98 thereof.
% Of a flat receiving die having an extrusion hole of area.

作用 このような薄肉部の製造方法によると、ポンチにより
押圧された電池ケースの底部は、受け型の押出し孔に逃
げるため、電池ケースの圧縮による加工硬化を減少させ
ることができる。そこで例えば電池ケースとして耐食性
は高いが、高硬度であるステンレス鋼を用いた場合でも
比較的低い加工荷重で薄肉加工が安定し、安全性及び量
産性の高い防爆機能を備えた密閉形電池を得ることがで
きる。
According to the method of manufacturing such a thin portion, the bottom of the battery case pressed by the punch escapes into the extrusion hole of the receiving die, so that work hardening due to compression of the battery case can be reduced. Thus, for example, even when stainless steel having high corrosion resistance but high hardness is used as a battery case, thin-wall processing is stable with a relatively low processing load, and a sealed battery having an explosion-proof function with high safety and mass productivity is obtained. be able to.

また、受け型の押出し孔の形状および面積を、ポンチ
平面部と相似形でかつ平坦部面積の80〜98%にするの
は、押出し孔の面積が80%以下では、ポンチにより押圧
された電池ケース底部が受け型の押出し孔に逃げきれ
ず、圧縮による加工硬化により加工荷重が大きくなっ
て、薄肉部形成が困難になるからである。また逆に98%
を超えた場合は、ポンチと受け型との間で剪断力が作用
し、ブレス成形による薄肉部が形成し難くなくなるから
である。
Also, the shape and area of the extrusion hole of the receiving mold are made similar to the plane part of the punch and 80 to 98% of the area of the flat part. When the area of the extrusion hole is 80% or less, the battery pressed by the punch is used. This is because the bottom of the case cannot escape to the extrusion hole of the receiving mold, and the work load increases due to work hardening due to compression, and it becomes difficult to form a thin portion. 98% conversely
This is because, when the pressure exceeds the limit, a shearing force acts between the punch and the receiving mold, and it becomes difficult to form a thin portion by the breath forming.

実施例 つぎに本発明の実施例を図面に基づいて説明する。第
1図は薄肉部形成用のポンチを下降させ、電池ケースの
底部に押し込んだときの状態の要部拡大断面図であり、
第2図は薄肉部形成用金型を真上から見た図である。
Embodiment Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an enlarged cross-sectional view of a main part in a state where a punch for forming a thin portion is lowered and pushed into the bottom of a battery case.
FIG. 2 is a view of the mold for forming a thin portion as viewed from directly above.

まず、第1図に基づき全体を説明すると、ポンチ21と
押出し孔23を有する受け型22によるプレス成形によっ
て、電池ケース24の底部24aの内部に凹部25,外部に凸部
26を形成すると、ケース材料が矢印Pに示すように逃げ
て、ポンチ平面部21aと対向する受け型平面部22aとの間
で薄肉部27が形成される。
First, the entire structure will be described with reference to FIG. 1. Press forming by a punch 21 and a receiving mold 22 having an extrusion hole 23 forms a concave portion 25 inside a bottom portion 24a of a battery case 24 and a convex portion outside.
When the case 26 is formed, the case material escapes as shown by the arrow P, and a thin portion 27 is formed between the punch flat surface portion 21a and the receiving die flat surface portion 22a.

第2図は、この本発明による薄肉部形成用金型を真上
から見た図である。ここで受け型22の押出し孔23の面積
をA、Aと相似形のポンチ平坦部21aの面積をBとする
と、A=0.8〜0.98×Bであることが好ましい。斜線部
8は、ポンチ平坦部21aと受け型平坦部22aとに挾まれた
部分であり、第1図における薄肉部27のための加工面積
となる。また第2図においては、斜線部28は円形状であ
ったが、第3図A〜Dに示すように、環状で相似形を保
ちうれば多様な形状が可能である。
FIG. 2 is a view of the mold for forming a thin portion according to the present invention as viewed from directly above. Here, assuming that the area of the extrusion hole 23 of the receiving die 22 is A, and the area of the punch flat portion 21a similar to A is B, it is preferable that A = 0.8 to 0.98 × B. The hatched portion 8 is a portion sandwiched between the punch flat portion 21a and the receiving die flat portion 22a, and is a processing area for the thin portion 27 in FIG. In FIG. 2, the hatched portion 28 has a circular shape. However, as shown in FIGS. 3A to 3D, various shapes are possible as long as the shape is annular and similar.

量産対応における防爆機能の作動の安定性を以下の方
法で評価した。電池ケースの材料にステンレス鋼(SUS3
04)を用いて、薄肉部形成用金型の材料に超硬を用い
た。金型形状については、本発明の場合、第1図に示す
φ=5mmWは、0.15mm(A/B=0.89)と0.30mm(A/B=0.8
0)と0.40mm(A/B=0.74)の3種類とし、図示しないが
ポンチ側ストッパーにより、ポンチ平坦部21aと受け型
平坦部22aとの間隔tを0.05mm確保するように設定し
た。また従来の構成の場合は、第6図に示すθを60゜と
し、Wは0.15mmと0.30mmの2種類を用いて、金型D(溝
加工用ポンチ)と金型E(受台)の間隔tを0.05mmに設
定し、溝の加工形状は十字状にした。尚、加工荷重は全
て一定で、薄肉部の加工面積は、Wが0.15mmと0.30mmの
各々の比較において、本発明と従来の構成が同じ面積に
なるようにした。以上の金型構成において、まず1万個
の薄肉加工を行なった後、その50個を抜き取り、更に10
万個の薄肉加工を行なった後、その50個を抜き取り、そ
れらを1010℃で10分間焼鈍し、薄肉部の破壊作動圧を測
定した結果の度数分布を第4図に示した。また、加工後
の金型の損傷状況も比較した。
The operation stability of the explosion-proof function in mass production was evaluated by the following method. Stainless steel (SUS3
04), a super hard material was used as the material of the mold for forming the thin portion. Regarding the mold shape, in the case of the present invention, φ = 5 mmW shown in FIG. 1 is 0.15 mm (A / B = 0.89) and 0.30 mm (A / B = 0.8
0) and 0.40 mm (A / B = 0.74), and was set so that the interval t between the punch flat portion 21a and the receiving die flat portion 22a was secured to 0.05 mm by a punch-side stopper (not shown). In the case of the conventional configuration, θ shown in FIG. 6 is set to 60 °, W is used for two types of 0.15 mm and 0.30 mm, and a die D (a groove punch) and a die E (a receiving stand). Was set to 0.05 mm, and the groove processing shape was a cross shape. In addition, the processing load was all constant, and the processing area of the thin portion was set so that the configuration of the present invention and the conventional configuration had the same area in each comparison of W of 0.15 mm and 0.30 mm. In the above mold configuration, first, 10,000 thin-walled parts were processed, then 50 of them were extracted, and further 10
After thinning of 10,000 pieces, 50 pieces were extracted, annealed at 1010 ° C. for 10 minutes, and the frequency distribution as a result of measuring the breaking operation pressure of the thin portion was shown in FIG. The damage of the mold after processing was also compared.

第4図に示すように、Wが同じ場合本発明による薄肉
加工を施した電池ケースの方が、従来の構成による薄肉
加工を施した電池ケースよりも、量産対応において作動
圧のバラツキが小さく、また作動圧のレベルの変化も殆
どない。従来の電池ケースの破壊作動圧の高いものにつ
いて、薄肉部の厚みを測定した結果、金型の設定(t=
0.05mm)よりも大きい値であった。これは、薄肉部のケ
ース材料の逃げが悪いため、加工荷重が不足していたた
めと思われる。
As shown in FIG. 4, when W is the same, the thinned battery case according to the present invention has less variation in operating pressure in mass production than the thinned battery case according to the conventional configuration, Also, there is almost no change in the operating pressure level. As a result of measuring the thickness of the thin portion of the conventional battery case having a high breaking operation pressure, the setting of the mold (t =
0.05 mm). This is presumably because the processing load was insufficient due to poor escape of the case material in the thin portion.

しかしながら、本発明による薄肉加工をW=0.40mm
(A/B=0.74)として加工したものは、作動圧のレベル
の変化は殆ど無かったものの、作動圧は高く、薄肉部の
厚みも金型の設定(t=0.05mm)よりも大きい値であっ
た。これは、押出し孔23へのケース材料が逃げきれなく
なったためと思われる。
However, thin processing according to the present invention requires W = 0.40 mm.
(A / B = 0.74), the working pressure level was almost unchanged, but the working pressure was high and the thickness of the thin part was larger than the mold setting (t = 0.05mm). there were. This is probably because the case material could not escape to the extrusion hole 23.

加工後の金型の損傷状況については、従来の構成で
は、溝加工用ポンチの第6図に示す3a2に相当する部分
の損傷が見られ、特に溝の交点近傍に相当する部分の破
損が顕著であったのに対し、本発明による金型において
は殆ど損傷が見られなかった。
With regard to the damage state of the mold after machining, in the conventional configuration, damage to the portion corresponding to 3a 2 shown in FIG. 6 of the groove machining punch was observed, and particularly damage to the portion corresponding to the vicinity of the intersection of the grooves was observed. While notable, little damage was seen in the mold according to the invention.

発明の効果 以上のように本発明によれば、プレス成形による薄肉
加工時に、薄肉部分のケース材料が逃け易いため、加工
荷重が小さくて済み、また、ポンチ自体の加工部の肉厚
を確保する設計ができるので、ポンチの負担が軽減でき
る。そこで、量産対応においても、金型の損傷が殆どな
く、プレス成形による薄肉加工を安定して行なうことが
できる。そして、電池の内圧が異常に上昇した場合には
所定の面積が完全に開放して、電池内部で発生したガス
の逸散を充分に行なうことができ、安全性が高くかつ量
産性のある防爆機能を備えることができるという効果が
得られる。
Advantageous Effects of the Invention As described above, according to the present invention, at the time of thin processing by press molding, the case material of the thin part is easily escaped, so that the processing load is small and the thickness of the processed part of the punch itself is secured. The design of the punch can reduce the load on the punch. Therefore, even in mass production, the mold is hardly damaged, and thin processing by press molding can be stably performed. When the internal pressure of the battery rises abnormally, the predetermined area is completely opened, the gas generated inside the battery can be sufficiently dissipated, and the explosion-proof with high safety and mass productivity is achieved. The effect that a function can be provided is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例における薄肉部形成用のポンチ
を下降させ電池ケースの底部に押し込んだときの状態の
要部拡大断面図、第2図は本発明による薄肉部形成用金
型を真上から見た図、第3図A〜Dは本発明による薄肉
部形成用金型の形状例を示す図、第4図は量産対応にお
ける防爆機能の作動圧安定性を評価した度数分布図、第
5図は従来の構成による密閉形電池を示す断面図、第6
図は第5図に示す従来の密閉形電池の薄肉加工の状態を
示す要部拡大断面図である。 21……ポンチ、21a……ポンチ平坦部、22……受け型、2
2a……受け型平坦部、23……押出し孔、24……電池ケー
ス、24a……電池ケース底部、25……凹部、26……凸
部、27……薄肉部、28……21aと22aとに挾まれた部分。
FIG. 1 is an enlarged cross-sectional view of a main part of the embodiment of the present invention when a punch for forming a thin portion is lowered and pushed into the bottom of a battery case. FIG. FIGS. 3A to 3D are diagrams showing examples of the shape of the mold for forming a thin portion according to the present invention, and FIGS. 3A to 3D are frequency distribution diagrams for evaluating the operating pressure stability of the explosion-proof function in mass production. FIG. 5 is a cross-sectional view showing a conventional sealed battery, and FIG.
FIG. 5 is an enlarged sectional view of a main part of the conventional sealed battery shown in FIG. 21 ... Punch, 21a ... Punch flat part, 22 ... Receiving mold, 2
2a: Flat receiving part, 23: Extrusion hole, 24: Battery case, 24a: Bottom part of battery case, 25: Concave part, 26: Convex part, 27: Thin part, 28: 21a and 22a The part sandwiched between.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 隆文 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 讃岐谷 敏夫 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭63−285860(JP,A) 特開 昭59−154743(JP,A) 実開 昭59−132162(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01M 2/02──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Takafumi Fujii 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. In-company (56) References JP-A-63-285860 (JP, A) JP-A-59-154743 (JP, A) JP-A-59-132162 (JP, U) (58) Fields investigated (Int. . 6, DB name) H01M 2/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電池に防爆機能を備えさせるための環状薄
肉部を電池ケースの底部に形成する方法であって、薄肉
部形成用金型として、先端に一定面積の平坦部を有する
ポンチおよび、上記ポンチの平坦部と相似形状でその80
〜98%の面積の押出し孔を有する平坦な受け型を用いた
ことを特徴とする電池ケースの製造方法。
1. A method of forming an annular thin portion at the bottom of a battery case for providing an explosion-proof function to a battery, comprising: a punch having a flat portion having a fixed area at a tip as a thin portion forming die; 80 with similar shape to the flat part of the punch
A method for manufacturing a battery case, comprising using a flat receiving mold having an extrusion hole having an area of about 98%.
JP1104907A 1989-04-25 1989-04-25 Manufacturing method of battery case used for explosion-proof sealed battery Expired - Fee Related JP2792097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1104907A JP2792097B2 (en) 1989-04-25 1989-04-25 Manufacturing method of battery case used for explosion-proof sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1104907A JP2792097B2 (en) 1989-04-25 1989-04-25 Manufacturing method of battery case used for explosion-proof sealed battery

Publications (2)

Publication Number Publication Date
JPH02284347A JPH02284347A (en) 1990-11-21
JP2792097B2 true JP2792097B2 (en) 1998-08-27

Family

ID=14393192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1104907A Expired - Fee Related JP2792097B2 (en) 1989-04-25 1989-04-25 Manufacturing method of battery case used for explosion-proof sealed battery

Country Status (1)

Country Link
JP (1) JP2792097B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114242462A (en) * 2021-12-27 2022-03-25 江苏奥星电子有限公司 Integrally-formed explosion-proof aluminum shell extrusion die and forming process thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154743A (en) * 1983-02-23 1984-09-03 Hitachi Maxell Ltd Sealed type battery
JPS59132162U (en) * 1983-02-23 1984-09-04 日立マクセル株式会社 sealed battery
JPH07105218B2 (en) * 1987-05-19 1995-11-13 日立マクセル株式会社 Method for manufacturing battery container used for explosion-proof sealed battery

Also Published As

Publication number Publication date
JPH02284347A (en) 1990-11-21

Similar Documents

Publication Publication Date Title
US6207319B1 (en) Cap assembly for secondary battery
JP3771366B2 (en) Sealed battery
JP3849733B2 (en) Nonaqueous electrolyte secondary battery
JP2792097B2 (en) Manufacturing method of battery case used for explosion-proof sealed battery
JP2743636B2 (en) Manufacturing method of button type air battery
KR100366079B1 (en) Secondary battery
JP2755751B2 (en) Manufacturing method of sealed battery
JP2006066308A (en) Coin-shaped cell
JPH02281552A (en) Sealed battery
JP3131145U (en) Button-type alkaline battery
JP2870067B2 (en) Sealed battery
JPS58169866A (en) Sealing gasket for electrochemical battery
JP2574344B2 (en) Organic electrolyte battery
JP3365174B2 (en) Explosion-proof sealing plate for batteries
JP2995431B2 (en) Organic electrolyte battery
JPH03134950A (en) Sealed cell
JPH0355754A (en) Sealed battery
JP4848622B2 (en) Coin-type lithium primary battery
JP2005203169A (en) Oblong nonaqueous electrolyte battery
JPH0334256A (en) Cylindrical hermetic type alkaline storage battery
JPS63239763A (en) Square enclosed-type cell
KR20010039432A (en) Case used in sealed battery
JPS5835346B2 (en) sealed small battery
JPS59209263A (en) Battery
JPH0789482B2 (en) Method for manufacturing battery container used for explosion-proof sealed battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees