JP2786595B2 - Method for producing silicon nitride powder, silicon nitride sintered body and method for producing the same - Google Patents

Method for producing silicon nitride powder, silicon nitride sintered body and method for producing the same

Info

Publication number
JP2786595B2
JP2786595B2 JP6058973A JP5897394A JP2786595B2 JP 2786595 B2 JP2786595 B2 JP 2786595B2 JP 6058973 A JP6058973 A JP 6058973A JP 5897394 A JP5897394 A JP 5897394A JP 2786595 B2 JP2786595 B2 JP 2786595B2
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
slurry
sintered body
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6058973A
Other languages
Japanese (ja)
Other versions
JPH07267614A (en
Inventor
裕樹 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GAISHI KK
Original Assignee
NIPPON GAISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GAISHI KK filed Critical NIPPON GAISHI KK
Priority to JP6058973A priority Critical patent/JP2786595B2/en
Publication of JPH07267614A publication Critical patent/JPH07267614A/en
Application granted granted Critical
Publication of JP2786595B2 publication Critical patent/JP2786595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、窒化珪素粉末の製造方
法に係り、更に詳細には、特定の性状を有する窒化珪素
粉末の製造方法、並びにこれを用いて得られる肉厚で高
強度、高密度の窒化珪素焼結体及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride powder, and more particularly, to a method for producing a silicon nitride powder having a specific property, and a thick and high-strength material obtained by using the same. The present invention relates to a high-density silicon nitride sintered body and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、窒化珪素焼結体は、高温での高強
度、化学的安定性等の理由から注目されている材料であ
り、ディーゼル、ガスタービン等の熱機関用構造材料へ
の適用が種々検討されている。一般に、窒化珪素は難焼
性であるため、焼結性を向上させるべく、窒化珪素粉末
に、MgO、Y23等の焼結助剤を添加して成形し焼成
することにより、適当な強度を有する窒化珪素焼結体が
製造されている。
2. Description of the Related Art Conventionally, silicon nitride sintered bodies have been attracting attention because of their high strength at high temperatures, chemical stability, etc., and have been applied to structural materials for heat engines such as diesel and gas turbines. Are variously studied. In general, since silicon nitride is hardly flammable, an appropriate sintering aid such as MgO or Y 2 O 3 is added to silicon nitride powder to improve sinterability, followed by molding and firing. Silicon nitride sintered bodies having high strength have been manufactured.

【0003】このような窒化珪素の製造方法において、
焼成の際に生ずる液相の生成温度が高い場合には、液相
の生成、α−Si34からβ−Si34への相変態、β
−Si34の結晶成長及び緻密化を制御しなければ、高
密度で高強度の焼結体が得られないことが知られてい
る。このような状況において、薄肉製品については、焼
成温度、昇温速度、降温速度、焼成雰囲気等を高度に制
御することにより、高密度高強度の焼結体が得られてい
る。
In such a method for producing silicon nitride,
When the temperature of forming the liquid phase generated during firing is high, formation of the liquid phase, phase transformation from α-Si 3 N 4 to β-Si 3 N 4 , β
It is known that a high-density, high-strength sintered body cannot be obtained unless crystal growth and densification of —Si 3 N 4 are controlled. In such a situation, for a thin product, a sintered body having a high density and a high strength is obtained by controlling the firing temperature, the heating rate, the cooling rate, the firing atmosphere, and the like to a high degree.

【0004】一方、厚肉製品ついては、成形体表面と
内部とにおける雰囲気、温度等の相違により液相生成速
度や相変態温度が異なるため、従来の薄肉製品に適用さ
れている材料調製技術や焼成制御技術を用いても、肉厚
20mm以上の焼成体を高密度で得ることはできないと
いう問題があった。これに対し、本件出願人は、特願平
5−64203号において、窒化珪素焼結体を焼成する
際の液相生成や窒化珪素の相変態に関与するSiO2
挙動を制御すべく、窒化珪素粉末の表面近傍の酸素量
(表面有効酸素量)を調整することにより、高密度高強
度の厚肉の窒化珪素焼結体が得られることを提案した。
On the other hand, For the thick product, the atmosphere in the forming surface and internal, for liquid phase generating speed and phase transformation temperature by a difference in temperature and the like are different, material preparation technology that is applied to a conventional thin-walled products Ya Even if the firing control technique is used, there is a problem that a fired body having a thickness of 20 mm or more cannot be obtained at a high density. On the other hand, the applicant of the present application has disclosed in Japanese Patent Application No. 5-64203 a method for controlling the behavior of SiO 2 involved in the generation of a liquid phase and the phase transformation of silicon nitride when firing a silicon nitride sintered body. It has been proposed that a thick silicon nitride sintered body with high density and high strength can be obtained by adjusting the amount of oxygen (amount of effective oxygen on the surface) near the surface of the silicon powder.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、本発明
者が更に検討を加えた結果、窒化珪素粉末の表面有効酸
素量の調整を行うに当たり、特に水を溶媒として加えて
スラリー状とし、これを粉砕しながら酸素量の調整を行
う場合には、スラリーの粘性が窒化珪素原料粉末のロッ
トに応じてばらついたり、また、粉砕中に粘性が変動し
て所望の表面有効酸素量が得られないことがあるという
ことが判明した。本発明は、かかる知見に鑑みてなされ
たものであり、その目的とするところは、原料粉末のロ
ットに依存することがない均一な性状を有する窒化珪素
粉末の製造方法、並びにこれを用いて得られる高密度、
高強度の窒化珪素焼結体及びその製造方法を提供するこ
とにある。
However, as a result of further studies by the present inventors, in adjusting the surface effective oxygen amount of the silicon nitride powder, water was added as a solvent to form a slurry, and this was pulverized. When adjusting the amount of oxygen while adjusting, the viscosity of the slurry may vary depending on the lot of the silicon nitride raw material powder, or the viscosity may fluctuate during the pulverization and a desired surface effective oxygen amount may not be obtained. It turned out that there was. The present invention has been made in view of such findings, and an object of the present invention is to provide a method for producing a silicon nitride powder having uniform properties that does not depend on the lot of the raw material powder, and to obtain a method using the same. High density,
An object of the present invention is to provide a high-strength silicon nitride sintered body and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく鋭意研究した結果、スラリー粉砕工程におい
て、スラリーの温度と粘性を適切に制御することによ
り、上記目的が達成できることを見出し、本発明を完成
するに至った。従って、本発明の窒化珪素粉末の製造方
法は、窒化珪素原料粉末に水を添加し、得られた混合物
の温度を30〜80℃、且つ粘性を20〜1000cP
に保持しながら混合・粉砕してスラリー化することによ
り、得られる窒化珪素粉末の含有酸素量を0.5〜3.
0重量%に調整し、且つ、この窒化珪素粉末が、次式 Os/Ss=30〜100 (式中のOsは粉末表面の酸素量(重量%)、Ssは粉
末の比表面積(m2/mg)を示す。)で表される表面
有効酸素量を満足するように調整することを特徴とす
る。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventor has found that the above object can be achieved by appropriately controlling the temperature and viscosity of the slurry in the slurry pulverization step. Thus, the present invention has been completed. Therefore, according to the method for producing silicon nitride powder of the present invention, water is added to silicon nitride raw material powder, the temperature of the resulting mixture is 30 to 80 ° C., and the viscosity is 20 to 1000 cP.
By mixing and pulverizing the slurry while keeping it at a pH, the resulting silicon nitride powder has an oxygen content of 0.5 to 3.
0% by weight, and this silicon nitride powder has the following formula: Os / Ss = 30 to 100 (where Os is the amount of oxygen on the powder surface (% by weight), and Ss is the specific surface area of the powder (m 2 / mg).) is adjusted so as to satisfy the surface effective oxygen amount represented by the formula (1).

【0007】また、本発明の窒化珪素焼結体の製造方法
は、上記製造方法により得られた窒化珪素粉末を成形
し、焼成することを特徴とする。更に、本発明の窒化珪
素焼結体は、上記製造方法により得られる窒化珪素焼結
体であって、肉厚が20mm以上であることを特徴とす
る。
Further, a method of manufacturing a silicon nitride sintered body according to the present invention is characterized in that the silicon nitride powder obtained by the above manufacturing method is molded and fired. Furthermore, a silicon nitride sintered body of the present invention is a silicon nitride sintered body obtained by the above-described manufacturing method, and has a thickness of 20 mm or more.

【0008】[0008]

【作用】本発明においては、窒化珪素原料粉末のスラリ
ー粉砕工程において、スラリーの温度と粘性を適切に制
御することにした。このように、スラリーの温度と粘性
とを制御することにより、得られる窒化珪素粉末の表面
有効酸素量、即ち、粉末表面の酸素量と粉末の比表面積
との比を適切に制御できる理由は、以下のようなもので
あると考えられる。
In the present invention, the temperature and viscosity of the slurry are appropriately controlled in the step of grinding the silicon nitride raw material powder. As described above, by controlling the temperature and viscosity of the slurry, the surface effective oxygen amount of the obtained silicon nitride powder, that is, the reason that the ratio between the oxygen amount on the powder surface and the specific surface area of the powder can be appropriately controlled is as follows. It is considered as follows.

【0009】窒化珪素は、次式で示すように、化学的に
水と反応してSiO2を生成することが知られている。 Si34+6H2O→3SiO2+4NH3 上記反応は窒化珪素原料粉末を湿式粉砕する工程におい
て進行するが、これと同時に、窒化珪素原料粉末は、球
石等の粉砕媒体同士が衝突しその間に挟まれたり揃断さ
れることにより粉砕される。このように、湿式粉砕工程
は窒化珪素原料粉末に対し、窒化珪素原料粉末表面の酸
化反応及び窒化珪素原料粉末の粉砕を引き起こす2つの
作用をなすことになる。また、このような湿式粉砕工程
においては、粉砕によるいわゆるメカノケミカルな作用
により、窒化珪素原料粉末表面の化学反応が促進される
ことも考慮されるべき重要な事項である。
It is known that silicon nitride chemically reacts with water to form SiO 2 as shown by the following formula. Si 3 N 4 + 6H 2 O → 3SiO 2 + 4NH 3 The above reaction proceeds in the step of wet-pulverizing the silicon nitride raw material powder. Pulverized by being sandwiched or cut into pieces. As described above, the wet pulverization process has two effects on the silicon nitride raw material powder to cause an oxidation reaction on the surface of the silicon nitride raw material powder and pulverization of the silicon nitride raw material powder. In such a wet pulverization process, it is also an important matter to consider that a chemical reaction on the surface of the silicon nitride raw material powder is promoted by a so-called mechanochemical action of the pulverization.

【0010】従って、得られる窒化珪素粉末の比表面積
と表面酸素量とを所望の値に制御するには、上述のよう
な化学反応の反応速度と粉砕速度とをメカノケミカル作
用をも考慮して適切に制御することが必要であり、その
ためには、本発明のように、粉砕中におけるスラリーの
温度と粘性を一定に保つことが極めて有効であると考え
ることができる。
Therefore, in order to control the specific surface area and the surface oxygen content of the obtained silicon nitride powder to desired values, the reaction rate of the above-described chemical reaction and the pulverization rate are determined in consideration of the mechanochemical action. Appropriate control is necessary, and for that purpose, it can be considered that maintaining the temperature and viscosity of the slurry during pulverization at a constant level as in the present invention is extremely effective.

【0011】上述のように、本発明によれば、粉砕中の
スラリーの温度と粘性を一定に保つことにより、化学反
応速度のみならず粉砕速度をも制御することができる。
従って、表面酸素量と比表面積とで規定される表面有効
酸素量のバラツキが極めて小さい窒化珪素粉末を提供す
ることができ、これにより、窒化珪素原料粉末のロット
に関係なく一定の特性を有する高密度・高強度な肉厚の
窒化珪素焼結体を得ることもできる。なお、窒化珪素原
料粉末を含むスラリーの粘性は、このスラリーのpHを
調整することによっても制御することができ、このpH
調整によれば、窒化珪素粉末の製造工程上リアルタイム
で制御できるという利点もある。
As described above, according to the present invention, not only the chemical reaction rate but also the pulverization rate can be controlled by keeping the temperature and viscosity of the slurry during pulverization constant.
Therefore, it is possible to provide a silicon nitride powder having a very small variation in the surface effective oxygen amount defined by the surface oxygen amount and the specific surface area, thereby providing a high-performance silicon nitride powder having constant characteristics regardless of the lot of the silicon nitride raw material powder. It is also possible to obtain a silicon nitride sintered body having a high density and high strength. The viscosity of the slurry containing the silicon nitride raw material powder can also be controlled by adjusting the pH of the slurry.
According to the adjustment, there is also an advantage that control can be performed in real time in the production process of the silicon nitride powder.

【0012】また、本発明において、窒化珪素粉末の含
有酸素量、特に表面近傍(例えば、表面から数nmまで
の領域)の酸素量を制御することにより、焼結体の粒界
相が焼結体の表面から内部まで均一的な構成になり、肉
厚で高密度・高強度の窒化珪素焼結体が得られる理由と
しては、以下の理由が考えられる。即ち、窒化珪素焼結
体の焼結過程においては、まず、焼結助剤(金属酸化
物)が作用して液相(ガラス相)を生成する。次に、こ
の液相にα−Si34が溶解し、β−Si34として析
出する。そして、この溶解−析出反応が焼結体内部で均
一に起こるためには、広い領域における均一な液相生成
が不可欠になる。
In the present invention, by controlling the oxygen content of the silicon nitride powder, particularly the oxygen content near the surface (for example, a region from the surface to several nm), the grain boundary phase of the sintered body is sintered. The following reasons can be considered as the reason why a uniform structure is obtained from the surface to the inside of the body, and a thick, high-density, high-strength silicon nitride sintered body is obtained. That is, in the sintering process of the silicon nitride sintered body, first, a sintering aid (metal oxide) acts to generate a liquid phase (glass phase). Next, α-Si 3 N 4 is dissolved in this liquid phase, and is precipitated as β-Si 3 N 4 . In order for this dissolution-precipitation reaction to occur uniformly inside the sintered body, it is essential to generate a uniform liquid phase over a wide area.

【0013】ところで、上記液相の生成には焼結助剤の
みならず、Si34粉末の表面に存在するSiO2も影
響を及ぼす。例えば、MgOやCaO等の融点がかなり
低い焼結助剤を含むSi34の焼結では、焼結助剤(金
属酸化物)とSiO2とがかなり低い温度で反応して液
相を生成する。これに対し、希土類元素酸化物を主成分
とする助剤においては、この希土類元素酸化物とSiO
2との複合酸化物の共晶温度がSiO2の融点より高いた
め、Si34粉末の表面に存在するSiO2量が該助剤
の液相生成に大きな影響を及ぼすことになる。従って、
広い領域における均一な液相生成を実現するには、適度
なSiO2被膜を有するSi34粒子の存在が重要にな
ると考えられる。
The formation of the liquid phase is affected not only by the sintering aid but also by the SiO 2 present on the surface of the Si 3 N 4 powder. For example, in the sintering of Si 3 N 4 containing a sintering aid having a very low melting point such as MgO or CaO, the sintering aid (metal oxide) and SiO 2 react at a relatively low temperature to form a liquid phase. Generate. On the other hand, in an auxiliary mainly composed of a rare earth element oxide, the rare earth element oxide and SiO 2
Eutectic temperature of the composite oxide of 2 higher than the melting point of SiO 2, SiO 2 content present in Si 3 N 4 powder surface becomes large influence on the liquid phase product of該助agent. Therefore,
It is considered that the existence of Si 3 N 4 particles having an appropriate SiO 2 coating is important in achieving uniform liquid phase generation in a wide area.

【0014】以下、本発明の窒化珪素粉末の製造方法に
ついて詳細に説明する。この製造方法においては、得ら
れる窒化珪素粉末の含有酸量を0.5〜3.0重量%に
調整し、且つこの窒化珪素粉末が、次式 Os/Ss=30〜100 (式中のOsは粉末の表面酸素量(重量%)、Ssは粉
末の比表面積(m2/mg)を示す。)で表される表面
有効酸素量を満足するように処理する。そして、この製
造方法においては、上記特性を有する窒化珪素粉末を得
るために、窒化珪素原料に水を添加して混合物を得、得
られた混合物の温度を30〜80℃、且つこの混合物の
粘性を20〜1000cPに保持しつつ、混合・粉砕し
てこの混合物をスラリー化するものである。
Hereinafter, the method for producing silicon nitride powder of the present invention will be described in detail. In this production method, the acid content of the obtained silicon nitride powder is adjusted to 0.5 to 3.0% by weight, and this silicon nitride powder is obtained by the following formula: Os / Ss = 30 to 100 (Os in the formula) Is a surface oxygen amount (% by weight) of the powder, and Ss is a specific surface area (m 2 / mg) of the powder.) Then, in this manufacturing method, in order to obtain silicon nitride powder having the above characteristics, water is added to the silicon nitride raw material to obtain a mixture, the temperature of the obtained mixture is 30 to 80 ° C., and the viscosity of the mixture is Is maintained at 20 to 1000 cP while mixing and pulverizing the mixture to form a slurry.

【0015】上記Os/Ssが30未満の場合は、得ら
れるSi34粉末としてはOsが少ないか又はSsが大
きい状態であり、これはSi34粉末の表面積当たりの
Osが少ない状態を示す。このような状態のSi34
末を用いて窒化珪素焼結体を焼成すると、広い範囲での
均一な液相生成が行えず、焼結助剤の存在するSi34
粉末(粒子)の近傍のみにおいてSi34粒子の溶解・
析出反応が進行することになり、強度等の特性が均一で
ない窒化珪素焼結体が得られ易くなるので好ましくな
い。
When the ratio of Os / Ss is less than 30, the obtained Si 3 N 4 powder has a small amount of Os or a large amount of Ss, which is a state where the Os per surface area of the Si 3 N 4 powder is small. Is shown. When the silicon nitride sintered body is fired using the Si 3 N 4 powder in such a state, a uniform liquid phase cannot be formed in a wide range, and the Si 3 N 4 containing the sintering aid exists.
Dissolution of Si 3 N 4 particles only in the vicinity of powder (particles)
This is not preferable because the precipitation reaction proceeds, and a silicon nitride sintered body having non-uniform properties such as strength is easily obtained.

【0016】一方、Os/Ssが100を超えると、O
sが多いか又はSsが小さく、得られるSi34粉末の
表面積当たりの酸素量が多すぎることになる。このた
め、窒化珪素焼結体の焼成においては液相生成が必要以
上に進行し、上記溶解・析出反応により、焼成に供する
窒化珪素成形体の収縮が局部的に進行することになる。
かかる現象が肉厚成形体の焼成過程で発生すると、温度
の高い表面近傍で収縮が進み、内部の収縮を妨げる。更
に、β−Si34が液相から均一に析出しないため、少
ないβ−Si34が核となり異常粒成長が発生する。そ
して、このことは、異常粒成長したSi34粒子近傍に
おける気孔発生の原因となるので好ましくない。なお、
上記窒化珪素粉末の含有酸素量及び表面有効酸素量Os
/Ssとしては、それぞれ1.0〜2.5重量%、50
〜70となるように制御するのが更に好ましい。
On the other hand, when Os / Ss exceeds 100, O
s is large or Ss is small, and the amount of oxygen per surface area of the obtained Si 3 N 4 powder is too large. For this reason, in firing the silicon nitride sintered body, the liquid phase generation proceeds more than necessary, and the above-mentioned dissolution / precipitation reaction causes the silicon nitride compact to be fired to locally shrink.
If such a phenomenon occurs during the firing process of the thick molded body, the shrinkage proceeds near the surface where the temperature is high, and the internal shrinkage is prevented. Furthermore, since β-Si 3 N 4 is not uniformly precipitated from the liquid phase, a small amount of β-Si 3 N 4 becomes a nucleus and abnormal grain growth occurs. This is not preferable because it causes pores to be generated in the vicinity of the abnormally grown Si 3 N 4 particles. In addition,
Oxygen content and surface effective oxygen content Os of the silicon nitride powder
/ Ss is 1.0 to 2.5% by weight, 50
It is more preferable to control so as to be 70.

【0017】次に、上記窒化珪素原料粉末のスラリー化
について説明すると、まず、窒化珪素原料粉末と水との
混合物は、その水分量を30〜80重量%に調整するの
が好ましい。水分量が30重量%未満の場合は、スラリ
ー化が困難であり、80重量%を超えると、乾燥時に蒸
発する水分量が多くなり過ぎ好ましくない。また、この
混合物のスラリー化に際し、温度は30〜80℃に制御
する。30℃未満の場合は、反応速度が小さくなり生産
効率が低く、80℃を超えると、水の蒸発により水分量
が変動し、好ましくない。更に、混合物(スラリー)の
粘性は、20〜1000cPに制御する。20cP未満
の場合は、粉砕作用が大き過ぎて制御し難く、1000
cPを超えると、粉砕作用が行われず、好ましくない。
Next, the slurry of the silicon nitride raw material powder will be described. First, it is preferable to adjust the water content of the mixture of the silicon nitride raw material powder and water to 30 to 80% by weight. When the amount of water is less than 30% by weight, it is difficult to form a slurry, and when the amount exceeds 80% by weight, the amount of water evaporating during drying is undesirably increased. When the mixture is slurried, the temperature is controlled at 30 to 80 ° C. When the temperature is lower than 30 ° C., the reaction rate is reduced and the production efficiency is low. Further, the viscosity of the mixture (slurry) is controlled at 20 to 1000 cP. If it is less than 20 cP, the pulverizing action is too large to control, and
If it exceeds cP, the pulverizing action is not performed, which is not preferable.

【0018】また、上記スラリーの粘性は、このスラリ
ーのpHを調整することによっても行うことができる。
これは、pHの変動には電子移動が伴うことから、pH
変動により、スラリーの分散性(粘性)に影響を及ぼす
ゼータ(ζ)電位が変動することに基づく調整法の一例
である。なお、上述した窒化珪素と水との反応におい
て、NH3が発生することによってもスラリーのpHが
変化するので、スラリーの粘性はこの反応によっても影
響を受ける。ここで、調整すべきスラリーのpH値は、
個々の窒化珪素原料粉末の産地やロットの別などに影響
を受けるものであって、一義的に定まるものではない
が、使用せんとする窒化珪素原料粉末を用いてパイロッ
ト試験を行い、当該窒化珪素原料粉末に合致するpH値
を決定することができる。
The viscosity of the slurry can be adjusted by adjusting the pH of the slurry.
This is because pH fluctuations are accompanied by electron transfer.
This is an example of an adjustment method based on a change in the zeta (ζ) potential that affects the dispersibility (viscosity) of the slurry due to the change. Note that, in the above-described reaction between silicon nitride and water, the pH of the slurry also changes due to the generation of NH 3 , so that the viscosity of the slurry is also affected by this reaction. Here, the pH value of the slurry to be adjusted is
A pilot test is performed using the silicon nitride raw material powder to be used, which is affected by the production area and the lot of each silicon nitride raw material powder and is not uniquely determined. A pH value that matches the raw powder can be determined.

【0019】上記pH調整の方法は、特に限定されるも
のではないが、例えば、酸又はアルカリ性の溶液をスラ
リーに適宜添加することにより行うことができる。な
お、pH緩衝剤を添加することにより上記pH調整を行
うことも可能であり、このpH緩衝剤の添加によれば、
酸又はアルカリ溶液を添加する場合に比し、粉砕中にお
けるpH変動の影響を抑制することができ、pHの調整
を簡易に行うことができる。pH緩衝剤としては、特に
限定されず従来公知の緩衝剤を用いることができるが、
酢酸−酢酸塩及び塩酸−塩酸ナトリウム等は緩衝作用が
大きく、好ましく用いることができる。なお、得られる
窒化珪素焼結体の特性に悪影響を及ぼす可能性がある金
属イオンを含まない緩衝剤であれば一層好ましい。
The method of adjusting the pH is not particularly limited. For example, the pH can be adjusted by appropriately adding an acid or alkaline solution to the slurry. In addition, it is also possible to perform the pH adjustment by adding a pH buffer, and according to the addition of the pH buffer,
Compared with the case where an acid or alkali solution is added, the influence of pH fluctuation during pulverization can be suppressed, and pH adjustment can be performed easily. The pH buffer is not particularly limited, and a conventionally known buffer can be used.
Acetic acid-acetate and hydrochloric acid-sodium hydrochloride have a large buffering action and can be preferably used. It is more preferable that the buffer does not contain metal ions that may adversely affect the properties of the obtained silicon nitride sintered body.

【0020】上記スラリーのpH調整において、スラリ
ーのpH値は、pH計等を用いることにより、スラリー
の混合・粉砕中にリアルタイムで検出することができ
る。従って、このようにリアルタイムで検出されるpH
値に応じて、酸、アルカリ若しくはpH緩衝剤又はこれ
らの任意の混合物を添加することができ、スラリーのp
Hをリアルタイムで精密に調整することが可能になる。
In the above-mentioned pH adjustment of the slurry, the pH value of the slurry can be detected in real time during mixing and grinding of the slurry by using a pH meter or the like. Therefore, the pH thus detected in real time
Depending on the value, an acid, alkali or pH buffer or any mixture thereof can be added,
H can be precisely adjusted in real time.

【0021】上述の窒化珪素原料粉末のスラリー化に用
いる混合粉砕機としては、球石等の粉砕媒体を使用する
形式の混合粉砕機であればよく、例えば、ボールミル、
ポットミル等を例示できる。また、スラリー温度を調整
し得る温度調整機構付きの混合粉砕機、例えば、アトラ
イターミル等を好ましく用いることができ、更にpH検
出機構を有する混合粉砕機は特に好ましく使用すること
ができる。使用する球石の材質は特に限定されるもので
はなく、鉄球の他、アルミナ、ジルコニア、窒化珪素製
等のセラミックス球等を用いることができるが、本発明
においては、不純物の混入を回避すべく窒化珪素製の球
石を用いるのがよい。
The mixing and pulverizing machine used for slurrying the above-mentioned silicon nitride raw material powder may be any type of mixing and pulverizing machine using a pulverizing medium such as cobblestone.
A pot mill and the like can be exemplified. Further, a mixing and crushing machine with a temperature adjusting mechanism capable of adjusting the slurry temperature, for example, an attritor mill or the like can be preferably used, and a mixing and crushing machine having a pH detecting mechanism can be particularly preferably used. The material of the sphere used is not particularly limited, and in addition to iron balls, ceramic spheres made of alumina, zirconia, silicon nitride, or the like can be used, but in the present invention, contamination of impurities is avoided. It is preferable to use silicon nitride spheres.

【0022】なお、上記スラリー化に際しては、窒化珪
素原料粉末及び水分以外に、焼結助剤を混入することが
でき、このように焼結助剤を混入してスラリー化を行う
ことにより、窒化珪素焼結体製造の一工程を省略するこ
とができるので製造効率を向上させることができる。こ
の際、焼結助剤は、通常、酸化物であるため、湿式混合
粉砕において酸化されることはなく、スラリーの性状制
御に悪影響を及ぼすこともない。
At the time of forming the slurry, a sintering aid can be mixed in addition to the silicon nitride raw material powder and water. Since one step of manufacturing a silicon sintered body can be omitted, manufacturing efficiency can be improved. At this time, since the sintering aid is usually an oxide, it is not oxidized in wet mixing and pulverization, and does not adversely affect the property control of the slurry.

【0023】次に、本発明の窒化珪素焼結体及びその製
造方法について説明する。本発明の窒化珪素焼結体は、
上述した本発明の窒化珪素粉末を成形し、焼成すること
により得られるものである。この窒化珪素焼結体は、そ
の密度及び機械的強度が高く均質な焼結体である。特
に、肉厚が20mm以上のものであっても、高密度及び
高強度で均質な特性を有する窒化珪素焼結体が得られる
ところに特徴がある。また、本発明の窒化珪素焼結体の
製造方法は、上記本発明の窒化珪素粉末を使用するもの
で、この粉末を用い常法に従って成形、焼成を行う。
Next, the silicon nitride sintered body of the present invention and a method for producing the same will be described. The silicon nitride sintered body of the present invention,
It is obtained by molding and firing the above-described silicon nitride powder of the present invention. This silicon nitride sintered body is a homogeneous sintered body having high density and high mechanical strength. In particular, it is characterized in that a silicon nitride sintered body having high density, high strength and uniform characteristics can be obtained even if the thickness is 20 mm or more. Further, the method for producing a silicon nitride sintered body of the present invention uses the above-described silicon nitride powder of the present invention, and the powder is molded and fired according to a conventional method.

【0024】[0024]

【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明するが、本発明はこれら実施例に限定される
ものではない。 (実施例1〜5)表1に示すように、ロットの異なる窒
化珪素原料粉末に50重量%の水分を添加し50℃に加
温した。次いで、得られた混合物に5mmφのSi34
製球石を加え、スラリー粘度がほぼ500cPになるよ
うに硝酸又はアンモニア水を添加し(表1参照)、アト
ライターミルで5時間混合粉砕した。得られたスラリー
の一部を採取し、比表面積(BET比表面積)、酸素量
及び表面有効酸素量を測定した。得られた結果を表1に
示す。なお、スラリー特性を表1に併記する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. (Examples 1 to 5) As shown in Table 1, 50% by weight of water was added to silicon nitride raw material powders of different lots and heated to 50 ° C. Then, 5 mmφ of Si 3 N 4 was added to the obtained mixture.
Nitrite or aqueous ammonia was added so that the slurry had a viscosity of approximately 500 cP (see Table 1), and the mixture was pulverized for 5 hours using an attritor mill. A part of the obtained slurry was collected, and the specific surface area (BET specific surface area), the amount of oxygen, and the amount of available oxygen on the surface were measured. Table 1 shows the obtained results. Table 1 also shows the slurry properties.

【0025】ここで、酸素量及び表面有効酸素量は、以
下の手順で分析・測定した。まず、上記スラリーの一部
を110℃で2時間乾燥した後、デシケータ中で室温ま
で徐冷し、得られた分析試料1gを評取し、密閉可能な
ポリ四フッ化エチレン製容器(例えば、三愛科学HU−
100型加圧分解容器のテフロン製内筒)に入れた。次
いで、フッ酸溶液(フッ酸:水=1:9(重量比))5
0mlを加え、密閉した後、70℃で1時間撹拌した。
室温まで水冷し、直ちに0.65μmメンブランフィル
タで濾過した。得られた濾別残渣を水5mlで洗浄し、
更にこの洗浄を数回繰り返した。洗浄済みの残渣を乾燥
器に入れ、110℃で2時間乾燥した。
Here, the oxygen content and the surface available oxygen content were analyzed and measured according to the following procedure. First, after drying a part of the slurry at 110 ° C. for 2 hours, the slurry was gradually cooled to room temperature in a desiccator, 1 g of the obtained analysis sample was evaluated, and a sealable polytetrafluoroethylene container (for example, Sanai Science HU-
(Teflon inner cylinder of a 100-type pressurized decomposition vessel). Next, a hydrofluoric acid solution (hydrofluoric acid: water = 1: 9 (weight ratio)) 5
After adding 0 ml and sealing, the mixture was stirred at 70 ° C. for 1 hour.
The mixture was cooled to room temperature and immediately filtered through a 0.65 μm membrane filter. The obtained residue by filtration was washed with 5 ml of water,
This washing was repeated several times. The washed residue was placed in a dryer and dried at 110 ° C. for 2 hours.

【0026】次に、フッ酸溶液で処理する前の分析試料
及び上記乾燥した残渣の一部について、酸素分析装置、
例えば、堀場製作所製ECM−2800窒素・酸素分析
装置を用いて酸素分を定量した。上記フッ酸処理前の分
析試料からの酸素定量が酸素量(全酸素量)であり、乾
燥残渣からの定量値が内部酸素量である。表面酸素量
(Os)は、全酸素量と内部酸素量との差として求め
た。
Next, the analysis sample before the treatment with the hydrofluoric acid solution and a part of the dried residue are subjected to an oxygen analyzer,
For example, the oxygen content was quantified using a Horiba ECM-2800 nitrogen / oxygen analyzer. The amount of oxygen determined from the analysis sample before the hydrofluoric acid treatment is the oxygen amount (total oxygen amount), and the value determined from the dried residue is the internal oxygen amount. The surface oxygen content (Os) was determined as the difference between the total oxygen content and the internal oxygen content.

【0027】次に、上記で得られたスラリーに焼結助剤
として酸化イットリウムを3重量%、酸化アルミニウム
を7重量%添加し、更に3時間混合した。得られたスラ
リーをスプレードライ法で造粒して成形用粉末を得た。
次いで、得られた成形用粉末を、金型プレス及びCIP
成形し、直径80mm×厚さ25mmの円盤状成形体を
作成した。この成形体を、9kg/cm2のN2雰囲気中
1900℃で3時間焼成して窒化珪素焼結体を得た。得
られた焼結体の内部(厚みの中心部)及び表面近傍か
ら、厚さ4mm×3mm×40mmの試験片を切り出
し、これら試験片を用い、室温及び1400℃でJIS
R 1601に準拠して4点曲げ強度試験を行い、得
られた結果を表1に示した。なお、各試験片の相対密度
を併記する。
Next, 3% by weight of yttrium oxide and 7% by weight of aluminum oxide were added as sintering aids to the slurry obtained above, and mixed for 3 hours. The obtained slurry was granulated by a spray drying method to obtain a molding powder.
Next, the obtained molding powder is put into a mold press and CIP.
It was molded to form a disc-shaped molded body having a diameter of 80 mm and a thickness of 25 mm. The molded body was fired at 1900 ° C. for 3 hours in a 9 kg / cm 2 N 2 atmosphere to obtain a silicon nitride sintered body. From inside (at the center of the thickness) and near the surface of the obtained sintered body, test pieces having a thickness of 4 mm × 3 mm × 40 mm were cut out, and these test pieces were subjected to JIS at room temperature and 1400 ° C.
A four-point bending strength test was performed according to R 1601, and the obtained results are shown in Table 1. In addition, the relative density of each test piece is also described.

【0028】(比較例1〜7)スラリーの粘度を調整し
なかった以外は、実施例1〜5と同様の操作を繰り返
し、得られた結果を表1に示した。
(Comparative Examples 1 to 7) The same operations as in Examples 1 to 5 were repeated except that the viscosity of the slurry was not adjusted, and the obtained results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1から明らかなように、実施例1〜5に
より得られる窒化珪素粉末の表面酸素量及び比表面積は
バラツキが小さく、これらから得られる窒化珪素焼結体
の曲げ強度のバラツキも小さく優れた特性を有する。
As is apparent from Table 1, the surface oxygen content and the specific surface area of the silicon nitride powders obtained in Examples 1 to 5 have small variations, and the silicon nitride sintered bodies obtained therefrom also have small variations in bending strength. Has excellent properties.

【0031】(実施例6〜10)スラリー粘度の調整
を、0.2Mリン酸二水素カリウム(27.2gKH2
PO4/リットル)と0.2N水酸化ナトリウムから成
る緩衝溶液を添加することにより行い、実施例1〜5と
同様の操作を繰り返し、スラリー及び成形用粉末を得
た。得られたスラリー及び成形用粉末の特性を表2に示
す。なお、参考のため、比較例1〜5におけるスラリー
特性及び成形用粉末の特性を併記する。
Examples 6 to 10 The slurry viscosity was adjusted using 0.2M potassium dihydrogen phosphate (27.2 g KH 2).
PO 4 / liter) and a buffer solution composed of 0.2N sodium hydroxide were added, and the same operations as in Examples 1 to 5 were repeated to obtain a slurry and a molding powder. Table 2 shows the properties of the obtained slurry and molding powder. For reference, the slurry characteristics and the characteristics of the molding powder in Comparative Examples 1 to 5 are also described.

【0032】[0032]

【表2】 [Table 2]

【0033】表2から、実施例6〜10によれば、スラ
リー粘度を好適に制御でき、且つ得られる成形用粉末の
特性のバラツキも小さくなることがわかる。
From Table 2, it can be seen that according to Examples 6 to 10, the viscosity of the slurry can be suitably controlled, and the variation in the properties of the obtained molding powder is reduced.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
スラリー粉砕工程においてスラリーの温度と粘性を適切
に制御することとしたため、原料粉末のロットに依存す
ることがない均一な性状を有する窒化珪素粉末の製造方
法、並びにこれを用いて得られる高密度、高強度の窒化
珪素焼結体及びその製造方法を提供することができる。
As described above, according to the present invention,
In order to appropriately control the temperature and viscosity of the slurry in the slurry pulverizing step, a method for producing a silicon nitride powder having uniform properties without depending on the lot of the raw material powder, and a high density obtained by using the same, A high-strength silicon nitride sintered body and a method for manufacturing the same can be provided.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C01B 21/068 C04B 35/626 C04B 35/626Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) C01B 21/068 C04B 35/626 C04B 35/626

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒化珪素原料粉末に水を添加し、得られ
た混合物の温度を30〜80℃、且つ粘性を20〜10
00cPに保持しながら混合・粉砕してスラリー化する
ことにより、得られる窒化珪素粉末の含有酸素量を0.
5〜3.0重量%に調整し、且つ、この窒化珪素粉末
が、次式 Os/Ss=30〜100 (式中のOsは粉末表面の酸素量(重量%)、Ssは粉
末の比表面積(m2/mg)を示す。)で表される表面
有効酸素量を満足するように調整することを特徴とする
窒化珪素粉末の製造方法。
1. Water is added to a silicon nitride raw material powder, the temperature of the resulting mixture is 30 to 80 ° C., and the viscosity is 20 to 10
By mixing and pulverizing the slurry while maintaining the pressure at 100 cP, the resulting silicon nitride powder has an oxygen content of 0.1.
5 to 3.0% by weight, and this silicon nitride powder has the following formula: Os / Ss = 30 to 100 (where Os is the oxygen content (% by weight) on the powder surface, and Ss is the specific surface area of the powder. (M 2 / mg).) A method for producing a silicon nitride powder, characterized in that the surface effective oxygen content represented by (m 2 / mg) is satisfied.
【請求項2】 スラリーのpHを制御することにより、
スラリーの粘性を20〜1000cPに制御することを
特徴とする請求項1記載の製造方法。
2. By controlling the pH of the slurry,
2. The method according to claim 1, wherein the viscosity of the slurry is controlled to 20 to 1000 cP.
【請求項3】 上記pH制御を酸又はアルカリの添加に
より行うことを特徴とする請求項2記載の製造方法。
3. The method according to claim 2, wherein the pH control is performed by adding an acid or an alkali.
【請求項4】 スラリーのpHを上記混合・粉砕中に監
視し、これに応じて酸又はアルカリを添加することによ
り、スラリーの粘性を制御することを特徴とする請求項
2又は3記載の製造方法。
4. The process according to claim 2, wherein the pH of the slurry is monitored during the mixing and pulverization, and the viscosity of the slurry is controlled by adding an acid or an alkali accordingly. Method.
【請求項5】 上記pH制御をpH緩衝剤の添加により
行うことを特徴とする請求項2記載の製造方法。
5. The method according to claim 2, wherein the pH is controlled by adding a pH buffer.
【請求項6】 上記混合・粉砕を焼結助剤の存在下に行
うことを特徴とする請求項1〜5のいずれか1つの項に
記載の製造方法。
6. The production method according to claim 1, wherein the mixing and pulverization are performed in the presence of a sintering aid.
【請求項7】 請求項1〜6のいずれか1つの項に記載
の方法により得られた窒化珪素粉末を成形し、焼成する
ことを特徴とする窒化珪素焼結体の製造方法。
7. A method for producing a silicon nitride sintered body, comprising molding and firing the silicon nitride powder obtained by the method according to any one of claims 1 to 6.
【請求項8】 請求項7記載の製造方法により得られる
窒化珪素焼結体であって、肉厚が20mm以上であるこ
とを特徴とする窒化珪素焼結体。
8. A silicon nitride sintered body obtained by the production method according to claim 7, wherein the silicon nitride sintered body has a thickness of 20 mm or more.
JP6058973A 1994-03-29 1994-03-29 Method for producing silicon nitride powder, silicon nitride sintered body and method for producing the same Expired - Fee Related JP2786595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6058973A JP2786595B2 (en) 1994-03-29 1994-03-29 Method for producing silicon nitride powder, silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6058973A JP2786595B2 (en) 1994-03-29 1994-03-29 Method for producing silicon nitride powder, silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07267614A JPH07267614A (en) 1995-10-17
JP2786595B2 true JP2786595B2 (en) 1998-08-13

Family

ID=13099799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6058973A Expired - Fee Related JP2786595B2 (en) 1994-03-29 1994-03-29 Method for producing silicon nitride powder, silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2786595B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646518B (en) 2007-03-22 2011-08-03 日本特殊陶业株式会社 Insert and cutting tool
EP3780086A1 (en) * 2018-03-30 2021-02-17 NHK Spring Co., Ltd. Thermally conductive composite particles, method for producing same, insulating resin composition, insulating resin molded body, laminate for circuit boards, metal base circuit board and power module
CN109721370B (en) * 2019-03-05 2022-02-18 青岛瓷兴新材料有限公司 Silicon nitride, ceramic slurry and preparation method
JPWO2021200814A1 (en) * 2020-03-30 2021-10-07
JPWO2021200830A1 (en) * 2020-03-30 2021-10-07

Also Published As

Publication number Publication date
JPH07267614A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
JPH03187978A (en) Coating ceramic particles and manufacture thereof
JPS64349B2 (en)
JPS6125677B2 (en)
JPH02296706A (en) Amorphous or irregular- laminate and spherical in particular boron nitride and its production method
KR100468299B1 (en) Method for producing platinum material reinforced with dispersed oxide
JP2786595B2 (en) Method for producing silicon nitride powder, silicon nitride sintered body and method for producing the same
JP2670221B2 (en) Silicon nitride sintered body and method for producing the same
US5302329A (en) Process for producing β-sialon based sintered bodies
JP2731333B2 (en) Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same
JP3268020B2 (en) Method for producing silicon nitride powder
JP2647135B2 (en) Method for producing silicon carbide ceramics
JPS62275067A (en) Manufacture of silicon nitride sintered body
JP3827360B2 (en) Manufacturing method of silicon nitride
JP2661743B2 (en) Method for producing silicon nitride ingot and silicon nitride powder
JPS62167208A (en) Production of aluminum nitride powder
JP3035163B2 (en) Silicon nitride sintered body and method for producing the same
JP2951447B2 (en) Method for producing composite sintered body of boron nitride and silicon nitride
JPH02107510A (en) Silicon nitride powder having low isotropic point and its production
JPS61227908A (en) Preparation of raw material powder for sintered silicon nitride
JP2793635B2 (en) Silicon nitride powder composition
JPH01197307A (en) Silicon nitride fine powder having a low oxygen content and its production
JPS6341869B2 (en)
JPH0699192B2 (en) Manufacturing method of high toughness silicon nitride sintered body
JP2001139379A (en) Method of producing highly thermal conductive aluminum nitride sintered compact
JP2573720B2 (en) Manufacturing method of silicon nitride sintered body

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080529

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees