JP2770857B2 - Rare earth magnet coating method - Google Patents

Rare earth magnet coating method

Info

Publication number
JP2770857B2
JP2770857B2 JP63075616A JP7561688A JP2770857B2 JP 2770857 B2 JP2770857 B2 JP 2770857B2 JP 63075616 A JP63075616 A JP 63075616A JP 7561688 A JP7561688 A JP 7561688A JP 2770857 B2 JP2770857 B2 JP 2770857B2
Authority
JP
Japan
Prior art keywords
coating
rare earth
thickness
electrodeposition
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63075616A
Other languages
Japanese (ja)
Other versions
JPH01245880A (en
Inventor
純一 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP63075616A priority Critical patent/JP2770857B2/en
Publication of JPH01245880A publication Critical patent/JPH01245880A/en
Application granted granted Critical
Publication of JP2770857B2 publication Critical patent/JP2770857B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は、R−Fe−B系〔Rは希土類元素をあらわ
す〕希土類磁石の耐食性を高める目的で行なうコーティ
ングの改良に関する。
The present invention relates to an improvement in coating performed for the purpose of increasing the corrosion resistance of R-Fe-B-based (R represents a rare earth element) rare earth magnet.

【従来の技術】[Prior art]

希土類を利用した永久磁石は、その高い磁気特性を評
価されて、広い産業分野に採用されている。とくに、Nd
−Fe−B磁石に代表されるR−Fe−B系の磁石はそれま
で中心であったSm−Co系にくらべて、原料が入手しやす
くて低価格であり、しかも磁気特性はいっそうすぐれて
いるため、急速に普及しつつある。 ところが、R−Fe−B系磁石には、耐熱性と耐食性が
低いという難点がある。前者は合金組成の選択により一
応解決できるが、後者は防食手段をとることで対応する
しかない。 防食手段として現在実用されているのは、防錆塗料で
ある。塗料はエポキシ樹脂が好んで用いられており、塗
装法は電着塗装(エポキシカチオンの電着)が常法とな
っている。具体的には、たとえばリング状の磁石であれ
ば、ひとつずつ導体フックに吊り下げたものをまとめて
カソードとし、それらを水溶性エポキシ樹脂の水溶液中
に浸漬し、別に設けたアノードとの間に200V程度の電圧
を印加して、2分間またはそれ以上の適宜の時間にわた
って電着を行なう。引き揚げて水洗し、代表的には150
℃に30分間加熱する硬化処理により焼き付け、塗装を終
る。 この電着塗装には、つぎのような弱点がある。 イ)浸漬時間同伴された空気や電解により生じたガスが
塗料の電着を妨げ、ピンホールが発生する。 ロ)エッジ、コーナーの部分へのつき回りがよくない。 ハ)電極の接触跡が塗装されずに残る。
Permanent magnets using rare earths have been evaluated for their high magnetic properties and have been adopted in a wide range of industrial fields. In particular, Nd
R-Fe-B magnets, represented by -Fe-B magnets, are easier to obtain, have lower prices, and have better magnetic properties than Sm-Co magnets, which have been the core of the magnets. Therefore, it is spreading rapidly. However, the R-Fe-B magnet has a disadvantage that heat resistance and corrosion resistance are low. The former can be solved by selecting the alloy composition, but the latter can only be solved by taking anticorrosion measures. Anti-corrosion paints are currently used as anticorrosion means. An epoxy resin is preferably used as the coating material, and an electrodeposition coating (electrodeposition of epoxy cation) is a common coating method. Specifically, for example, in the case of a ring-shaped magnet, ones each suspended on a conductor hook are collectively used as a cathode, immersed in an aqueous solution of a water-soluble epoxy resin, and placed between a separately provided anode. Electrodeposition is performed by applying a voltage of about 200 V for an appropriate time of 2 minutes or more. Pull up and wash, typically 150
It is baked by a curing process of heating to 30 ° C for 30 minutes to finish the coating. This electrodeposition coating has the following disadvantages. B) Air accompanying the immersion time or gas generated by electrolysis hinders electrodeposition of the paint, and pinholes are generated. B) Poor turn around edges and corners. C) The contact trace of the electrode remains without being painted.

【発明が解決しようとする課題】[Problems to be solved by the invention]

本発明の目的は、希土類磁石に対して、電着塗装によ
る塗料がつかないか、または不足な部分があっても、そ
こから直ちに発錆が進むことのない程度に改善されたコ
ーティングを行なうことのできる方法を提供することに
ある。
An object of the present invention is to provide an improved coating on a rare-earth magnet to such a degree that rusting does not immediately proceed even if the coating by electrodeposition coating is not applied or there is a shortage. It is to provide a method that can do.

【課題を解決するための手段】[Means for Solving the Problems]

本発明の希土類磁石のコーティング方法は、R−Fe−
B系磁石[Rは希土類元素をあらわす]の表面に、アル
カリ金属ケイ酸塩、アルカリ金属アルミン酸塩またはそ
れらの混合物からえらんだ無機質物のアルカリ性水溶液
を適用することにより、導電性をもった上記無機質物の
厚さ1〜4μmの被覆を形成し、ついで電着塗装を行な
うことからなる。 アルカリ金属ケイ酸塩、アルカリ金属アルミン酸塩ま
たはそれらの混合物からえらんだ無機質物のアルカリ性
水溶液は、たとえば水ガラスとよばれるケイ酸ナトリウ
ムNa2SiO3の水溶液、アルミン酸ナトリウムNa3AlO3の水
溶液、およびそれらの混合水溶液である。ボルトなどの
金属製品の表面処理剤として最近市販されるようになっ
た、ケイ酸ナトリウムを主成分とする無機質物のアルカ
リ性水溶液もまた、本発明における被覆形成に有用であ
ることが確認された。 これらの水溶液の適用は、磁石を液中に浸漬して行な
ってもよいし、流しかけやスプレーによって適用しても
よい。液は比較的粘いから、遠心脱水などの手段で適量
だけ残して余分な液を除くようにするとよい。遠心脱水
の回転数を調節することにより、残留液量を調節するこ
とができる。続いて乾燥し、電着塗装に移る。電着塗装
以後は、前記した常法に従えばよい。
The method for coating a rare earth magnet according to the present invention comprises the steps of:
By applying an alkaline aqueous solution of an inorganic substance selected from an alkali metal silicate, an alkali metal aluminate, or a mixture thereof to the surface of a B-based magnet [R represents a rare earth element], A coating of inorganic material having a thickness of 1 to 4 μm is formed, followed by electrodeposition coating. An aqueous alkaline solution of an inorganic substance selected from an alkali metal silicate, an alkali metal aluminate or a mixture thereof is, for example, an aqueous solution of sodium silicate Na 2 SiO 3 or an aqueous solution of sodium aluminate Na 3 AlO 3 called water glass. , And a mixed aqueous solution thereof. It has been confirmed that an aqueous alkaline solution of an inorganic substance containing sodium silicate as a main component, which has recently become commercially available as a surface treatment agent for metal products such as bolts, is also useful for forming a coating in the present invention. The application of these aqueous solutions may be performed by dipping the magnet in the solution, or may be applied by pouring or spraying. Since the liquid is relatively viscous, it is advisable to leave an appropriate amount by means such as centrifugal dehydration to remove excess liquid. By adjusting the rotation speed of the centrifugal dehydration, the amount of the residual liquid can be adjusted. Subsequently, it is dried and moves to electrodeposition coating. After the electrodeposition coating, the above-mentioned conventional method may be used.

【作 用】[Operation]

アルカリ金属ケイ酸塩、アルカリ金属アルミン酸塩ま
たはそれらの混合物からえらんだ無機質物のアルカリ性
水溶液は、これを磁石に適用して乾燥することにより、
薄い被膜を形成する。この一次被膜は主として酸化物、
水酸化物から成っていて、ある程度の導電度をもってい
るから、厚さ4μm程度までは電着塗装に必要な程度の
電流を通すことができる。 従って、この被膜をほぼ全面に有する磁石は、直接電
着塗装する場合と同様な塗装が可能であって、二次被膜
を形成することができる。その結果、電着塗装後の磁石
の表面はほとんどが一次被膜と二次被膜とに覆われてお
り、そうでないところも、一次被膜が形成されなかった
点は二次被膜がカバーし、一方、二次被膜が形成されな
かった点には一次被膜が存在することになり、磁石合金
が直接露出することはなくなる。このようにして、本発
明の方法でコーティングした磁石は、単に電着塗装した
ものにくらべ、耐食性が格段に向上している。 上記の一次被膜は比較的強固に付着しており、薄くて
もそれなりの防食機能はもっているが、最少限1μmの
厚さは必要である。
An alkaline aqueous solution of an inorganic substance selected from an alkali metal silicate, an alkali metal aluminate or a mixture thereof is applied to a magnet and dried,
Form a thin coating. This primary coating is mainly oxide,
Since it is made of a hydroxide and has a certain degree of conductivity, a current necessary for electrodeposition coating can be passed up to a thickness of about 4 μm. Therefore, the magnet having this coating on almost the entire surface can be coated in the same manner as in the case of direct electrodeposition coating, and a secondary coating can be formed. As a result, the surface of the magnet after electrodeposition coating was mostly covered with the primary coating and the secondary coating, and even where it was not, the point where the primary coating was not formed was covered by the secondary coating, while At the point where the secondary coating was not formed, the primary coating is present, and the magnet alloy is not directly exposed. In this way, the magnets coated by the method of the present invention have significantly improved corrosion resistance as compared to those simply coated by electrodeposition. The primary coating is relatively firmly adhered and has a certain anticorrosion function even if it is thin, but a minimum thickness of 1 μm is required.

【実施例】【Example】

Nd−Fe−B合金の粉末にエポキシ樹脂を2重量%ほど
混練して、外径10mm、内径15mm、高さ10mmのリング状に
成形した。これを数十個、径約50cm、深さ30cmのプラス
チック製バスケットに入れ、市販の金属表面処理剤であ
って、ケイ酸ナトリウムを主たる成分とするものを水で
10倍にうすめた液(pH10〜13)中に2分間浸漬した。 引き揚げて遠心脱水機にかけ、余分の液を除いた。こ
のとき、回転数を200〜1500rpmの範囲で変えて、液の残
留量をコントロールした。 120℃の空気浴中に5分間入れて乾燥し、一次被膜を
形成してから、エポキシ樹脂塗料の電着塗装を行なっ
た。印加電圧は200V。この二次被膜の厚さは、20μm程
度になるようにした。 一次被膜の厚さが、二次被膜を20μmの厚さに形成す
るために要する電着時間にどのように影響するかをしら
べて、第1図に示す結果を得た。厚さ4μm近辺までは
ほとんど変化なく、一次被膜が電着塗装に対し何ら妨げ
となっていないこと、一方4μmを超えると急激に電着
が遅くなることが、第1図のグラフからわかる。 電着時間に長短はあっても、20μmの厚さに形成した
二次被膜がどの程度の機能をもっているかを知るため、
表面の鉛筆硬度を測定するとともに、80℃、RH95%の環
境に置く湿潤試験を行なった。 それらの結果を、一次被膜の厚さとの関係で示せば、
第2図および第3図のとおりである。一次被膜の厚さが
4μmを超えると、同じ20μmの厚さの二次被膜であっ
ても鉛筆硬度が低下したり湿潤耐久時間が短くなったり
するのは、電着塗装が円滑に進行しないため、塗料のつ
き方や厚さが不均一になって、欠陥をもった部分が目に
みえて増大するのが原因と考えられる。
The Nd-Fe-B alloy powder was kneaded with about 2% by weight of an epoxy resin to form a ring having an outer diameter of 10 mm, an inner diameter of 15 mm, and a height of 10 mm. Dozens of these are placed in a plastic basket having a diameter of about 50 cm and a depth of 30 cm, and a commercially available metal surface treatment agent containing sodium silicate as a main component is treated with water.
It was immersed in a 10-fold diluted solution (pH 10-13) for 2 minutes. It was pulled up and centrifuged to remove excess liquid. At this time, the number of rotations was changed in the range of 200 to 1500 rpm to control the residual amount of the liquid. After being placed in an air bath at 120 ° C. for 5 minutes and dried to form a primary film, an electrodeposition coating of an epoxy resin paint was performed. The applied voltage is 200V. The thickness of this secondary coating was set to about 20 μm. The results shown in FIG. 1 were obtained by examining how the thickness of the primary coating affected the electrodeposition time required to form the secondary coating to a thickness of 20 μm. It can be seen from the graph of FIG. 1 that there is almost no change up to a thickness of about 4 μm, and that the primary coating does not hinder the electrodeposition coating at all, whereas if it exceeds 4 μm, the electrodeposition is sharply delayed. Despite the length of the electrodeposition time, to know the function of the secondary coating formed to a thickness of 20 μm,
The pencil hardness of the surface was measured, and a wet test was conducted in an environment of 80 ° C. and 95% RH. If the results are shown in relation to the thickness of the primary coating,
FIG. 2 and FIG. When the thickness of the primary coating exceeds 4 μm, even if the secondary coating has the same thickness of 20 μm, the pencil hardness decreases or the wet durability time decreases because the electrodeposition coating does not proceed smoothly. It is considered that the cause is that the method of applying the paint and the thickness become non-uniform, and the defective portion increases visually.

【発明の効果】【The invention's effect】

本発明の方法によって希土類磁石のコーティングを行
なえば、耐食性の低いR−Fe−B系磁石も、その表面が
一次被膜および二次被膜の両方または少なくとも一方で
保護されて直接露出する部分がなくなるから、環境耐性
が著しく向上する。 一次被膜の形成は安価な原料を使用した単純な操作で
あって、特別な技術も設備も要らず、耐食性向上のため
のコストに与える影響は、とるに足らない。
If the rare earth magnet is coated according to the method of the present invention, the surface of the R-Fe-B based magnet having low corrosion resistance is protected by the primary coating and / or the secondary coating, and there is no portion directly exposed. , Remarkably improved environmental resistance. The formation of the primary coating is a simple operation using inexpensive raw materials, does not require special techniques or equipment, and has little effect on the cost for improving corrosion resistance.

【図面の簡単な説明】[Brief description of the drawings]

図面はいずれも本発明の実施例のデータを掲げたもので
あって、 第1図は、一次被膜の厚さが一定の厚さの二次被膜であ
る電着塗装を形成するまでの時間に及ぼす影響を示し、 第2図は、一定の厚さの二次被膜を形成したときに、一
次被膜の厚さが鉛筆硬度に及ぼす影響を示し、 第3図は、同様に一次被膜の厚さが湿潤耐久時間に及ぼ
す影響を示す。
The drawings show data of the embodiments of the present invention. FIG. 1 shows the time required for forming the electrodeposition coating, which is a secondary coating having a constant primary coating thickness. FIG. 2 shows the effect of the thickness of the primary coating on the pencil hardness when a secondary coating having a constant thickness is formed, and FIG. 3 similarly shows the thickness of the primary coating. 1 shows the effect of on wet endurance time.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】R−Fe−B系磁石[Rは希土類元素をあら
わす]の表面に、アルカリ金属ケイ酸塩、アルカリ金属
アルミン酸塩またはそれらの混合物からえらんだ無機質
物のアルカリ性水溶液を適用することにより、導電性を
もった上記無機質物の厚さ1〜4μmの被覆を形成し、
ついで電着塗装を行なうことからなる希土類磁石のコー
ティング方法。
1. An alkaline aqueous solution of an inorganic substance selected from an alkali metal silicate, an alkali metal aluminate, or a mixture thereof is applied to the surface of an R—Fe—B magnet [R represents a rare earth element]. Thereby, a coating having a thickness of 1 to 4 μm of the inorganic substance having conductivity is formed,
Then, a rare earth magnet coating method is performed by performing electrodeposition coating.
JP63075616A 1988-03-29 1988-03-29 Rare earth magnet coating method Expired - Lifetime JP2770857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63075616A JP2770857B2 (en) 1988-03-29 1988-03-29 Rare earth magnet coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63075616A JP2770857B2 (en) 1988-03-29 1988-03-29 Rare earth magnet coating method

Publications (2)

Publication Number Publication Date
JPH01245880A JPH01245880A (en) 1989-10-02
JP2770857B2 true JP2770857B2 (en) 1998-07-02

Family

ID=13581315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63075616A Expired - Lifetime JP2770857B2 (en) 1988-03-29 1988-03-29 Rare earth magnet coating method

Country Status (1)

Country Link
JP (1) JP2770857B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102397836B (en) * 2010-09-10 2015-05-20 北京中科三环高技术股份有限公司 Surface treatment method for spraying organoaluminum on permanent magnet
CN102397835B (en) * 2010-09-10 2015-05-20 北京中科三环高技术股份有限公司 Method for performing surface treatment on neodymium-iron-boron permanent magnet material by using nano ceramic
CN102453431B (en) * 2010-10-14 2016-09-28 北京中科三环高技术股份有限公司 A kind of silanized surface treatment technology of permanent magnet material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186571A (en) * 1984-03-06 1985-09-24 Nippon Meeder Kk Method of surface treatment with corrosion-resistant film
JPS61130453A (en) * 1984-11-28 1986-06-18 Sumitomo Special Metals Co Ltd Permanent magnet material having superior corrosion resistance and its manufacture

Also Published As

Publication number Publication date
JPH01245880A (en) 1989-10-02

Similar Documents

Publication Publication Date Title
KR100487081B1 (en) High corrosion resistance rare earth permanent magnet
JPS60145398A (en) Electrodeposition of mica on coil connection or plate connection
JPH08265994A (en) Component for motor and painting method therefor
EP1511046B1 (en) Method for producing corrosion-resistant rare earth metal- based permanent magnet, corrosion-resistant rare earth metal- based permanent magnet, dip spin coating method for work piece, and method for forming coating film on work piece
JP2770857B2 (en) Rare earth magnet coating method
Fabiano et al. Assessment of corrosion resistance of Nd–Fe–B magnets by silanization for orthodontic applications
US4576694A (en) Method for producing electrically insulated conductor
CN109622341A (en) A kind of process of surface treatment of neodymium iron boron magnetic materials high-strength corrosion-resistant erosion
CN106283159B (en) A kind of coating process and coating neodymium iron boron magnetic body of neodymium iron boron magnetic body electrocoating film
CN108467662B (en) Preparation method of epoxy solution for neodymium iron boron magnet cathode electrophoresis
US3484357A (en) Electrophoretic deposition of ceramic coatings
CA1258442A (en) Process for coating sheared edges
JPH0437004A (en) Magnet having excellent rustproofness
CN109321910A (en) A kind of neodymium-iron-boron magnetic material surface treatment liquid
JP3624263B2 (en) High corrosion resistance permanent magnet and method of manufacturing the same
CN213767510U (en) Anticorrosive coating and metal product
JPH04121914A (en) Insulated aluminum wire rod and its manufacture
GB1164153A (en) Coating Process
JPS558900A (en) Antistatic coating for power transmission iron pole mark
SU379683A1 (en) ELECTROPHORETIC METHOD OF DRAWING ['METAL-POLYMERIC COATINGS'iuH! :: u-i;:' BHBji '; o
JPS5825497A (en) Cation type electrodeposition painting method
JP4265168B2 (en) Method for manufacturing permanent magnet
JPH06333713A (en) Bonded magnet and manufacture of bonded magnet
US3709730A (en) Magnetic coating of iron surface
SU511392A1 (en) Suspension for electrophoretic deposition of metal-polymer coatings