JP2765884B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2765884B2
JP2765884B2 JP63286814A JP28681488A JP2765884B2 JP 2765884 B2 JP2765884 B2 JP 2765884B2 JP 63286814 A JP63286814 A JP 63286814A JP 28681488 A JP28681488 A JP 28681488A JP 2765884 B2 JP2765884 B2 JP 2765884B2
Authority
JP
Japan
Prior art keywords
film
tin film
carbon
titanium nitride
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63286814A
Other languages
Japanese (ja)
Other versions
JPH02133964A (en
Inventor
俊和 高橋
憲治 日野出
高 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP63286814A priority Critical patent/JP2765884B2/en
Publication of JPH02133964A publication Critical patent/JPH02133964A/en
Application granted granted Critical
Publication of JP2765884B2 publication Critical patent/JP2765884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、配線または電極の一部にTiN膜を用いる半
導体装置に係り、特に、半導体装置の製造工程中にTiN
膜に生じる応力を低減するのに好適な半導体装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device using a TiN film for a part of a wiring or an electrode.
The present invention relates to a semiconductor device suitable for reducing a stress generated in a film.

〔従来の技術〕[Conventional technology]

半導体素子の微細化、高集積化に伴い、配線または電
極と、Si基板表面に形成された拡散層(あるいはSi基板
上に接続孔を有する絶縁膜を介して堆積された多結晶Si
膜)とを接続するために絶縁膜に開孔される接続孔も微
細となり、かつ、拡散層の接合深さも浅くなってきてい
る。従って、配線または電極の材料としてAl系の材料を
用いる場合、半導体装置の製造工程において、熱処理工
程を経ると、Al配線または電極中に基板のSiが浸透し、
拡散層が破壊されたり、あるいは、配線または電極と拡
散層の良好な接続が行われないという問題が生ずる。こ
の問題を解決するために、Si基板とAl配線または電極と
の間にSi拡散防止用のバリア層を介在させることが必要
となってきている。
With the miniaturization and high integration of semiconductor devices, wiring or electrodes and diffusion layers formed on the surface of the Si substrate (or polycrystalline Si deposited via an insulating film with connection holes on the Si substrate)
The connection hole formed in the insulating film to connect the film to the film is also becoming finer, and the junction depth of the diffusion layer is becoming smaller. Therefore, when an Al-based material is used as the material of the wiring or the electrode, the Si of the substrate penetrates into the Al wiring or the electrode after the heat treatment step in the semiconductor device manufacturing process,
There arises a problem that the diffusion layer is destroyed or a good connection between the wiring or the electrode and the diffusion layer is not performed. In order to solve this problem, it is necessary to interpose a barrier layer for preventing Si diffusion between the Si substrate and the Al wiring or electrode.

このバリア層の材料としては、耐熱性等の点からTiN
(窒化チタン)が有望視され、多数特許出願もされてい
る。
The material of the barrier layer is TiN in terms of heat resistance and the like.
(Titanium nitride) is promising and many patent applications have been filed.

一般に、TiN膜を形成するには、Tiからなるターゲッ
トを用い、窒素を含むガスと反応させてTiN膜を形成す
る反応性スパッタ法か、あるいは、TiN焼結体からなる
ターゲットを用いたスパッタ法による。これらの技術の
うち、前者については、ジャーナル オブ バキュウム
サイエンス アンド テクノロジー(J.Vac.Sci.Tech
nol.)のB5(6),1987,1723〜1729頁のディー・エス・
ウィリアムズ(D.S.Williams)らによる「ナイトロジェ
ン、オクシジェン、アンド アーゴン インコーポレー
ション デュアリング リアクティブ スパッタ デポ
ジション オブ タイテイニウム ナイトライド(Nitr
ogen,oxygen,and argon incorporation during reactiv
e sputter deposition of titanium nitride)」に記載
されており、後者については、同1741〜1747頁のティー
・ブラット(T.Brat)らによる「キャラクタライゼイシ
ョン オブ チタニウム ナイトライド フィルムズ
スパッタ デポジッティド フロム ア ハイ ピュリ
ティ タイテイニウム ナイトライド ターゲット(Ch
aracterization of titanium nitride films sputter d
eposited from a high−purity titanium nitride targ
et)」に記載されている。
Generally, a TiN film is formed by a reactive sputtering method using a target made of Ti and reacting with a gas containing nitrogen to form a TiN film, or a sputtering method using a target made of a TiN sintered body. by. Of these technologies, the former is described in the Journal of Vacuum Science and Technology (J.Vac.Sci.Tech.
nol.) B5 (6), 1987, p.1723-1729.
"Nitrogen, Oxygen, and Argon, Inc. Dualing Reactive Sputter Deposition of Titanium Nitride by DSWilliams et al. (Nitr
ogen, oxygen, and argon incorporation during reactiv
e sputter deposition of titanium nitride), and the latter is described in "Characterization of titanium nitride films" by T. Brat et al., pp. 1741 to 1747.
Sputter Deposited From A High Purity Titanium Nitride Target (Ch
aracterization of titanium nitride films sputter d
eposited from a high-purity titanium nitride targ
et) ".

これらの方法により形成されるTiN膜は、Al配線また
は電極に基板のSiが浸透するのを防止するバリア層とし
ての機能(以下、バリア性と称す)が高く、かつ、比抵
抗が低いという利点を有するが、非常に大きな応力を示
すという欠点がある。
The TiN film formed by these methods has the advantage of having a high function as a barrier layer (hereinafter referred to as a barrier property) for preventing the Si of the substrate from penetrating into the Al wiring or electrode, and having a low specific resistance. However, it has a disadvantage that it shows a very large stress.

なお、TiN膜に生じる応力を低減するために、TiN膜の
堆積中に該膜に酸素を添加するという試みもなされてい
るが、酸素を添加すると、比抵抗が大幅に上昇し、か
つ、バリア性も低下するという問題が生じた。
In addition, in order to reduce the stress generated in the TiN film, an attempt has been made to add oxygen to the TiN film during the deposition of the film. However, when oxygen is added, the specific resistance is significantly increased, and the barrier is increased. There is a problem that the performance is also reduced.

また、特開昭63−131572号に、バリア性改善のために
ボロンや炭素を0.1から0.5%程度含ませた窒化チタン膜
について記載されている。
Japanese Patent Application Laid-Open No. 63-131572 discloses a titanium nitride film containing about 0.1 to 0.5% of boron or carbon to improve barrier properties.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述のように、従来のTiN膜を有する半導体装置にお
いてはTiN膜に非常に大きな応力が存在すると、半導体
装置の製造工程中の熱処理工程を経ることにより、TiN
膜が剥がれたり、TiN膜にクラックが生じ、本来の目的
であるバリア性が損なわれるという問題があった。
As described above, in a semiconductor device having a conventional TiN film, when a very large stress is present in the TiN film, the TiN film is subjected to a heat treatment process during the manufacturing process of the semiconductor device.
There is a problem that the film is peeled off or cracks occur in the TiN film, and the barrier property, which is the original purpose, is impaired.

本発明の目的は、TiN膜が有するバリア性の高さ、お
よび比抵抗の低さを維持したまま、熱処理工程を経て
も、TiN膜が剥がれたり、TiN膜にクラックが生じるのを
防止することにある。
An object of the present invention is to prevent the TiN film from peeling or cracking in the TiN film even after a heat treatment step, while maintaining a high barrier property of the TiN film and a low specific resistance. It is in.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するために、本発明の半導体装置
は、配線または電極のバリア層として用いるTiN膜に2.7
〜10at%(原子百分率)の濃度の炭素が添加してあるこ
とを特徴とする。
In order to achieve the above object, a semiconductor device of the present invention has a structure in which a TiN film used as a barrier layer of a wiring or an electrode has a thickness of 2.7%.
It is characterized in that carbon of a concentration of 1010 at% (atomic percentage) is added.

配線または電極は、通常、絶縁膜に開孔された接続孔
の下の半導体基板表面に形成された拡散層等の不純物ド
ープ領域もしくは、例えば多結晶シリコン等の導電膜に
接続され、2.7〜10at%の炭素を含有するTiN膜はバリア
層として用いられる。
The wiring or electrode is usually connected to an impurity-doped region such as a diffusion layer formed on the surface of the semiconductor substrate below the connection hole formed in the insulating film, or to a conductive film such as polycrystalline silicon, for example. % Of carbon is used as a barrier layer.

また、炭素を含有するTiN膜と、不純物ドープ領域も
しくは導電膜との接触抵抗を低減するために、両者の間
に、Ti、Pt、Pd等の5〜20nmの程度の薄いシリサイド膜
を形成してもよい。
In order to reduce the contact resistance between the carbon-containing TiN film and the impurity-doped region or the conductive film, a thin silicide film of about 5 to 20 nm of Ti, Pt, Pd, etc. is formed between them. You may.

〔作用〕[Action]

本発明者らの実験によると、TiN膜に炭素を添加する
と、TiN膜に大きな応力が生じないことが判った。しか
し、炭素の含有率が増加すると、比抵抗が上昇してく
る。従って、炭素含有率が2.7〜10at%の範囲が、応力
の低減効果が大きく、かつ、TiN膜のバリア性の高さ、
比抵抗の低さも維持できる。
According to the experiments of the present inventors, it was found that when carbon was added to the TiN film, no large stress was generated in the TiN film. However, as the carbon content increases, the specific resistance increases. Therefore, when the carbon content is in the range of 2.7 to 10 at%, the effect of reducing the stress is large, and the barrier property of the TiN film is high,
The low specific resistance can be maintained.

〔実施例〕〔Example〕

実施例 1 本実施例では、Tiターゲットを用いて、Ar−N2混合ガ
ス雰囲気下で反応性スパッタ法により形成したTiN膜、
およびこの雰囲気にメタン(CH4)ガスを添加して形成
した炭素を含有するTiN膜(TiN(C))膜を形成した。
Example 1 In this example, a TiN film formed by a reactive sputtering method in an Ar-N 2 mixed gas atmosphere using a Ti target was used.
A carbon-containing TiN film (TiN (C)) film was formed by adding methane (CH 4 ) gas to the atmosphere.

第1図は、本実施例において、TiN膜および炭素を含
有するTiN膜の応力および比抵抗を、添加したメタンガ
スの流量(すなわち、炭素の添加量)に対して示す図で
ある。図において、左の縦軸に応力(GPa)を取り、右
の縦軸に比抵抗(μΩcm)を取り、横軸にメタンガスの
流量(sccm)を取ってある。
FIG. 1 is a diagram showing the stress and the specific resistance of the TiN film and the TiN film containing carbon in the present embodiment with respect to the flow rate of the added methane gas (that is, the added amount of carbon). In the figure, the left vertical axis shows stress (GPa), the right vertical axis shows specific resistance (μΩcm), and the horizontal axis shows methane gas flow rate (sccm).

○は、メタンガスの流量と応力との関係を示し、●
は、メタンガスの流量と比抵抗との関係を示す。
○ indicates the relationship between the flow rate of methane gas and the stress.
Shows the relationship between the flow rate of methane gas and the specific resistance.

●から明らかなように、極微量のメタンガスを添加す
ることにより、炭素を添加しないTiN膜(すなわち、メ
タンガスの流量が0のとき)に比較して、比抵抗はほと
んど変わらないのに対して、○から明らかなように、応
力は大幅に低下することが判る。
As is clear from ●, by adding a very small amount of methane gas, the specific resistance hardly changes as compared with a TiN film without carbon addition (ie, when the flow rate of methane gas is 0). As is clear from ○, the stress is greatly reduced.

しかし、比抵抗は、メタンガスの添加量が少ないうち
は低いが、メタンガスの添加量が少し多くなると大きく
上昇し始める。
However, the specific resistance is low while the amount of methane gas added is small, but starts to increase significantly when the amount of methane gas added is slightly increased.

第2図は、メタンガスの添加量に対するTiN膜の炭素
含有率(at%)を示す図である。第2図の横軸は、第1
図の横軸と同じで、メタンガスの流量を示す。
FIG. 2 is a diagram showing the carbon content (at%) of the TiN film with respect to the amount of methane gas added. The horizontal axis in FIG.
The same as the horizontal axis of the figure, the flow rate of methane gas is shown.

第1図および第2図から、比抵抗が低く、かつ、応力
が小さいTiN膜における望ましい炭素含有率は、2.7〜10
at%程度であることが判る。
From FIGS. 1 and 2, the desirable carbon content of the TiN film having a low specific resistance and a small stress is 2.7 to 10%.
It turns out that it is about at%.

本実施例では、TiN膜に炭素を含有させるのにメタン
ガスを用いたが、メタンガスに限らず、Cl3、CO2等、炭
素を含むガスならば同様の効果を得ることができること
は言うまでもない。
In the present embodiment, methane gas was used to make the TiN film contain carbon. However, it goes without saying that the same effect can be obtained if the gas contains carbon, such as Cl 3 and CO 2 .

第1表は、種々の炭素濃度のTiN膜を形成した試料に
おいて、該TiN膜の剥離とクラックの発生状況を示す表
である。
Table 1 is a table showing the state of peeling of the TiN film and occurrence of cracks in the samples on which TiN films having various carbon concentrations were formed.

これらの試料は、下地として線幅および線間隔が共に
1μmで、段差が0.5μmのBPSG(ボロフォスフォ シ
リケイト グラス(Boro−Phospho−Silicate Glass)
膜のパターン上に、厚さ200nmのTiN膜あるいは炭素を含
有させたTiN膜を形成した場合の該膜の剥離およびクラ
ックの発生頻度を調べた結果を炭素濃度の分析結果に対
して示した。
These samples were made of BPSG (Boro-Phospho-Silicate Glass) having a line width and line spacing of 1 μm and a step of 0.5 μm as a base.
The results of examining the frequency of peeling and cracking of the TiN film having a thickness of 200 nm or the TiN film containing carbon on the pattern of the film were shown with respect to the analysis results of the carbon concentration.

この表から判るように、炭素を添加しない従来のTiN
膜を形成した試料では、剥離、クラックが共に激しく発
生したのに対し、炭素濃度が0.5at%の試料では、剥
離、クラックの抑制効果が現われ始め、炭素濃度が2.7a
t%の試料では、剥離、クラックの発生を充分抑えるこ
とができる。
As can be seen from this table, conventional TiN without carbon addition
In the sample on which the film was formed, peeling and cracking both occurred violently, whereas in the sample with a carbon concentration of 0.5 at%, the effect of suppressing peeling and cracking began to appear, and the carbon concentration was 2.7a.
In a sample of t%, the occurrence of peeling and cracking can be sufficiently suppressed.

第3図は、TiN膜の炭素濃度と接合逆耐圧との関係を
示す図である。
FIG. 3 is a diagram showing the relationship between the carbon concentration of the TiN film and the junction reverse breakdown voltage.

すなわち、p型Si基板表面の所定の位置にn+型拡散層
を形成した後、その上に全面に絶縁膜を形成し、該絶縁
膜に直径1.2μmの接続孔を開孔し、その上に厚さ100nm
のTiN膜あるいは種々の濃度の炭素を含有するTiN膜(す
なわち、炭素濃度が0、0.5、1.2、2.7、5.0、14.4%)
をバリア層として形成した後、Al−Ti合金配線を形成
し、これらの試料について、それぞれ、熱処理を施さ
ないとき、450℃、1時間の熱処理(半導体装置の製
造工程において一般に行われる熱処理)を施したとき、
500℃、1時間の熱処理を施したとき、550℃、1時
間の熱処理を施したときにおけるコンタクトの耐熱性を
接合の逆耐圧の歩留りにより検討した結果を示す。
That is, after forming an n + -type diffusion layer at a predetermined position on the surface of a p-type Si substrate, an insulating film is formed on the entire surface thereof, and a connection hole having a diameter of 1.2 μm is formed in the insulating film. 100nm thick
TiN film or TiN film containing various concentrations of carbon (ie, carbon concentration of 0, 0.5, 1.2, 2.7, 5.0, 14.4%)
Is formed as a barrier layer, and then an Al—Ti alloy wiring is formed. Each of these samples is subjected to a heat treatment at 450 ° C. for 1 hour (a heat treatment generally performed in a semiconductor device manufacturing process) when no heat treatment is performed. When given
The results of examining the heat resistance of the contact when the heat treatment is performed at 500 ° C. for 1 hour and when the heat treatment is performed at 550 ° C. for 1 hour are shown by the yield of the reverse breakdown voltage of the junction.

この図から、炭素濃度が2.7at%以上のTiN膜は、コン
タクトの耐熱性は炭素を含有しない従来のTiN膜に比べ
て却って向上していることが判る。これは、炭素を2.7a
t%以上含有するTiN膜は、上述のように剥離やクラック
の発生を抑制できるためである。
From this figure, it can be seen that the heat resistance of the contact of the TiN film having a carbon concentration of 2.7 at% or more is rather improved as compared with the conventional TiN film containing no carbon. This translates to carbon 2.7a
This is because a TiN film containing t% or more can suppress the occurrence of peeling and cracks as described above.

第4図は、メタンガスの流量(すなわち、炭素濃度)
と接触抵抗との関係を示す図である。
Figure 4 shows the flow rate of methane gas (ie, carbon concentration)
FIG. 4 is a diagram showing a relationship between the resistance and the contact resistance.

試料としては、第3図で示した試料と同一構成の試料
を使用した。この図から、炭素の添加量が10at%以下で
は、接触抵抗の上昇が認められないのに対して、10at%
を超えると急激に接触抵抗が上昇し始め、オーミック接
触を得ることが難しくなることが判る。
A sample having the same configuration as the sample shown in FIG. 3 was used. From this figure, when the amount of carbon added is 10 at% or less, no increase in contact resistance is observed, whereas the increase in
It can be seen that, when the value exceeds, the contact resistance suddenly starts to increase, and it becomes difficult to obtain ohmic contact.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、TiN膜に2.7〜
10at%の炭素を添加することにより、熱処理時に発生す
るTiN膜の応力を大幅に低減できるので、TiN膜が本来有
するバリア性の高さ、比抵抗の低さなどの有利な特性を
劣化させることなく、該膜の剥離や該膜中のクラックの
発生を抑制できるという効果がある。
As described above, according to the present invention, the TiN film has a thickness of 2.7 to
By adding 10 at% of carbon, the stress of the TiN film generated during the heat treatment can be significantly reduced, thus deteriorating the advantageous properties of the TiN film such as high barrier properties and low specific resistance. In addition, there is an effect that peeling of the film and generation of cracks in the film can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明による炭素を含有するTiN膜の応力お
よび比抵抗とメタンガスの流量との関係を示す図、第2
図は、炭素含有率とメタンガスの流量との関係を示す
図、第3図は、種々の炭素含有率の試料について熱処理
と接合逆耐圧歩留りとの関係を示す図、第4図は、接触
抵抗とメタンガスの流量との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the stress and specific resistance of a carbon-containing TiN film according to the present invention and the flow rate of methane gas.
The figure shows the relationship between the carbon content and the flow rate of methane gas. FIG. 3 shows the relationship between the heat treatment and the yield of the reverse withstand voltage for the samples having various carbon contents. FIG. 4 shows the contact resistance. FIG. 4 is a diagram showing a relationship between the flow rate of methane gas and methane gas.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西田 高 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭63−131572(JP,A) 特開 昭60−5560(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Takashi Nishida 1-280 Higashi Koikebo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (56) References JP-A-63-131572 (JP, A) JP-A-60 -5560 (JP, A)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素含有率が2.7at%以上の窒化チタン膜
を有することを特徴とする半導体装置。
1. A semiconductor device comprising a titanium nitride film having a carbon content of 2.7 at% or more.
【請求項2】炭素含有率が2.7at%以上10at%以下の窒
化チタン膜を有することを特徴とする半導体装置。
2. A semiconductor device having a titanium nitride film having a carbon content of 2.7 at% or more and 10 at% or less.
【請求項3】炭素含有率が5at%以上の窒化チタン膜を
有することを特徴とする半導体装置。
3. A semiconductor device comprising a titanium nitride film having a carbon content of 5 at% or more.
【請求項4】不純物ドープ領域が表面内に形成された基
板と、 前記基板と接して形成された、炭素含有率が2.7at%以
上の窒化チタン膜と、 前記窒化チタン膜と接して形成された導電層とを有する
ことを特徴とする半導体装置。
4. A substrate having an impurity-doped region formed in the surface thereof, a titanium nitride film having a carbon content of 2.7 at% or more formed in contact with the substrate, and a titanium nitride film formed in contact with the titanium nitride film. And a conductive layer.
【請求項5】前記窒化チタン膜の炭素含有率は10at%以
下であることを特徴とする特許請求の範囲第4項記載の
半導体装置。
5. The semiconductor device according to claim 4, wherein said titanium nitride film has a carbon content of 10 at% or less.
【請求項6】第1の導電膜と、 前記第1の導電膜上に形成された、炭素含有率が2.7at
%以上の窒化チタン膜と、 前記窒化チタン膜上に形成された第2の導電膜とを有す
ることを特徴とする半導体装置。
6. A first conductive film having a carbon content of 2.7 atm formed on the first conductive film.
% Of a titanium nitride film and a second conductive film formed on the titanium nitride film.
【請求項7】前記窒化チタン膜の炭素含有率は10at%以
下であることを特徴とする特許請求の範囲第6項記載の
半導体装置。
7. The semiconductor device according to claim 6, wherein said titanium nitride film has a carbon content of 10 at% or less.
【請求項8】前記第1の導電膜と前記窒化チタン膜との
間に、Ti、Pt、Pd何れかのシリサイド膜が形成されてい
ることを特徴とする特許請求の範囲第6項記載の半導体
装置。
8. The method according to claim 6, wherein a silicide film of any one of Ti, Pt, and Pd is formed between said first conductive film and said titanium nitride film. Semiconductor device.
JP63286814A 1988-11-15 1988-11-15 Semiconductor device Expired - Lifetime JP2765884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63286814A JP2765884B2 (en) 1988-11-15 1988-11-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63286814A JP2765884B2 (en) 1988-11-15 1988-11-15 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH02133964A JPH02133964A (en) 1990-05-23
JP2765884B2 true JP2765884B2 (en) 1998-06-18

Family

ID=17709390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63286814A Expired - Lifetime JP2765884B2 (en) 1988-11-15 1988-11-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2765884B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160093804A1 (en) * 2014-09-26 2016-03-31 Christopher Petz Laminate diffusion barriers and related devices and methods

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003542A1 (en) * 1989-09-11 1991-03-21 Kao Corporation Bleaching composition
JP6416031B2 (en) * 2015-03-30 2018-10-31 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing apparatus, and program
CN105161523B (en) * 2015-08-13 2018-09-25 京东方科技集团股份有限公司 A kind of electrode, thin film transistor (TFT), array substrate and display equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605560A (en) * 1983-06-23 1985-01-12 Fujitsu Ltd Semiconductor device
JPH081950B2 (en) * 1986-11-21 1996-01-10 株式会社東芝 Method for manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160093804A1 (en) * 2014-09-26 2016-03-31 Christopher Petz Laminate diffusion barriers and related devices and methods
TWI689094B (en) * 2014-09-26 2020-03-21 美商英特爾公司 Laminate diffusion barriers and related devices and methods
US11133461B2 (en) * 2014-09-26 2021-09-28 Intel Corporation Laminate diffusion barriers and related devices and methods

Also Published As

Publication number Publication date
JPH02133964A (en) 1990-05-23

Similar Documents

Publication Publication Date Title
US5529670A (en) Method of depositing conductors in high aspect ratio apertures under high temperature conditions
Stavrev et al. Behavior of thin Ta-based films in the Cu/barrier/Si system
US5360996A (en) Titanium nitride/titanium silicide multiple layer barrier with preferential (111) crystallographic orientation on titanium nitride surface
US5401675A (en) Method of depositing conductors in high aspect ratio apertures using a collimator
JP3353874B2 (en) Semiconductor device and manufacturing method thereof
US20070059502A1 (en) Integrated process for sputter deposition of a conductive barrier layer, especially an alloy of ruthenium and tantalum, underlying copper or copper alloy seed layer
Reid et al. Amorphous (Mo, Ta, or W)–Si–N diffusion barriers for Al metallizations
TWI374482B (en)
JPH0864786A (en) Microelectronic structure and manufacture thereof
US20040188850A1 (en) Method of forming a robust copper interconnect by dilute metal doping
KR100660731B1 (en) Nickel alloy sputtering target
JP2765884B2 (en) Semiconductor device
Hübner et al. Influence of nitrogen content on the crystallization behavior of thin Ta–Si–N diffusion barriers
JP2004506814A (en) Sputtering target
Liu et al. Effects of Ti addition on the morphology, interfacial reaction, and diffusion of Cu on SiO 2
US20040166693A1 (en) Sputtering target compositions, and methods of inhibiting copper diffusion into a substrate
Grill et al. Layered TaSiN as an oxidation resistant electrically conductive barrier
JPH09186103A (en) Structure of metal interconnection and forming method thereof
JPH10209156A (en) Semiconductor device and its manufacture
JPH06140398A (en) Integrated circuit device
CN1109214A (en) Semiconductor device and maaufacturo of same
JP2782600B2 (en) Method for forming copper diffusion preventing film having two-layer structure
JPH05291560A (en) Barrier metal of semiconductor device
KR960007639B1 (en) Conducting film and semiconductor device using such a film
JP2992524B2 (en) Semiconductor element wiring forming method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080403

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11