JP2762520B2 - Method for producing TiAl intermetallic compound sintered member - Google Patents

Method for producing TiAl intermetallic compound sintered member

Info

Publication number
JP2762520B2
JP2762520B2 JP1050685A JP5068589A JP2762520B2 JP 2762520 B2 JP2762520 B2 JP 2762520B2 JP 1050685 A JP1050685 A JP 1050685A JP 5068589 A JP5068589 A JP 5068589A JP 2762520 B2 JP2762520 B2 JP 2762520B2
Authority
JP
Japan
Prior art keywords
tial
intermetallic compound
powder
green compact
tial intermetallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1050685A
Other languages
Japanese (ja)
Other versions
JPH02228403A (en
Inventor
敏夫 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1050685A priority Critical patent/JP2762520B2/en
Publication of JPH02228403A publication Critical patent/JPH02228403A/en
Application granted granted Critical
Publication of JP2762520B2 publication Critical patent/JP2762520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は自動車部品等に使用されるTiAl金属間化合
物からなる部材の製造方法に関し、特に高温耐酸化性を
向上させたTiAl金属間化合物焼結部材の製造方法に関す
るものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a member made of a TiAl intermetallic compound used for automobile parts and the like, and in particular, a TiAl intermetallic compound sintered member having improved high-temperature oxidation resistance. And a method for producing the same.

従来の技術 Ti−Al系の金属間化合物の一つであるTiAlは、高温で
高い比強度(強度/密度)を有し、また高弾性率を有す
る材料であるところから、近年、軽量で高強度の耐熱材
料としての実用化が図られるようになっている。
2. Description of the Related Art In recent years, TiAl, which is one of Ti-Al-based intermetallic compounds, has a high specific strength (strength / density) at a high temperature and is a material having a high elastic modulus. Practical application as a high-strength heat-resistant material has been achieved.

従来のTiAl金属間化合物からなる部材の製造方法とし
ては、精密鋳造法や粉末冶金法が知られている。これら
のうち、最近注目を浴びている粉末冶金法では、TiAl金
属間化合物の粉末を1000℃以上の高温でHIP(熱間静水
圧プレス)するのが通常である。
As a conventional method for producing a member made of a TiAl intermetallic compound, a precision casting method and a powder metallurgy method are known. Of these, in powder metallurgy, which has recently attracted attention, it is usual to perform HIP (hot isostatic pressing) on TiAl intermetallic compound powder at a high temperature of 1000 ° C. or higher.

発明が解決しようとする課題 前述のような従来の方法で製造されたTiAl金属間化合
物部品においては、800℃以上の高温になれば耐酸化性
が急激に劣化するという、実用上の大きな問題がある。
すなわち文献「金属学会シンポジウム予稿“金属間化合
物の強度と変形”(1988年)」のp5〜p8の「高融点金属
間化合物の将来展望」(馬越佐吉)に詳細に記載されて
いるように、TiAl金属間化合物部品においては、酸化初
期には表面は安定なAl2O3の酸化皮膜によって保護され
るが、800℃以上の高温となれば表面にTiO2が生成さ
れ、しかもこのTiO2は柱状晶状に形成されるためにその
柱状晶間に空隙が発生し、その空隙から容易に酸素が材
料内部へ侵入して、急激に酸化が進行してしまい、その
ため、800℃以上では耐酸化性が急激に低下してしまう
のである。
Problems to be Solved by the Invention In the TiAl intermetallic compound parts manufactured by the conventional method as described above, the oxidation resistance rapidly deteriorates at a high temperature of 800 ° C. or higher, which is a serious problem in practical use. is there.
In other words, as described in detail in the "Prospects of high melting point intermetallic compounds" (p.5-8) of the "Metal Society of Japan Symposium Proposal" Strength and Deformation of Intermetallic Compounds "(1988)" (Sakichi Magoshi), In a TiAl intermetallic compound part, the surface is protected by a stable oxide film of Al 2 O 3 in the early stage of oxidation, but when the temperature is higher than 800 ° C., TiO 2 is generated on the surface, and this TiO 2 Due to the formation of columnar crystals, voids are generated between the columnar crystals, and oxygen easily enters the material from the voids, and oxidation proceeds rapidly. The nature drops sharply.

したがって従来はTiAl金属間化合物部材については、
種々の優れた特性を有しながらも、800℃以上の高温で
の酸化性雰囲気における使用はためらわざるを得なかっ
たのが実情である。
Therefore, conventionally, for TiAl intermetallic compound members,
In spite of having various excellent characteristics, use in an oxidizing atmosphere at a high temperature of 800 ° C. or more has to be hesitated.

この発明は以上の事情を背景としてなされたもので、
800℃以上の高温でも耐酸化性が優れたTiAl金属間化合
物焼結部材を製造する方法を提供することを目的とする
ものである。
The present invention has been made in view of the above circumstances,
It is an object of the present invention to provide a method for producing a TiAl intermetallic compound sintered member having excellent oxidation resistance even at a high temperature of 800 ° C or higher.

課題を解決するための手段 この発明の方法は、基本的には粉末冶金法によってTi
Al金属間化合物部材を製造するにあたって、焼結体表面
をAlリッチな組織として、材料内部への酸素の浸透を防
ぐAl2O3を積極的に生成させ得るようにしたものであ
る。
Means for Solving the Problems The method of the present invention is basically based on powder metallurgy.
When manufacturing an Al intermetallic compound member, the surface of the sintered body is made to have an Al-rich structure so that Al 2 O 3 that prevents oxygen from penetrating into the material can be positively generated.

具体的には、この発明のTiAl金属間化合物焼結部材の
製造方法は、TiAl金属間化合物の粉末を圧粉成形した
後、その圧粉成形体の表面に平均粒径0.1μm以下のAl
超微粉末からなる層をそのAl超微粉末粒子が圧粉成形体
表面付近の空孔に充填されるように形成し、その後非酸
化性雰囲気中で焼結することを特徴とするものである。
Specifically, the method for producing a TiAl intermetallic compound sintered member of the present invention comprises, after compacting a powder of a TiAl intermetallic compound, forming an Al particle having an average particle size of 0.1 μm or less on the surface of the compact.
It is characterized in that a layer made of ultrafine powder is formed so that the Al ultrafine powder particles are filled in pores near the surface of the green compact, and then sintered in a non-oxidizing atmosphere. .

作用 この発明の方法では、先ずTiAl粉末を常法にしたがっ
て圧粉成形する。そして得られた圧粉成形体の表面に平
均粒径が0.1μm以下のAl超微粉末からなるAl超微粉末
層を形成する。このとき、Al超微粉末層は、圧粉成形体
の表面を覆うだけではなく、そのAl超微粉末粒子が成形
体表面付近の空孔に充填されるように形成する。その後
焼結体を非酸化性雰囲気中で焼結すれば、焼結体表面に
はAlリッチな層が形成される。すなわち焼結時、特にそ
の昇温過程においては、圧粉成形体の表面を覆ったAl超
微粉末および表面付近の空孔内に充填されたAl超微粉末
が溶融し、そのAlの一部は成形体母材のTiAlと反応して
TiAl3を生成し、一方過剰なAlは未反応のまま残り、そ
の結果焼結後の焼結体の表面には、TiA3とAlからなる混
合層が、焼結体表面に食い込んで密に結合された状態で
形成される。ここで、TiAl3は圧粉成形体を構成してい
る母材のTiAlと反応して形成されたものであるから、Ti
Al3とAlの混合層は、焼結体母材であるTiAl部分と連続
一体化して、焼結体母材に対し高い密着力で緻密に形成
されることになる。
Action In the method of the present invention, first, a TiAl powder is compacted according to a conventional method. Then, an Al ultrafine powder layer made of an Al ultrafine powder having an average particle size of 0.1 μm or less is formed on the surface of the obtained green compact. At this time, the Al ultrafine powder layer is formed not only to cover the surface of the green compact, but also to fill the pores near the surface of the compact with the Al ultrafine powder particles. Thereafter, if the sintered body is sintered in a non-oxidizing atmosphere, an Al-rich layer is formed on the surface of the sintered body. In other words, during sintering, particularly during the heating process, the Al ultrafine powder covering the surface of the green compact and the Al ultrafine powder filled in pores near the surface are melted, and a part of the Al is melted. Reacts with TiAl
TiAl 3 is produced, while excess Al remains unreacted.As a result, a mixed layer of TiA 3 and Al penetrates the surface of the sintered body, It is formed in a connected state. Here, since TiAl 3 is formed by reacting with TiAl of the base material constituting the green compact,
The mixed layer of Al 3 and Al is continuously integrated with the TiAl portion, which is the sintered body base material, and is densely formed with high adhesion to the sintered body base material.

このようにして得られた焼結体からなる部材は、使用
時に表面のTiAl3とAlからなる混合層が徐々に酸化され
て、Al2O3膜を形成する。このAl2O3膜は極めて安定であ
り、しかもそのAl2O3膜の生成母体であるTiAl3とAlとの
混合層自体が前述のように緻密に形成されているため、
Al2O3膜も緻密なものとなり、そのためAl2O3膜が酸化に
対する保護膜として機能して、それ以上酸化が部材内部
へ進行することを妨げる。したがって、800℃以上の高
温での使用時においても、部材内部への酸化の進行が防
止され、高温耐酸化性が著しく優れることになる。
In the member made of the sintered body thus obtained, the mixed layer made of TiAl 3 and Al on the surface is gradually oxidized during use to form an Al 2 O 3 film. This Al 2 O 3 film is extremely stable, and since the mixed layer itself of TiAl 3 and Al, which is the base material for forming the Al 2 O 3 film, is densely formed as described above,
The Al 2 O 3 film also becomes dense, so that the Al 2 O 3 film functions as a protective film against oxidation, and prevents further oxidation from proceeding inside the member. Therefore, even at the time of use at a high temperature of 800 ° C. or more, the progress of oxidation to the inside of the member is prevented, and the high-temperature oxidation resistance is remarkably excellent.

ここで、圧粉成形体の表面に成形するAl超微粉末層に
用いるAl超微粉末は、その粒径が0.1μmを越える場合
には圧粉成形体の表面付近の空孔中に充分に充填され
ず、その結果焼結後の焼結体の表面の混合層が緻密に形
成されず、使用時に生成されるAl2O3膜も緻密に形成さ
れないために保護膜として充分に機能せず、内部まで酸
化が進行してしまうおそれがある。したがってAl超微粉
末の粒径は平均で0.1μm以下とする必要がある。
Here, the Al ultrafine powder used for the Al ultrafine powder layer to be molded on the surface of the green compact is sufficiently filled into pores near the surface of the green compact when the particle size exceeds 0.1 μm. It is not filled, as a result, the mixed layer on the surface of the sintered body after sintering is not densely formed, and the Al 2 O 3 film generated at the time of use is not formed densely, so it does not function sufficiently as a protective film Oxidation may progress to the inside. Therefore, it is necessary that the average particle size of the Al ultrafine powder is 0.1 μm or less.

なお圧粉成形体の原料として用いるTiAl金属間化合物
粉末の粒径は、従来からTiAl金属間化合物部材の粉末冶
金法による製造に用いられている程度のものであれば良
く、特に限定しないが、通常は10〜100μm程度であれ
ば良い。
The particle size of the TiAl intermetallic compound powder used as a raw material of the green compact is not particularly limited as long as it is conventionally used in the production of TiAl intermetallic compound members by powder metallurgy. Usually, it should be about 10 to 100 μm.

なお、また、Al超微粉末からなる層を圧粉成形体の表
面付近の空孔に充填されるように形成するための具体的
手段としては、例えばAl超微粉末を予め超音波等を用い
て溶媒中に分散させておき、その分散浴中に圧粉成形体
を浸漬させる等の手法を適用すれば良い。
In addition, as a specific means for forming a layer made of Al ultra-fine powder so as to be filled in pores near the surface of the green compact, for example, Al ultra-fine powder is used in advance using ultrasonic waves or the like. Then, a method of dispersing the powder compact in a solvent and immersing the green compact in the dispersion bath may be applied.

さらに、Al超微粉末層を圧粉成形体表面に形成した後
にその圧粉成形体を焼結するにあたっての焼結条件も、
公知のTiAl金属間化合物の焼結条件と同じとすれば良
く、一般には1000〜1400℃程度で1〜3時間程度とすれ
ば良い。なおこの焼結時の特に昇温過程においては、既
に述べたようにTiAl3とAlとの混合層が表面に形成され
るが、この焼結時の昇温過程では特に550〜750℃の温度
領域内で1〜2時間程度の保持を行なうかまたはその温
度域内を1〜2時間程度の昇温時間で徐昇温することが
望ましく、このようにすることによって母材のTiAlとAl
とを充分に反応させて、TiAl3を安定して生成させるこ
とができ、ひいては母材のTiAlとを連続一体化した緻密
な混合層(TiAl3+Al)を確実に形成することができ
る。
Furthermore, the sintering conditions for sintering the green compact after forming the Al ultrafine powder layer on the surface of the green compact,
The sintering conditions for the known TiAl intermetallic compound may be the same as those described above. In general, the sintering may be performed at about 1000 to 1400 ° C. for about 1 to 3 hours. During the sintering, especially during the heating process, a mixed layer of TiAl 3 and Al is formed on the surface as described above. It is desirable to keep the temperature in the region for about 1 to 2 hours, or to gradually raise the temperature in the temperature range for about 1 to 2 hours.
And TiAl 3 can be generated stably, and a dense mixed layer (TiAl 3 + Al) in which the base material TiAl is continuously integrated can be surely formed.

実 施 例 [実施例] 平均粒径20〜30μmのTiAl金属間化合物粉末を、φ15
mmのダイセットの中に入れ、5kg/cm2の加圧力で円柱状
に圧粉成形した。一方、平均粒径200Å(0.02μm)程
度のAl超微粉末を有機溶媒としてのヘキサン中に超音波
を用いて分散させ、その分散浴中に圧粉成形体を約3分
間浸漬させた。圧粉成形体を分散浴から取出した後、Ar
ガスフロー中で1〜5時間充分に乾燥させた。この状態
では、圧粉成形体の表面にはAl超微粉末の層が全面的に
うっすらと被覆されており、かつそのAl超微粉末は圧粉
成形体の表面の空孔にも充填されていることが確認され
た。
Example [Example] TiAl intermetallic compound powder having an average particle size of 20 to 30 µm was prepared by using a φ15
It was placed in a die set of mm, and was compacted into a column with a pressing force of 5 kg / cm 2 . On the other hand, an ultrafine Al powder having an average particle diameter of about 200 ° (0.02 μm) was dispersed in hexane as an organic solvent using ultrasonic waves, and the compact was immersed in the dispersion bath for about 3 minutes. After removing the green compact from the dispersion bath, Ar
Dry thoroughly in a gas flow for 1-5 hours. In this state, the surface of the green compact is slightly covered with a layer of Al ultrafine powder, and the Al ultrafine powder is also filled in pores on the surface of the green compact. It was confirmed that.

その後、圧粉成形体を真空炉中へセットし、炉内を真
空に引きながら徐々に昇温させた。この昇温過程では特
に550〜750℃の温度域を2時間かけて徐昇温させた。さ
らに1100℃まで昇温させ、その温度で、2時間保持して
焼結を行なった。その後、炉冷により室温まで冷却し、
炉内から焼結体を取出した。得られた焼結体試料の表面
層を調べたところ、表面にTiAl3とAlとの混合層が緻密
に形成されていることが判明した。
Thereafter, the green compact was set in a vacuum furnace, and the temperature was gradually increased while evacuating the furnace. In this heating process, the temperature was particularly gradually increased in a temperature range of 550 to 750 ° C. over 2 hours. The temperature was further raised to 1100 ° C., and the temperature was maintained for 2 hours for sintering. Then, cool down to room temperature by furnace cooling,
The sintered body was taken out of the furnace. Examination of the surface layer of the obtained sintered body sample revealed that a mixed layer of TiAl 3 and Al was densely formed on the surface.

[比較例1] 実施例と同じ条件で平均粒径20〜30μmのTiAl金属間
化合物粉末を圧粉成形した。得られた圧粉成形体を、Al
超微粉末分散浴に浸漬させずに、ただちに実施例と同じ
条件で焼結した。
Comparative Example 1 A TiAl intermetallic compound powder having an average particle diameter of 20 to 30 μm was compacted under the same conditions as in the example. The obtained green compact was washed with Al
Sintering was immediately carried out under the same conditions as in the examples without being immersed in the ultrafine powder dispersion bath.

[比較例2] 実施例と同じ条件で平均粒径20〜30μmのTiAl金属間
化合物粉末を圧粉成形した。一方、粒径0.2〜0.5μmの
Al微粉末を有機溶媒としてのヘキサン中に超音波を用い
て分散させ、その分散浴中に圧粉成形体を約3分間浸漬
させ、次いで実施例と同様に乾燥させた。その圧粉成形
体を実施例と同じ条件で焼結した。
Comparative Example 2 A TiAl intermetallic compound powder having an average particle size of 20 to 30 μm was compacted under the same conditions as in the example. On the other hand, a particle size of 0.2 to 0.5 μm
The Al fine powder was dispersed in hexane as an organic solvent using ultrasonic waves, the compact was immersed in the dispersion bath for about 3 minutes, and then dried as in the examples. The green compact was sintered under the same conditions as in the example.

[高温耐酸化性評価] 実施例で得られた焼結体試料、比較例1により得られ
た焼結体試料(圧粉成形体表面にAl超微粉末層を形成し
ないで焼結したもの)、比較例2により得られた焼結体
試料(圧粉成形体表面に本発明範囲を越える0.2〜0.5μ
mの粒径のAl粉末層を形成したもの)、および市販の熱
間静水圧プレスにより成形・焼結したTiAl焼結体材料
(HIP材と記す)について、次のようにして高温酸化試
験を行なった。
[Evaluation of high-temperature oxidation resistance] The sintered body sample obtained in the example and the sintered body sample obtained in Comparative Example 1 (sintered without forming an Al ultrafine powder layer on the surface of a green compact) , The sintered body sample obtained in Comparative Example 2 (0.2 to 0.5 μm
high-temperature oxidation test of a TiAl sintered body material (formed as an HIP material) formed and sintered by a commercial hot isostatic press with an Al powder layer having a particle size of m Done.

すなわち、大気に解放した石英ガラス管内に試料を入
れ、石英ガラス管の外周をヒーターで900℃に加熱し、
所定時間保持した後、試料を取出して室温まで冷却し、
酸化による重量増加を調べた。その結果を第1図に示
す。
That is, the sample is placed in a quartz glass tube opened to the atmosphere, and the outer periphery of the quartz glass tube is heated to 900 ° C. with a heater,
After holding for a predetermined time, remove the sample and cool it to room temperature,
The weight increase due to oxidation was investigated. The result is shown in FIG.

第1図に示すように、この発明の方法に従った実施例
により得られた焼結体試料は、初期の10時間程度までは
Al2O3の酸化保護膜形成による若干の酸化重量増がある
が、その後は重量増はほとんど認められず、市販のHIP
材と比べて酸化による重量増が半分以下であって、高温
耐酸化性が著しく優れていることが明らかである。
As shown in FIG. 1, the sintered body sample obtained by the embodiment according to the method of the present invention has
Although there is a slight increase in the weight of oxidation due to the formation of an oxidation protective film of Al 2 O 3 , there is almost no increase in the weight after that, and commercial HIP
The weight increase by oxidation is less than half compared with the material, and it is clear that the high temperature oxidation resistance is remarkably excellent.

なお圧粉成形体に対して0.2〜0.5μmと粒径が大きい
Al粉末層を形成してから焼結した比較例2の焼結体試料
は、市販のHIP材よりも高温耐酸化性が劣る。これは、A
l粉末が大き過ぎるため圧粉成形体表面の空孔に充分にA
l粉末が充填されず、そのため焼結体表面のTiAl3とAlか
らなる混合層も緻密に形成されず、酸化試験時に内部ま
で酸化が進行してしまったためである。
Note that the particle size is as large as 0.2 to 0.5 μm compared to the green compact
The sintered body sample of Comparative Example 2 sintered after forming the Al powder layer is inferior in high-temperature oxidation resistance to a commercially available HIP material. This is A
lBecause the powder is too large, the pores on the surface of the compact
This is because the powder was not filled, the mixed layer of TiAl 3 and Al on the surface of the sintered body was not formed densely, and oxidation proceeded to the inside during the oxidation test.

発明の効果 この発明の方法により得られたTiAl金属間化合物焼結
部材は、使用時において保護膜として機能するAl2O3
が緻密に形成されるため、高温での耐酸化性、特に800
℃以上の高温での耐酸化性に著しく優れており、したが
って従来は酸化性雰囲気での800℃以上の高温での使用
が困難とされていたTiAl金属間化合物焼結部材の使用が
可能となり、TiAl金属間化合物の本来有している軽量か
つ高温高強度の特性を充分に生かすことができるように
なった。
Effect of the Invention Since the TiAl intermetallic compound sintered member obtained by the method of the present invention has a dense Al 2 O 3 layer functioning as a protective film during use, it has high oxidation resistance at high temperatures, particularly 800
It is extremely excellent in oxidation resistance at high temperatures of ℃ or higher, so that it is possible to use TiAl intermetallic compound sintered members which were conventionally difficult to use at high temperatures of 800 ℃ or higher in an oxidizing atmosphere, It has become possible to make full use of the inherent properties of TiAl intermetallic compounds such as light weight, high temperature and high strength.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の実施例および比較例により得られた
焼結体試料の高温耐酸化性試験結果を示すグラフであ
る。
FIG. 1 is a graph showing the results of a high-temperature oxidation resistance test on sintered samples obtained according to the examples of the present invention and comparative examples.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】TiAl金属間化合物の粉末を圧粉成形した
後、その圧粉成形体の表面に平均粒径0.1μm以下のAl
超微粉末からなる層を、そのAl超微粉末粒子が圧粉成形
体表面付近の空孔に充填されるように形成し、その後非
酸化性雰囲気中で焼結することを特徴とするTiAl金属間
化合物焼結部材の製造方法。
1. A method of compacting a powder of a TiAl intermetallic compound, and forming an Al powder having an average particle size of 0.1 μm or less on the surface of the compact.
TiAl metal, characterized in that a layer composed of ultrafine powder is formed such that the Al ultrafine powder particles are filled in pores near the surface of the green compact, and then sintered in a non-oxidizing atmosphere. For producing an inter-compound sintered member.
JP1050685A 1989-03-02 1989-03-02 Method for producing TiAl intermetallic compound sintered member Expired - Fee Related JP2762520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1050685A JP2762520B2 (en) 1989-03-02 1989-03-02 Method for producing TiAl intermetallic compound sintered member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1050685A JP2762520B2 (en) 1989-03-02 1989-03-02 Method for producing TiAl intermetallic compound sintered member

Publications (2)

Publication Number Publication Date
JPH02228403A JPH02228403A (en) 1990-09-11
JP2762520B2 true JP2762520B2 (en) 1998-06-04

Family

ID=12865778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1050685A Expired - Fee Related JP2762520B2 (en) 1989-03-02 1989-03-02 Method for producing TiAl intermetallic compound sintered member

Country Status (1)

Country Link
JP (1) JP2762520B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11878442B2 (en) 2018-06-08 2024-01-23 Lockheed Martin Corporation Additive manufacture of complex intermetallic and ceramic structures

Also Published As

Publication number Publication date
JPH02228403A (en) 1990-09-11

Similar Documents

Publication Publication Date Title
JPH09510950A (en) Microwave sintering method
JP2535768B2 (en) High heat resistant composite material
JP2762520B2 (en) Method for producing TiAl intermetallic compound sintered member
JP2849710B2 (en) Powder forming method of titanium alloy
Taguchi et al. Near-net shape processing of TiAl intermetallic compounds via pseudoHIP-SHS route
JP3618106B2 (en) Composite material and method for producing the same
EP1965940B1 (en) Enhancement of thermal stability of porous bodies comprised of stainless steel or an alloy
EP1380660B1 (en) Method for preparing reinforced platinum material
JP3336645B2 (en) Method for degassing and solidifying aluminum alloy powder
JPS61104036A (en) Manufacture of composite sintered body consisting of ceramic and metal
JP2001348288A (en) Particle-dispersed silicon material and method of producing the same
JPS61210137A (en) Manufacture of silicon nitride fiber frinforced metal
JPS6117466A (en) Ceramic sintered body and manufacture
JP2973390B2 (en) Method for producing metal in which fine particles of metal or metal oxide are dispersed
JPH04224601A (en) Manufacture of titanium-based composite material
JPH0931587A (en) Solid-phase sintered tungsten-copper substrate and its production
WO2011021923A1 (en) A process for producing a metal-matrix composite of significant δcte between the hard base-metal and the soft matrix
JPH08183661A (en) Production of silicon carbide sintered compact
DE102018205893B3 (en) A material consisting of a three-dimensional framework formed with SiC or SiC and Si3N4 and a noble metal alloy containing silicon, and a process for its production
JP3684008B2 (en) Intermetallic compound composite and method for producing the same
JP2571596B2 (en) Manufacturing method of composite material composed of ceramic and metal
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JPH0633108A (en) Production of oxide dispersion strengthened heat resistant alloy sintered body
JPH0712990B2 (en) Reaction sintering type silicon nitride bonded sintered body having excellent resistance to molten metal casting and method for producing the same
JPH11302078A (en) Composite material and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees