JP2761083B2 - Multi-wavelength extinction smoke detector - Google Patents

Multi-wavelength extinction smoke detector

Info

Publication number
JP2761083B2
JP2761083B2 JP12512790A JP12512790A JP2761083B2 JP 2761083 B2 JP2761083 B2 JP 2761083B2 JP 12512790 A JP12512790 A JP 12512790A JP 12512790 A JP12512790 A JP 12512790A JP 2761083 B2 JP2761083 B2 JP 2761083B2
Authority
JP
Japan
Prior art keywords
light
wavelength
wavelengths
smoke
extinction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12512790A
Other languages
Japanese (ja)
Other versions
JPH0424797A (en
Inventor
昭夫 竹元
大祐 河関
祥明 神戸
淳之 広野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOBOCHO CHOKAN
Panasonic Electric Works Co Ltd
Original Assignee
SHOBOCHO CHOKAN
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOBOCHO CHOKAN, Matsushita Electric Works Ltd filed Critical SHOBOCHO CHOKAN
Priority to JP12512790A priority Critical patent/JP2761083B2/en
Publication of JPH0424797A publication Critical patent/JPH0424797A/en
Application granted granted Critical
Publication of JP2761083B2 publication Critical patent/JP2761083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は建物内で火災時などに発生する煙を感知する
多波長減光式煙感知器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-wavelength extinction smoke detector for detecting smoke generated in a fire or the like in a building.

【従来の技術】[Prior art]

減光式煙感知器としては単なる光の減衰量がある値に
なった時、火災であると判断するものが従来からあり、
例えば特開昭53−17777号(閾値を2つ設けて、虫など
の侵入による急な光量変化による誤動作を防止するも
の)、実開昭60−140188号(火災であることを判別する
閾値が正常かどうかを判断する機能を持つもの)、実開
昭60−150444号(測定光路をジグザグとするとともに、
光路長を基準光の光路と同じくして、測定光路中の反射
鏡の汚染度を両者同一になるようにした構成のもの)、
特開昭60−33035号(基準光と測定光を受光する受光素
子を同一ウェハー上の受光素子を用いて温度特性を改善
している)等が従来例として上げられる。 しかしながら上記従来例はいずれも原理としては光の
減光(減衰)量のみに着目したものであり、汚れの影響
を少なくすることや、虫などの急激な減衰にたいしての
誤動作を防止すること、或は回路の温度特性を改善する
などを主目的とし、減光式において火災煙と、非火災煙
の検知原理を述べたものはない。 そのため、上述のような改良を加えても、湯気、埃、
焼肉などの非火災煙に対して誤報を出さないという訳に
は行かなかった。第10図は減光式煙感知器の基本構成を
示しており、この基本構成ではランプ1からの光を投光
レンズ2を介して投光し、この投光した光ビームを集光
レンズ3で受光素子4の受光面に集光し、この受光素子
4の受光出力をアンプ5で増幅した後、信号処理手段6
に取り込んで閾値との比較判定を行うのである。
There has been a conventional dimming smoke detector that determines that a fire has occurred when a mere amount of light attenuation has reached a certain value.
For example, JP-A-53-17777 (providing two thresholds to prevent malfunction due to a sudden change in the amount of light due to the invasion of insects, etc.) and JP-A-60-140188 (the threshold for determining that a No. 60-150444 (with a function to judge whether it is normal or not)
The configuration is such that the optical path length is the same as the optical path of the reference light, and the degree of contamination of the reflector in the measurement optical path is the same.)
Japanese Patent Application Laid-Open No. Sho 60-33035 (where the temperature characteristics are improved by using light receiving elements on the same wafer as the light receiving elements for receiving the reference light and the measurement light) is mentioned as a conventional example. However, all of the above prior arts focus on only the amount of light attenuation (attenuation) of light in principle, and reduce the influence of dirt, prevent malfunctions due to rapid attenuation of insects, etc. The main purpose is to improve the temperature characteristics of the circuit, and there is no mention of the principle of detection of fire smoke and non-fire smoke in the dimming method. Therefore, steam, dust,
He did not go wrong without giving false alarms for non-fire smoke such as grilled meat. FIG. 10 shows a basic configuration of a dimming smoke detector. In this basic configuration, light from a lamp 1 is projected through a projection lens 2 and the projected light beam is collected by a condenser lens 3. The light is condensed on the light receiving surface of the light receiving element 4 and the light receiving output of the light receiving element 4 is amplified by the amplifier 5.
And makes a comparison judgment with the threshold value.

【発明が解決しようとする課題】[Problems to be solved by the invention]

しかしながら第12図の構成では受光量の大小により煙
粒子の存否を判定しているため、煙感知器内に設けた光
路内に侵入した虫、湯気、埃などによる減光度なのか、
或は火災煙による減光度なのかを判別はできず、誤認が
生じ易いという問題があった。 本発明は上述の問題点に鑑みて為されたもので、その
目的とするところは、火災煙と非火災煙とを判別して誤
報を防ぐことができる減光式煙感知器を提供するにあ
る。 請求項4〜7記載の発明は上記の目的に加えて、光学
系の構造が簡単な減光式煙感知器を提供することを目的
とする。
However, in the configuration of FIG. 12, since the presence or absence of smoke particles is determined based on the amount of received light, the degree of dimming due to insects, steam, dust, etc. that have entered the optical path provided in the smoke detector,
Alternatively, it is not possible to determine whether the degree of extinction is due to fire smoke, and there is a problem that misidentification is likely to occur. The present invention has been made in view of the above problems, and an object of the present invention is to provide a dimming smoke detector that can distinguish fire smoke from non-fire smoke and prevent false alarms. is there. Another object of the present invention is to provide a dimming smoke detector having a simple optical system structure.

【課題を解決するための手段】[Means for Solving the Problems]

本発明は上述の目的を構成するために、煙粒子の大き
さに着目し、粒子サイズに対して波長により減光量が違
うというMie散乱理論を用いて、複数波長における減衰
量から火災煙と非火災煙(湯気、埃など)とを判別しよ
うとするものであって、請求項1記載の発明は複数波長
の光ビームを投光する投光手段と、該投光手段に対向し
て光軸上に配置された受光手段とを備え、上記光ビーム
の光路中に侵入した煙粒子による散乱、吸収による受光
量の変化を上記受光手段が検知するようにした減光式煙
感知器において、上記光ビームの光路中に複数波長の光
に分離選択するフィルタ手段を設けるとともに、分離選
択された各波長の光を受光する受光素子と、該受光素子
の受光出力に基づいて求めた各波長毎の減光係数の波長
間の比、若しくは各波長毎の減光度の波長間の比から非
火災煙と火災煙とを判別する判別手段とを受光手段に備
えたものである。 また請求項2記載の発明は請求項1記載において、分
離選択された複数の波長の減光係数の各波長間の比を求
めるとともに、これらの比の差を求めて該比の差の値が
一定条件下にあるとき火災煙と判別する判別手段を備え
たものである。 更に請求項3記載の発明は請求項1記載の発明におい
て、複数の濃度における所定波長の減光係数の波長間の
比の差が減光度が大きくなると変化する状態から火災煙
と非火災煙とを判別する判別手段を備えたものである。 請求項4記載の発明は請求項1記載の発明において、
集光レンズで集光した光を結合して複数の光路に分離す
る光導波路を備えるとともに、分離された各光路に夫々
異なる波長の光を選択分離するフィルタ手段を配置した
受光手段を用いたものである。 請求項5記載の発明は請求項1記載の発明において、
集光レンズで集光した光を平行光に変換して光を均一と
する光学手段と、上記平行光から複数の波長の光を分離
選択するフィルタ手段とを備えた受光手段を用いたもの
である。 請求項6記載の発明は請求項1記載の発明において、
夫々が異なる波長で且つ単一波長の光を発光する複数の
発光素子と、これら発光素子から出た各光を同一光路上
に光ビームとして投光させる光路合成手段とを投光手段
に備えたものである。 請求項7記載の発明は夫々が異なる波長で且つ単一波
長の光を発光する複数の発光素子を時系列的に発光させ
る手段を投光手段に備え、該投光手段からの光ビームを
受光する一つの受光素子と、上記発光素子の発光タイミ
ングに合わせて受光素子の受光出力を取り込み、該受光
出力に基づいて求めた各波長毎の減光係数の波長間の
比、若しくは各波長毎の減光度の波長間の比から非火災
煙と火災煙とを判別する判別手段とを受光手段に備えた
ものである。
In order to achieve the above object, the present invention focuses on the size of smoke particles, and uses Mie scattering theory that the amount of light attenuation differs depending on the particle size with wavelength. The invention according to claim 1 is for discriminating between fire smoke (steam, dust, etc.) and a light projecting means for projecting light beams of a plurality of wavelengths, and an optical axis facing the light projecting means. A light-reducing means arranged on the light beam, wherein the light beam is scattered by smoke particles entering the optical path of the light beam, and the light-receiving means detects a change in the amount of received light due to absorption. A filter means for separating and selecting light of a plurality of wavelengths is provided in the optical path of the light beam, a light receiving element for receiving light of each wavelength separated and selected, and a light receiving element for each wavelength obtained based on the light receiving output of the light receiving element. Ratio of extinction coefficient between wavelengths or each wave And discriminating means for discriminating a non-fire smoke and fire smoke from the ratio between the wavelength of the light attenuation of each is obtained with the light receiving means. According to a second aspect of the present invention, in the first aspect, a ratio between the respective extinction coefficients of a plurality of wavelengths separated and selected is determined, and a difference between these ratios is determined. It is provided with a discriminating means for discriminating fire smoke under a certain condition. Further, the invention according to claim 3 is the invention according to claim 1, wherein the difference between the ratios of the wavelengths of the extinction coefficients of the predetermined wavelengths at a plurality of densities changes as the degree of extinction increases, and the smoke and non-fire smoke change. Is provided. The invention according to claim 4 is the invention according to claim 1,
An optical waveguide that combines light condensed by a condenser lens and separates the light into a plurality of optical paths, and uses a light receiving unit in which a filter unit that selectively separates light of different wavelengths is arranged in each of the separated optical paths. It is. The invention according to claim 5 is the invention according to claim 1,
An optical unit that converts light condensed by a condenser lens into parallel light to make the light uniform, and a light receiving unit that includes a filter unit that separates and selects light of a plurality of wavelengths from the parallel light. is there. The invention according to claim 6 is the invention according to claim 1,
The light emitting means includes a plurality of light emitting elements each emitting light having a different wavelength and a single wavelength, and an optical path synthesizing means for projecting each light emitted from these light emitting elements on the same optical path as a light beam. Things. According to a seventh aspect of the present invention, the light projecting means includes means for causing a plurality of light emitting elements which emit light of different wavelengths and a single wavelength to emit light in time series, and receives a light beam from the light projecting means. One light-receiving element to be fetched and the light-receiving output of the light-receiving element in accordance with the light-emission timing of the light-emitting element, and the ratio between the wavelengths of the extinction coefficients for each wavelength determined based on the light-receiving output, or for each wavelength. The light receiving means includes a discriminating means for discriminating between non-fire smoke and fire smoke from the ratio between the wavelengths of the dimming degrees.

【作用】[Action]

而して本発明減光式煙感知器によれば、光ビームの光
路中に複数波長の光に分離選択するフィルタ手段を設け
るとともに、分離選択された各波長の光を受光する受光
素子と、該受光素子の受光出力に基づいて求めた各波長
毎の減光係数の波長間の比、若しくは各波長毎の減光度
の波長間の比から非火災煙と火災煙とを判別する判別手
段とを受光手段に備えたものであるから、煙の粒子サイ
ズを弁別することができて、この粒子サイズの違いによ
り火災煙であるのか、非火災煙であるのかを判別するこ
とができるのである。 請求項2記載の発明は請求項1記載において、分離選
択された複数の波長の減光係数の各波長間の比を求める
とともに、これらの比の差を求めて該比の差の値が一定
条件下にあるとき火災煙と判断する判別手段を備えたも
のであるから、火災煙と非火災煙とを判別する能力を高
くすることができる。 更に請求項3記載の発明は請求項1記載の発明におい
て、複数の濃度における所定波長の減光係数の波長間の
比の差が減光度が大きくなると変化する状態から火災煙
と非火災煙とを判別する判別手段を備えたことにより、
火災煙を判別する能力を請求項2記載の発明と同様に高
めることができる。 光学系の構成として請求項4記載の発明では集光レン
ズで集光した光を結合して複数の光路に分離する光導波
路を備えるとともに、分離された各光路に夫々異なる波
長の光を選択分離するフィルタ手段を配置した受光手段
を用いているから、光導波路により、一つの光路を簡単
に分離することができ、ビームスプリッタやミラーを設
けた場合に比べて構成が簡単になる上に、調整も不要で
組立性を向上させることができるものである。また請求
項5記載の発明は集光レンズで集光した光を再度平行光
に変換して光を均一とする光学手段と、上記平行光から
複数の波長の光を分離選択するフィルタ手段とを備えた
受光手段を用いたものであるから、更に構成が簡単とな
り、コストも低減できる。 更に請求項6記載の発明は夫々が異なる波長で且つ単
一波長の光を発光する複数の発光素子と、これら発光素
子から出た各光を同一光路上に光ビームとして投光させ
る光路合成手段とを投光手段に備えたものであるから、
複数の波長の光を簡単に合成して投光することができ、
発光ダイオード等の長寿命の発光素子を使用することが
できる。 また更に請求項7記載の発明は減光式煙感知器におい
て、夫々が異なる波長で且つ単一波長の光を発光する複
数の発光素子を時系列的に発光させる手段を投光手段に
備え、該投光手段からの光ビームを受光する一つの受光
素子と、上記発光素子の発光タイミングに合わせて受光
素子の受光出力を取り込み、該受光出力に基づいて求め
た各波長毎の減光係数の波長間の比、若しくは各波長毎
の減光度の波長間の比から非火災煙と火災煙とを判別す
る判別手段とを受光手段に備えたもあるから、長寿命の
発光素子を使用することができる上に、受光素子が一つ
で済んで光路を分離する手段も不要であるため、構成が
一層簡単になり、コストの低減や、組立性の向上が図れ
る。
Thus, according to the dimming smoke detector of the present invention, a filter means for separating and selecting light of a plurality of wavelengths is provided in the optical path of the light beam, and a light receiving element for receiving light of each of the separated and selected wavelengths, Discriminating means for discriminating between non-smoke smoke and fire smoke from the ratio between the wavelengths of the extinction coefficient for each wavelength determined based on the light receiving output of the light receiving element or the ratio between the wavelengths of the extinction degrees for each wavelength. Is provided in the light receiving means, so that the particle size of the smoke can be discriminated, and it is possible to determine whether the smoke is fire smoke or non-fire smoke based on the difference in the particle size. According to a second aspect of the present invention, in the first aspect, a ratio between the wavelengths of the extinction coefficients of the plurality of wavelengths separated and selected is determined, and a difference between these ratios is determined, so that the value of the ratio difference is constant. Since it is provided with the discriminating means for judging fire smoke under the condition, the ability to discriminate between fire smoke and non-fire smoke can be enhanced. Further, the invention according to claim 3 is the invention according to claim 1, wherein the difference between the ratios of the wavelengths of the extinction coefficients of the predetermined wavelengths at a plurality of densities changes as the degree of extinction increases, and the smoke and non-fire smoke change. By providing the determination means for determining
The ability to discriminate fire smoke can be enhanced in the same manner as in the second aspect of the present invention. According to a fourth aspect of the present invention, the optical system includes an optical waveguide that couples light condensed by a condenser lens and separates the light into a plurality of optical paths, and selectively separates light having different wavelengths into each of the separated optical paths. Since the light receiving means provided with a filter means is used, one optical path can be easily separated by the optical waveguide, and the configuration becomes simpler than the case where a beam splitter or a mirror is provided. Is unnecessary, and the assemblability can be improved. According to a fifth aspect of the present invention, there is provided an optical unit for converting light condensed by a condenser lens into parallel light again to make the light uniform, and a filter unit for separating and selecting light of a plurality of wavelengths from the parallel light. Since the light receiving means provided is used, the configuration is further simplified and the cost can be reduced. The invention according to claim 6, further comprising a plurality of light emitting elements each emitting light of a different wavelength and a single wavelength, and an optical path combining means for projecting each light emitted from these light emitting elements on the same optical path as a light beam. Is provided in the light emitting means,
Light of multiple wavelengths can be easily synthesized and projected,
A long-life light emitting element such as a light emitting diode can be used. Still further, the invention according to claim 7 is a dimming smoke detector, wherein the light emitting means includes means for emitting a plurality of light emitting elements each emitting light of a single wavelength at different wavelengths in time series, One light receiving element for receiving the light beam from the light projecting means, and the light receiving output of the light receiving element taken in accordance with the light emitting timing of the light emitting element, and the extinction coefficient of each wavelength determined based on the light receiving output. Since the light receiving means has a means for distinguishing between non-smoke smoke and fire smoke based on the ratio between wavelengths or the ratio between the wavelengths of the extinction degree for each wavelength, use a light emitting element with a long life. In addition to this, since only one light receiving element is required and no means for separating the optical path is required, the configuration is further simplified, the cost can be reduced, and the assembling property can be improved.

【実施例】【Example】

以下本発明を実施例により説明する。 第1図は一実施例の光学系の概略構成を示す。 本実施例では投光手段をタングステンランプ、ハロゲ
ンランプ、キセノンランプ等の白色光のランプ1と、こ
のランプ1からの光を集光し平行度や光路断面の光強度
分布の均一化を図るための像を作るレンズ2と、この結
像位置に置いたピンポール8と、均一な像の部分からの
光を、平行な光として投光するレンズ9とから形成して
いる。 尚レンズ7と、ピンホール8とは別に設けず、ランプ
1からの光をすぐにレンズ4にて平行光として投光して
も勿論良い。 投光手段の光軸に一致させて配している受光手段はビ
ームスプリッタ10,11とミラー12,13とにより光路を3つ
に分割する光路分割手段と、夫々の光路に配置される集
光レンズ14a,14b,14cと、これら集光レンズ14a,14b,14c
に夫々対応させて配置され特定の波長の光のみを選択し
て通過させる光学フィルタ15a,15b,15cからなるフィル
タ手段と、これら光学フィルタ15a,15b,15cを通過した
夫々異なる波長の光を受光する受光素子16a,16b,16cと
を備えるとともに、第2図に示すこれら受光素子16a,16
b,16cで受光量に応じた変換された電流信号を電圧信号
に変換する電流電圧変換アンプ17a,17b,17cと、これら
電流電圧変換アンプ17a,17b,17cから出力される電圧信
号を増幅するアンプ18a,18b,18cと、これらアンプ18a,1
8b,18cの増幅信号を入力する信号処理手段19とからなる
回路を備えている。 信号処理手段19は入力された波長λ〜λ(但し、
λ<λ<λ)の光に対応する信号Vλ1〜Vλ3
から各波長λ〜λの減光係数Gλ1〜Gλ3を演算
(光路中に煙がないときと有るときの受光量比を、投光
手段と受光手段との間の光路の距離が1mである場合に換
算した値)し、これらの波長間の比Gλ1/Gλ3、G
λ2/Gλ3、Gλ1/Gλ2を求め、これらの比の値が所
定範囲内から出ると火災煙と判断する演算処理機能を備
えたものである。 この判断のための範囲等を定めたデータはROM等のメ
モリ(図示せず)に予め記憶格納しており、このデータ
を信号処理手段19が演算して求めた上記比の値と比較し
て判断するのである。 この判断ためのデータは実験により求めたもので、表
1に示す。この表1には代表的なエアロゾルにおける数
値を挙げているが、実験では約20種類の燃焼物につい
て、1m3のチャンバ内で燃やしたときの各波長λ〜λ
(実験例ではλ=450nm,λ=550nm,λ=650n
m)の減光係数Gλ1,Gλ2,Gλ3を求め、これらの比
を各波長間で測定した。その結果、Gλ1/Gλ3の比が
表2の示す値に示したときに、火災煙と非火災煙との判
別ができた。 尚波長λの選び方により判別能力は変化するが、Mie
散乱理論から、例えば、波長λ12として上記の
ように450nm,550nm,650nmを用いた場合、粒子径が約0.7
μm以上ではそれらの減光係数の波長間の比に差が少な
くなることが第3図に示すように分かっており、火災煙
は一般的には1μm以下のサイズであるから、検出原理
としては問題ない。第3図に示す粒子の屈折率mは1.63
−i0.55の範囲である。 尚上記の火災煙と非火災煙との判別の方法としては次
のような方法も採用できる。 まずその一例としては減光係数を求めた後、それらの
比の差Δを次のようにして求め、 Δ1=Gλ1/Gλ3−Gλ2/Gλ3 Δ2=Gλ1/Gλ3−Gλ1/Gλ2 この差Δがある範囲にあるとき等一定条件下にあるとき
火災煙とする判断を行う方法である。この判断の根拠は
上記の表1のデータを書き直した第4図(a)〜(d)
に示すグラフから読み取れる。第4図(a)は湯気、同
図(b)は焼き肉、同図(c)は木材、同図(d)はヘ
プタンに対応し、各図における折れ線イは濃度2.5%、
折れ線ロは濃度5.1%、折れ線ハは濃度10.6%を夫々示
す。また第4図(a)〜(d)の数値として表したのが
表3であり、この表3からも上記の判断の根拠が読み取
れる。 つまり湯気でΔ2の値が負になること、焼肉ではΔ1,
Δ2の値が0.5以上であることなどを利用して火災煙と
非火災煙とを判断することができるのである。 ここで煙感知器を設置する場所によって識別すべき非
火災煙が違うため、上記値の見方を変え、用途、設置場
所によって適宜判断の条件を設定するのは勿論であり、
用途が決まってその判断条件を定めれば火災煙、非火災
煙の判別は確実に行なえる。 更に他の判断方法は、複数の濃度の状態付近(例えば
d1=2.5%,d2=5%,d3=10.6%等)においてある波長
λの減光係数の波長間の比の差をΔ1(d1)、Δ2
(d1)(d1濃度状態を示す)とした場合、これらのΔ1
(d1)とΔ2(d1)とが減光度が大きくなると変化する
の利用したもので、この変化の様子に基づいて火災煙と
判断する。 この判断の根拠は表2のデータを書き直した第5図
(a)〜(d)に示すグラフから読み取れる。第5図
(a)は湯気、同図(b)は焼肉、同図(c)は木材、
同図(d)はヘプタンに対応し、各図の折れ線イはGλ
1/Gλ、折れ線ロはGλ2/Gλ、折れ線ハはGλ1/G
λに対応する。このグラフから火災煙は煙濃度が上昇
するにつれてGλ1/Gλ3,Gλ2/Gλ3,Gλ1/Gλ2
値間の差が小さくなっている。また表3からは湯気のΔ
1は大きく、焼肉のΔ1は小さく、ヘプタン、木材のΔ
1は途中にピークを持つ等の差が火災煙と非火災煙との
違いと考えられる。よって、これらの違いを判断の条件
として用いることにより火災煙と非火災煙との判別がで
きる。 この方法も煙感知器を設置する場所によって識別すべ
き非火災煙が違うため、上記値の見方を変え、用途、設
置場所によって適宜判断の条件を設定するのは勿論であ
り、用途が決まってその判断条件を定めれば火災煙、非
火災煙の判別は確実に行なえる。 ところで光学系の構成は上記実施例に限定されるもの
でなく、次のような光学系の構成の実施例も考えられ
る。 第6図は上記実施例は受光手段の光路の分割を合理化
して感知器としての構成を簡単とし、組立を容易とした
実施例を示すものである。 つまり投光手段からの光ビームを集光レンズ14で集光
してその光を光導波路20に結合し、この結合された光を
この光導波路20にて3分割して夫々の分割された光を、
夫々異なる波長を選択分離する光学フィルタ15a,15b,15
cを通して3波長に分離するものであり、これら分離さ
れた波長の光を受光素子16a,16b,16cで夫々受光して電
気信号に変換するのである。尚信号処理系の回路は上記
第2図に示した回路と同じ構成であるため図示はしな
い。 この第6図の構成を利用すると第1図実施例のように
受光手段に設けるミラー12,13とビームスプリッタ10,11
の反射角度調整、あおり角度の調整が不要となる上に構
成が簡単となり組立性が向上する。また、使う光学フィ
ルタ15a〜15cbの面積が小さくできて、小型化も可能と
なる。 第7図は更に受光手段の構成の合理化を図った実施例
を示し、集光レンズ14で集光された光を次の光均一化用
のレンズ21により平行で、かつ照度分布が均一な光ビー
ムに変換し、この光ビーム中に光学フィルタ15a,15b,15
cを配し、その直後に受光素子16a,16b,16cを置くことに
より波長毎の出力を得るようにしている。この方式のメ
リットは受光素子16a〜16cを一体に形成することが可能
となり、レンズ21とハイブリッド化も可能で、組立性の
向上や、部品の削減でコストの低減化が図れる。 尚第7図実施例のレンズ17を使わずに集光レンズ14と
その結像点との間(この間は光の分布は比較的均一にな
っている)に拡散板(図示せず)を配してこの拡散板で
光をより均一化し、この後にフィルタ15a〜15c、受光素
子16a〜16cを配するようにしても良い。 以上の構成では発光素子として白色光のランプ1を使
っているがランプ1の場合には寿命を考慮しなくてはな
らないが、煙感知器の場合10年20年という長期に渡りメ
ンテナンスフリーが望ましい。そこで投光手段に設ける
発光素子の固体化を示したのが第8図に示す構成であ
る。 この第8図実施例は夫々単一発光波長λ〜λの光
を発光する発光素子(半導体レーザ、発光ダイオードな
ど)1a〜1cを並べ、これら発光素子1a〜1cの光をレンズ
24a〜24cと、ビームスプリッタ22,23或はミラーを用い
て同一光路に合成している。尚、この投光手段に対向し
て配置される受光手段としては第6図、第7図実施例の
構成が考えられる。 またビームスプリッタ22,23を用いず、各発光素子1a
〜1cの光を同一光路に合成する方法として、第9図に示
す光導波路25を用いてもよい。この場合複数に分岐した
光導波路25の分岐されたところに発光素子1a〜1cを配
し、光導波路25中で合成するもので、ビームスプリッタ
やミラーの調整をなくすことができ、組立の簡略化を図
れる。 また第8図(又は第9図)の光学系を使用した実施例
において、第10図に示すように波長の異なる光を発光す
る発光素子1a〜1cに対応して設けた発光素子ドライブ回
路26a〜26cを発振器27の出力で順次動作させて、第11図
(a)〜(c)に示すように発光素子1a〜1cを時系列的
に駆動発光させ、受光手段の一つの受光素子16でこれら
の発光素子1a〜1cの光を受けてその出力をアンプ29で増
幅することにしても良く、この場合アンプ29の増幅出力
は第11図(d)のように発光に同期した出力となり、こ
れら出力は更に発光素子1a〜1cの発光タイミングでサン
プル・ホールド回路28a〜28cによりサンプリング且つホ
ールドされて第11図(e)〜(g)に示す信号に変換さ
れ、これら信号が各波長λ〜λに対応する受光出力
として信号処理手段19に取り込まれるようになってい
る。 この方式のメリットは大幅な構成の簡略化が図れるこ
とにある。
Hereinafter, the present invention will be described with reference to examples. FIG. 1 shows a schematic configuration of an optical system according to one embodiment. In this embodiment, the light projecting means is a white light lamp 1 such as a tungsten lamp, a halogen lamp, or a xenon lamp, and the light from this lamp 1 is condensed to achieve a parallelism and a uniform light intensity distribution in the optical path section. Is formed from a lens 2 for forming an image, a pin pole 8 placed at the image forming position, and a lens 9 for projecting light from a uniform image portion as parallel light. The lens 7 and the pinhole 8 may not be provided separately, and the light from the lamp 1 may be immediately projected by the lens 4 as parallel light. The light receiving means arranged so as to coincide with the optical axis of the light projecting means is an optical path dividing means for dividing the optical path into three by beam splitters 10 and 11 and mirrors 12 and 13, and a light collecting means arranged in each optical path. The lenses 14a, 14b, 14c and these condenser lenses 14a, 14b, 14c
Filter means comprising optical filters 15a, 15b, and 15c arranged to correspond to each other and selectively passing light of a specific wavelength, and receiving light of different wavelengths passing through these optical filters 15a, 15b, and 15c. The light receiving elements 16a, 16b, and 16c shown in FIG.
b, 16c current-voltage conversion amplifiers 17a, 17b, 17c for converting current signals converted according to the amount of received light into voltage signals, and amplify voltage signals output from these current-voltage conversion amplifiers 17a, 17b, 17c The amplifiers 18a, 18b, 18c and these amplifiers 18a, 1
And a signal processing means 19 for inputting the amplified signals of 8b and 18c. The signal processing means 19 receives the input wavelengths λ 1 to λ 3 (however,
Signals V λ1 to V λ3 corresponding to light of λ 123 )
Calculate the extinction coefficients G λ1 to G λ3 for each of the wavelengths λ 1 to λ 3 (the light receiving amount ratio between when there is no smoke in the light path and when there is smoke in the light path, and when the distance between the light projecting means and the light receiving means is 1m), and the ratio G λ1 / G λ3 between these wavelengths, G
λ2 / Gλ3 and Gλ1 / Gλ2 are determined, and a calculation processing function is provided for judging a fire and smoke when the value of these ratios falls out of a predetermined range. Data defining the range and the like for this determination is stored in advance in a memory such as a ROM (not shown), and this data is compared with the value of the above ratio calculated by the signal processing means 19. Judge. The data for this determination was obtained by experiment and is shown in Table 1. This is shown in Table 1 are listed a number of typical aerosol for about 20 kinds of the combustion products in the experiment, each wavelength lambda 1 to [lambda] when burned in the chamber of 1 m 3
3 (In the experimental example, λ 1 = 450 nm, λ 2 = 550 nm, λ 3 = 650 n
m), the extinction coefficients G λ1 , G λ2 , G λ3 were determined, and the ratios were measured between the wavelengths. As a result, when the ratio of Gλ1 / Gλ3 was as shown in Table 2, it was possible to discriminate between fire smoke and non-fire smoke. Although the discrimination ability changes depending on how to select the wavelength λ,
From the scattering theory, for example, when 450 nm, 550 nm, and 650 nm are used as the wavelengths λ 1 , λ 2 , and λ 3 as described above, the particle diameter becomes about 0.7.
As shown in FIG. 3, it is known that the difference between the wavelengths of the extinction coefficients becomes smaller when the diameter is greater than μm. Fire smoke is generally less than 1 μm in size. no problem. The refractive index m of the particles shown in FIG.
−i is in the range of 0.55. The following method can be adopted as a method for discriminating between the fire smoke and the non-fire smoke. First, as an example, after obtaining the extinction coefficient, the difference Δ between the ratios is obtained as follows, and Δ1 = Gλ1 / Gλ3 - Gλ2 / Gλ3 Δ2 = Gλ1 / Gλ3 - Gλ1 / G λ2 This is a method of judging fire smoke when the difference Δ is within a certain range or under certain conditions. The basis for this determination is that FIGS. 4 (a) to 4 (d) are obtained by rewriting the data in Table 1 above.
Can be read from the graph shown in FIG. 4 (a) corresponds to steam, FIG. 4 (b) corresponds to grilled meat, FIG. 4 (c) corresponds to wood, and FIG. 4 (d) corresponds to heptane.
The polygonal line B indicates a density of 5.1%, and the polygonal line C indicates a concentration of 10.6%. Table 3 shows the numerical values of FIGS. 4 (a) to 4 (d), and the basis of the above judgment can be read from Table 3. That is, the value of Δ2 becomes negative in steam, and Δ1,
Using the fact that the value of Δ2 is 0.5 or more, fire smoke and non-fire smoke can be determined. Here, since the non-fire smoke to be identified differs depending on the place where the smoke detector is installed, it is of course necessary to change the viewpoint of the above value and set the conditions of judgment appropriately according to the application and the installation place,
If the use is decided and the judgment conditions are determined, it is possible to reliably distinguish between fire smoke and non-fire smoke. Yet another method of determination is near multiple density states (eg,
(d 1 = 2.5%, d 2 = 5%, d 3 = 10.6%, etc.), the difference between the ratios of the extinction coefficients of a certain wavelength λ 2 between the wavelengths is Δ1 (d 1 ), Δ2
(D 1 ) (indicating the state of d 1 concentration), these Δ1
(D 1 ) and Δ2 (d 1 ) are used to change as the dimming degree increases, and it is determined that the smoke is fire based on the state of the change. The basis for this determination can be read from the graphs shown in FIGS. 5 (a) to 5 (d) in which the data in Table 2 has been rewritten. 5 (a) is steam, FIG. 5 (b) is grilled meat, FIG. 5 (c) is wood,
(D) corresponds to heptane, and the broken line a in each figure is Gλ.
1 / Gλ 3 , polygonal line B is Gλ 2 / Gλ 3 , polygonal line C is Gλ 1 / G
λ 2 . Fire smoke from this graph the difference between the value of G λ1 / G λ3, G λ2 / G λ3, G λ1 / G λ2 as smoke density increases is reduced. Table 3 shows that the steam
1 is large, Δ1 for grilled meat is small, Δ for heptane and wood
1 is considered to be the difference between fire smoke and non-fire smoke due to the difference such as having a peak in the middle. Therefore, by using these differences as conditions for determination, it is possible to distinguish between fire smoke and non-fire smoke. In this method, since the non-fire smoke to be identified is different depending on the place where the smoke detector is installed, it is necessary to change the viewpoint of the above value and set the conditions of the judgment appropriately according to the use and the installation place. If the judgment conditions are set, the discrimination between fire smoke and non-fire smoke can be surely made. By the way, the configuration of the optical system is not limited to the above embodiment, and the following embodiment of the configuration of the optical system is also conceivable. FIG. 6 shows an embodiment of the present invention in which the division of the optical path of the light receiving means is rationalized to simplify the configuration as a sensor and facilitate assembly. That is, the light beam from the light projecting means is condensed by the condensing lens 14, the light is coupled to the optical waveguide 20, and the coupled light is divided into three by the optical waveguide 20, and each divided light is divided. To
Optical filters 15a, 15b, 15 for selectively separating different wavelengths respectively
Light of three wavelengths is separated by the light receiving elements 16a, 16b, and 16c, and converted into electric signals. The circuit of the signal processing system is not shown because it has the same configuration as the circuit shown in FIG. When the configuration of FIG. 6 is used, mirrors 12 and 13 and beam splitters 10 and 11 provided in the light receiving means as in the embodiment of FIG.
The adjustment of the reflection angle and the adjustment of the tilt angle are not required, and the structure is simplified, so that the assemblability is improved. Further, the area of the optical filters 15a to 15cb to be used can be reduced, and the size can be reduced. FIG. 7 shows an embodiment in which the structure of the light receiving means is further rationalized. The light condensed by the condensing lens 14 is parallelized by the next light uniforming lens 21 and the light having a uniform illuminance distribution. It is converted into a beam, and the optical filters 15a, 15b, 15
c is arranged, and the light receiving elements 16a, 16b, 16c are placed immediately after that to obtain an output for each wavelength. The merit of this method is that the light receiving elements 16a to 16c can be formed integrally, and it can be hybridized with the lens 21, and the cost can be reduced by improving the assemblability and reducing the number of components. A diffusing plate (not shown) is disposed between the condenser lens 14 and its image forming point (the light distribution is relatively uniform during this period) without using the lens 17 of the embodiment shown in FIG. Then, the light may be made more uniform by the diffusion plate, and thereafter, the filters 15a to 15c and the light receiving elements 16a to 16c may be arranged. In the above configuration, the white light lamp 1 is used as the light emitting element. In the case of the lamp 1, the life must be considered, but in the case of the smoke detector, maintenance free is desirable for a long period of 10 years and 20 years. . Therefore, the configuration shown in FIG. 8 shows the solidification of the light emitting element provided in the light projecting means. In the embodiment shown in FIG. 8, light-emitting elements (semiconductor lasers, light-emitting diodes, etc.) 1a to 1c each emitting light of a single emission wavelength λ 1 to λ 3 are arranged, and light of these light-emitting elements 1a to 1c is used as a lens.
24a to 24c and beam splitters 22, 23 or a mirror are used to combine light beams on the same optical path. The light receiving means disposed opposite to the light projecting means may have the structure of the embodiment shown in FIGS. Also, without using the beam splitters 22 and 23, each light emitting element 1a
An optical waveguide 25 shown in FIG. 9 may be used as a method of combining the light of .about.1c on the same optical path. In this case, the light emitting elements 1a to 1c are arranged at the branch of the optical waveguide 25 branched into a plurality of parts, and the light emitting elements 1a to 1c are combined in the optical waveguide 25, so that the adjustment of the beam splitter and the mirror can be eliminated, and the assembly can be simplified. Can be achieved. Further, in the embodiment using the optical system of FIG. 8 (or FIG. 9), as shown in FIG. 10, the light emitting element drive circuit 26a provided corresponding to the light emitting elements 1a to 1c emitting light having different wavelengths. To 26c are sequentially operated by the output of the oscillator 27, and the light emitting elements 1a to 1c are driven and emitted in time series as shown in FIGS. 11 (a) to 11 (c). The light of these light emitting elements 1a to 1c may be received and the output thereof may be amplified by the amplifier 29. In this case, the amplified output of the amplifier 29 becomes an output synchronized with the light emission as shown in FIG. Figure 11 if these outputs are sampled and held by sample-and-hold circuit 28a~28c further emission timing of the light emitting element 1 a to 1 c (e) is converted into a signal shown in ~ (g), these signals each wavelength lambda 1 incorporated into the signal processing unit 19 as a light reception output corresponding to to [lambda] 3 It has become way. The merit of this method is that the configuration can be greatly simplified.

【発明の効果】【The invention's effect】

本発明は、光ビームの光路中に複数波長の光に分離選
択するフィルタ手段を設けるとともに、分離選択された
各波長の光を受光する受光素子と、該受光素子の受光出
力に基づいて求めた各波長毎の減光係数の波長間の比、
若しくは各波長毎の減光度の波長間の比から非火災煙と
火災煙とを判別する判別手段とを受光手段に備えたもの
であるから、煙の粒子サイズを弁別することができて、
この粒子サイズの違いにより火災煙であるのか、非火災
煙であるのかを判別することが可能となり、湯気、埃な
どによる誤認を防止できる信頼性の高い煙感知器を実現
できるという効果がある。 請求項2記載の発明は請求項1記載において、分離選
択された複数の波長の減光係数の各波長間の比を求める
とともに、これらの比の差を求めて該比の差の値が一定
条件下にあるとき火災煙と判断する判別手段を備えたも
のであるから、火災煙の判別能力を高くすることができ
るという効果がある。 更に請求項3記載の発明は請求項1記載の発明におい
て、複数の濃度における所定波長の減光係数の波長間の
比の差が減光度が大きくなると変化する状態から火災煙
と非火災煙とを判別する判別手段を備えたことにより、
火災煙の判別能力を請求項2記載の発明と同様に高める
ことができるという効果がある。 また光学系の構成として請求項4記載の発明は集光レ
ンズで集光した光を結合して複数の光路に分離する光導
波路を備えるとともに、分離された各光路に夫々異なる
波長の光を選択分離するフィルタ手段を配置した受光手
段を用いているから、光導波路により、一つの光路を簡
単に分離することができ、ビームスプリッタやミラーを
設けた場合に比べて構成が簡単になる上に、調整も不要
で組立性を向上できるという効果がある。 また請求項5記載の発明は集光レンズで集光した光を
再度平行光に変換して光を均一とする光学手段と、上記
平行光から複数の波長の光を分離選択するフィルタ手段
とを備えた受光手段を用いたものであるから、更に構成
が簡単で且つコストも低減できるという効果がある。 更に請求項6記載の発明は夫々が異なる波長で且つ単
一波長の光を発光する複数の発光素子と、これら発光素
子から出た各光を同一光路上に光ビームとして投光させ
る光路合成手段とを投光手段に備えたものであるから、
複数の波長の光を簡単に合成して投光することができ、
発光ダイオード等の長寿命の発光素子を使用することが
できるという効果がある。 また更に請求項7記載の発明は多波長減光式煙感知器
において、夫々が異なる波長で且つ単一波長の光を発光
する複数の発光素子を時系列的に発光させる手段を投光
手段に備え、この投光手段からの光ビームを受光する一
つの受光素子と、上記発光素子の発光タイミングに合わ
せて受光素子の受光出力を取り込み、該受光出力に基づ
いて求めた各波長毎の減光係数の波長間の比、若しくは
各波長毎の減光度の波長間の比から火災煙の判別をする
判別手段とを受光手段に備えたもあるから、長寿命の発
光素子を使用することができる上に、受光素子が一つで
済んで光路を分離する手段も不要であるため、構成が一
層簡単になり、コストの低減や、組立性の向上が図れる
という効果がある。
The present invention provides a filter means for separating and selecting light of a plurality of wavelengths in an optical path of a light beam, a light receiving element for receiving light of each wavelength separated and selected, and a light receiving output of the light receiving element. The ratio between the wavelengths of the extinction coefficient for each wavelength,
Or, since the light receiving means is provided with a discriminating means for discriminating between non-fire smoke and fire smoke from the ratio between the wavelengths of the dimming degree for each wavelength, it is possible to discriminate the particle size of the smoke,
This difference in particle size makes it possible to determine whether the smoke is fire smoke or non-smoke smoke, and has the effect of realizing a highly reliable smoke detector capable of preventing erroneous recognition due to steam, dust and the like. According to a second aspect of the present invention, in the first aspect, a ratio between the wavelengths of the extinction coefficients of the plurality of wavelengths separated and selected is determined, and a difference between these ratios is determined, so that the value of the ratio difference is constant. Since the device is provided with the discriminating means for discriminating fire smoke under the condition, there is an effect that the discriminating ability of fire smoke can be enhanced. Further, the invention according to claim 3 is the invention according to claim 1, wherein the difference between the ratios of the wavelengths of the extinction coefficients of the predetermined wavelengths at a plurality of densities changes as the degree of extinction increases, and the smoke and non-fire smoke change. By providing the determination means for determining
There is an effect that the ability to discriminate fire smoke can be enhanced in the same manner as in the second aspect of the present invention. The invention according to claim 4 as an optical system configuration includes an optical waveguide that combines light condensed by a condenser lens and separates the light into a plurality of optical paths, and selects light of different wavelengths for each of the separated optical paths. Since the light receiving means in which the filter means for separation is arranged is used, one optical path can be easily separated by the optical waveguide, and the configuration becomes simpler than the case where a beam splitter or a mirror is provided. There is an effect that the adjustability is unnecessary and the assemblability can be improved. According to a fifth aspect of the present invention, there is provided an optical unit for converting light condensed by a condenser lens into parallel light again to make the light uniform, and a filter unit for separating and selecting light of a plurality of wavelengths from the parallel light. Since the light receiving means provided is used, there is an effect that the configuration is further simplified and the cost can be reduced. The invention according to claim 6, further comprising a plurality of light emitting elements each emitting light of a different wavelength and a single wavelength, and an optical path combining means for projecting each light emitted from these light emitting elements on the same optical path as a light beam. Is provided in the light emitting means,
Light of multiple wavelengths can be easily synthesized and projected,
There is an effect that a long-life light emitting element such as a light emitting diode can be used. Further, in the multi-wavelength extinction type smoke sensor, the means for causing a plurality of light-emitting elements, each of which emits light of a different wavelength and a light of a single wavelength, to emit light in a time series is provided in the light emitting means. A light receiving element for receiving the light beam from the light emitting means, and a light receiving output of the light receiving element taken in accordance with the light emission timing of the light emitting element, and a dimming for each wavelength obtained based on the light receiving output. Since the light receiving means is provided with a discriminating means for discriminating fire and smoke from the ratio between the wavelengths of the coefficients or the ratio between the wavelengths of the extinction degrees of the respective wavelengths, a light emitting element having a long life can be used. In addition, since only one light receiving element is required and no means for separating the optical path is required, the configuration is further simplified, and there is an effect that the cost can be reduced and the assembling property can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の光学系の概略構成図、第2
図は同上の回路構成図、第3図は同上の原理説明図、第
4図、第5図は火災煙、非火災煙の判別方法の原理を説
明するためのグラフ、第6図は本発明の別の実施例の光
学系の概略構成図、第7図は本発明の他の実施例の光学
系の概略構成図、第8図は本発明のその他の実施例の投
光手段の概略構成図、第9図は本発明の更に他の実施例
の投光手段の概略構成図、第10図は本発明の更にその他
の実施例の全体構成図、第11図は同上の動作説明用タイ
ムチャート、第12図は従来例の概略構成図である。 1はランプ、7,9はレンズ、8はピンホール、10,11はビ
ームスプリッタ、12,13はミラー、14a〜14cは集光レン
ズ、15a〜15cは光学フィルタ、16a〜16cは受光素子、19
は信号処理手段、20は光導波路、1a〜1cは発光素子、2
2,23はビームスプリッタ、25は光導波路である。
FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention.
Fig. 3 is a circuit configuration diagram of the above, Fig. 3 is an explanatory view of the principle of the above, Figs. 4 and 5 are graphs for explaining the principle of a method of discriminating between fire smoke and non-fire smoke, and Fig. 6 is the present invention. FIG. 7 is a schematic configuration diagram of an optical system according to another embodiment of the present invention, FIG. 7 is a schematic configuration diagram of an optical system according to another embodiment of the present invention, and FIG. 8 is a schematic configuration of light emitting means according to another embodiment of the present invention. FIG. 9, FIG. 9 is a schematic configuration diagram of a light projecting means of still another embodiment of the present invention, FIG. 10 is an overall configuration diagram of still another embodiment of the present invention, and FIG. FIG. 12 is a schematic configuration diagram of a conventional example. 1 is a lamp, 7 and 9 are lenses, 8 is a pinhole, 10 and 11 are beam splitters, 12 and 13 are mirrors, 14a to 14c are condenser lenses, 15a to 15c are optical filters, 16a to 16c are light receiving elements, 19
Is a signal processing means, 20 is an optical waveguide, 1a to 1c are light emitting elements, 2
2 and 23 are beam splitters and 25 is an optical waveguide.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神戸 祥明 大阪府門真市大字門真1048番地 松下電 工株式会社内 (72)発明者 広野 淳之 大阪府門真市大字門真1048番地 松下電 工株式会社内 (56)参考文献 特開 昭51−127786(JP,A) 特開 昭57−124756(JP,A) (58)調査した分野(Int.Cl.6,DB名) G08B 17/02 - 17/12──────────────────────────────────────────────────続 き Continued on the front page (72) Yoshiaki Kobe, Kazuma, Kazuma, Osaka 1048, Matsushita Electric Works, Ltd. 56) References JP-A-51-127786 (JP, A) JP-A-57-124756 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G08B 17/02-17/12

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数波長の光ビームを投光する投光手段
と、該投光手段に対向して光軸上に配置された受光手段
とを備え、上記光ビームの光路中に侵入した煙粒子によ
る散乱、吸収による受光量の変化を上記受光手段が検知
するようにした多波長減光式煙感知器において、上記光
ビームの光路中に複数波長の光に分離選択するフィルタ
手段を設けるとともに、分離選択された各波長の光を受
光する受光素子と、該受光素子の受光出力に基づいて求
めた各波長毎の減光係数の波長間の比、若しくは各波長
毎の減光度の波長間の比から非火災煙と火災煙とを判別
する判別手段とを受光手段に備えたことを特徴とする多
波長減光式煙感知器。
1. A light projecting means for projecting a light beam of a plurality of wavelengths, and a light receiving means arranged on an optical axis opposite to the light projecting means, wherein smoke entering the optical path of the light beam is provided. In a multi-wavelength extinction type smoke detector in which the light receiving means detects a change in the amount of received light due to scattering and absorption by particles, a filter means for separating and selecting light of a plurality of wavelengths is provided in an optical path of the light beam. , A light-receiving element that receives light of each wavelength selected and separated, and a ratio between the wavelengths of the extinction coefficients for each wavelength obtained based on the light-receiving output of the light-receiving element, or a wavelength between the extinction degrees for each wavelength. A multi-wavelength extinction smoke detector, characterized in that a light receiving means is provided with a discriminating means for discriminating between non-fire smoke and fire smoke from the ratio of:
【請求項2】分離選択された複数の波長の減光係数の各
波長間の比を求めるとともに、これらの比の差を求めて
該比の差の値が一定条件下にあるとき火災煙と判断する
判別手段を備えたことを特徴とする請求項1記載の多波
長減光式煙感知器。
2. The method according to claim 1, wherein a ratio between the extinction coefficients of the plurality of wavelengths separated and selected is determined, and a difference between these ratios is determined. 2. The multi-wavelength dimming smoke detector according to claim 1, further comprising a judging means for judging.
【請求項3】複数の濃度における所定波長の減光係数の
波長間の比の差が減光度が大きくなると変化する状態か
ら火災煙と非火災煙とを判別する判別手段を備えたこと
を特徴とする請求項1記載の多波長減光式煙感知器。
3. A method according to claim 1, further comprising a discriminating means for discriminating between fire smoke and non-fire smoke from a state in which the difference between the ratios of the extinction coefficients of the predetermined wavelengths at a plurality of densities changes as the degree of extinction increases. 2. The multi-wavelength extinction smoke detector according to claim 1, wherein
【請求項4】集光レンズで集光した光を結合して複数の
光路に分離する光導波路を備えるとともに、分離された
各光路に夫々異なる波長の光を選択分離するフィルタ手
段を配置した受光手段を用いたことを特徴とする請求項
1記載の多波長減光式煙感知器。
4. A light receiving device comprising an optical waveguide for coupling light condensed by a condenser lens and separating the light into a plurality of optical paths, and a filter means for selectively separating light of different wavelengths in each of the separated optical paths. 2. The multi-wavelength extinction smoke detector according to claim 1, wherein means is used.
【請求項5】集光レンズで集光した光を再度平行光に変
換して光を均一とする光学手段と、上記平行光から複数
の波長の光を分離選択するフィルタ手段とを備えた受光
手段を用いたことを特徴とする請求項1記載の多波長減
光式煙感知器。
5. A light receiving device comprising: optical means for converting light condensed by a condensing lens into parallel light again to make light uniform; and filter means for separating and selecting light of a plurality of wavelengths from the parallel light. 2. The multi-wavelength extinction smoke detector according to claim 1, wherein means is used.
【請求項6】夫々が異なる波長で且つ単一波長の光を発
光する複数の発光素子と、これら発光素子から出た各光
を同一光路上に光ビームとして投光させる光路合成手段
とを投光手段に備えことを特徴とする請求項1記載の多
波長減光式煙感知器。
6. A plurality of light emitting elements each emitting light having a different wavelength and a single wavelength, and optical path combining means for projecting each light emitted from these light emitting elements on the same optical path as a light beam. 2. The multi-wavelength dimming smoke detector according to claim 1, wherein the smoke detector is provided in the light means.
【請求項7】複数波長の光ビームを投光する投光手段
と、該投光手段に対向して光軸上に配置された受光手段
とを備え、上記光ビームの光路中に侵入した煙粒子によ
る散乱、吸収による受光量の変化を上記受光手段が検知
するようにした多数波長減光式煙感知器において、夫々
が異なる波長で且つ単一波長の光を発光する複数の発光
素子を時系列的に発光させる手段を投光手段に備え、該
投光手段からの光ビームを受光する一つの受光素子と、
上記発光素子の発光タイミングに合わせて上記受光素子
の受光出力を取り込み、該受光出力に基づいて求めた各
波長毎の減光係数の波長間の比、若しくは各波長毎の減
光度の波長間の比から非火災煙と火災煙とを判別する判
別手段とを受光手段に備えたことを特徴とする多波長減
光式煙感知器。
7. A light projecting means for projecting light beams of a plurality of wavelengths, and a light receiving means arranged on an optical axis opposite to the light projecting means, wherein the smoke entering the optical path of the light beam is provided. In a multi-wavelength extinction type smoke detector in which the light receiving means detects a change in the amount of light received due to scattering and absorption by particles, a plurality of light emitting elements each emitting light of a different wavelength and a single wavelength are used. Providing the light emitting means with means for sequentially emitting light, one light receiving element for receiving a light beam from the light emitting means,
The light receiving output of the light receiving element is fetched in accordance with the light emitting timing of the light emitting element, and the ratio between the wavelengths of the extinction coefficient for each wavelength determined based on the light receiving output, or the wavelength between the extinction degrees of the respective wavelengths. A multi-wavelength light-attenuated smoke detector, characterized in that a light-receiving means is provided with a discriminating means for discriminating non-fire smoke and fire smoke from a ratio.
JP12512790A 1990-05-15 1990-05-15 Multi-wavelength extinction smoke detector Expired - Lifetime JP2761083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12512790A JP2761083B2 (en) 1990-05-15 1990-05-15 Multi-wavelength extinction smoke detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12512790A JP2761083B2 (en) 1990-05-15 1990-05-15 Multi-wavelength extinction smoke detector

Publications (2)

Publication Number Publication Date
JPH0424797A JPH0424797A (en) 1992-01-28
JP2761083B2 true JP2761083B2 (en) 1998-06-04

Family

ID=14902519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12512790A Expired - Lifetime JP2761083B2 (en) 1990-05-15 1990-05-15 Multi-wavelength extinction smoke detector

Country Status (1)

Country Link
JP (1) JP2761083B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7233253B2 (en) 2003-09-12 2007-06-19 Simplexgrinnell Lp Multiwavelength smoke detector using white light LED
EP1810259A1 (en) * 2004-10-29 2007-07-25 Simplexgrinnell Lp Multiwavelength smoke detector using white light led
KR101947004B1 (en) 2008-06-10 2019-02-12 엑스트랄리스 테크놀로지 리미티드 Particle detection
JP2010198377A (en) * 2009-02-25 2010-09-09 Rhythm Watch Co Ltd Smoke sensor
MY158884A (en) 2009-05-01 2016-11-30 Xtralis Technologies Ltd Particle detectors
US11761891B2 (en) 2018-07-31 2023-09-19 Nec Corporation Receiver, fire detection system, and fire detection method
JP7207966B2 (en) * 2018-11-21 2023-01-18 ホーチキ株式会社 aspirating smoke detector
JP7453764B2 (en) * 2019-09-12 2024-03-21 能美防災株式会社 Separate fire detector

Also Published As

Publication number Publication date
JPH0424797A (en) 1992-01-28

Similar Documents

Publication Publication Date Title
US7474227B2 (en) Multiwavelength smoke detector using white light LED
US8559006B2 (en) Particulate detector
US7847700B2 (en) System and method for an optical particle detector
US6239710B1 (en) Smoke detector
JP2761083B2 (en) Multi-wavelength extinction smoke detector
JPH07325049A (en) Detector of foreign matter material
JP4027374B2 (en) Smoke detector and supervisory control system
US11474018B2 (en) Fluorescence enhanced LIDAR based particulate detector
US4230950A (en) Electro-optic smoke detector
JP2966541B2 (en) Photoelectric smoke detector
JP2001116692A (en) Smoke sensor and particulate size measuring device and particulate kind discriminating device
JPH04205400A (en) Smoke sensor
JP2703605B2 (en) Photoelectric smoke detector
US11366048B2 (en) Smoke detector for aspiration smoke detector system
JP2585559B2 (en) Fire judgment device
JP7320959B2 (en) Smoke detectors
JP7397934B2 (en) photoelectric smoke detector
JP3196976B2 (en) Photoelectric separated smoke detector
JPH05342483A (en) Photoelectric separation type smoke sensor
JPH04124798A (en) Photoelectric smoke sensor
KR100286332B1 (en) In-situ particle monitoring sensor
JPS5852182B2 (en) Dimming smoke detector
JPS6038759B2 (en) fire detection device
JP2539948B2 (en) Dimming type smoke detector
JPS59182382A (en) Obstacle detector vehicle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090320

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100320

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 13