JP7397934B2 - photoelectric smoke detector - Google Patents

photoelectric smoke detector Download PDF

Info

Publication number
JP7397934B2
JP7397934B2 JP2022135520A JP2022135520A JP7397934B2 JP 7397934 B2 JP7397934 B2 JP 7397934B2 JP 2022135520 A JP2022135520 A JP 2022135520A JP 2022135520 A JP2022135520 A JP 2022135520A JP 7397934 B2 JP7397934 B2 JP 7397934B2
Authority
JP
Japan
Prior art keywords
light
smoke
light receiving
wavelength
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022135520A
Other languages
Japanese (ja)
Other versions
JP2022165428A (en
Inventor
哲也 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2022135520A priority Critical patent/JP7397934B2/en
Publication of JP2022165428A publication Critical patent/JP2022165428A/en
Priority to JP2023189128A priority patent/JP2023181526A/en
Application granted granted Critical
Publication of JP7397934B2 publication Critical patent/JP7397934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、受光素子に対する散乱特性が異なるように2波長の光を発して火災による煙の種類を識別して検知する光電式煙感知器に関する。 The present invention relates to a photoelectric smoke sensor that identifies and detects the type of smoke caused by a fire by emitting light of two wavelengths so that the light receiving element has different scattering characteristics.

従来の光電式煙感知器は、火災による煙に限らず、調理の煙やバスルームの湯気等により非火災報を発してしまうことがある。 Conventional photoelectric smoke detectors may issue non-fire alarms not only due to smoke from a fire, but also due to cooking smoke, bathroom steam, and the like.

このような火災以外の原因による非火災報を防止するため、2種類の波長の光を検煙空間に照射し、煙による散乱光について異なる波長の光強度の比を求めて煙の種類を判定し、煙識別の確度を高めて非火災報防止を確実なものとする光電式煙感知器が提案されている(特許文献1)。 In order to prevent such non-fire alarms due to causes other than fire, the smoke detection space is irradiated with light of two different wavelengths, and the type of smoke is determined by determining the ratio of the light intensity of the different wavelengths of light scattered by the smoke. However, a photoelectric smoke detector has been proposed that increases the accuracy of smoke identification and ensures the prevention of non-fire alarms (Patent Document 1).

特許文献1の光電式煙感知器にあっては、異なる波長の光を発する2つの発光素子につき受光素子に対する散乱角を異ならせることで煙の種類による散乱特性の相違を作り出し、同時に2つの発光素子から発する光の波長を異ならせることで波長に起因した散乱特性の相違を作り出し、この散乱角の相違と波長の相違の相乗効果によって煙の種類による散乱光の光強度に顕著な差を持たせることで煙の識別確度を高め、調理の湯気やタバコの煙による非火災報を防止し、更に火災による煙についても黒煙火災と白煙火災といった燃焼物の種類を確実に識別することを可能にしている。 In the photoelectric smoke detector of Patent Document 1, two light emitting elements that emit light of different wavelengths have different scattering angles with respect to the light receiving element, thereby creating differences in scattering characteristics depending on the type of smoke. By changing the wavelength of the light emitted from the element, differences in scattering characteristics due to the wavelength are created, and the synergistic effect of the difference in scattering angle and the difference in wavelength produces a remarkable difference in the light intensity of the scattered light depending on the type of smoke. This increases the accuracy of smoke identification, prevents non-fire alarms caused by cooking steam and cigarette smoke, and also enables reliable identification of the types of combustible materials, such as black smoke fires and white smoke fires, for smoke caused by fires. making it possible.

特開2004-325211号公報Japanese Patent Application Publication No. 2004-325211 特開平6-109631号公報Japanese Unexamined Patent Publication No. 6-109631 特開平7-12724号公報Japanese Patent Application Publication No. 7-12724 国際公開第2005/048208号International Publication No. 2005/048208

しかしながら、このような従来の光電式煙感知器にあっては、2つの発光素子を交互に発光させなれければならないため、検煙部内に流入した煙の揺らぎがあった場合、時間的に異なる煙濃度を測定することとなり、測定の同時性が損なわれて検知精度の低下を招く問題がある。 However, in such conventional photoelectric smoke detectors, the two light-emitting elements must be made to emit light alternately, so if there is fluctuation in the smoke flowing into the smoke detector, temporal differences may occur. This method involves measuring smoke concentration, and there is a problem in that the simultaneity of measurement is impaired, leading to a decrease in detection accuracy.

また、感知器の寿命を決定する部品である発光素子が2つとなるため、その分、故障の確率が大きくなり、製品寿命の低下の懸念があった。 Furthermore, since there are two light-emitting elements, which are the components that determine the lifespan of the sensor, the probability of failure increases accordingly, and there is a concern that the product lifespan may be shortened.

本発明は、異なる波長の光の散乱特性の相違による散乱光を受光して煙の種類を識別する検煙部構造につき、測定の同時性を確保して検知精度を向上すると共に、部品数を削減して構造を簡略化し、信頼性を向上可能とする光電式煙感知器を提供することを目的とする。 The present invention has a structure for detecting smoke that detects the type of smoke by receiving scattered light due to the difference in the scattering characteristics of light of different wavelengths.The present invention improves detection accuracy by ensuring simultaneous measurement and reduces the number of parts. It is an object of the present invention to provide a photoelectric smoke detector that can simplify the structure and improve the reliability.

(光電式煙感知器1)
本発明は、光電式煙感知器であって、
検煙空間に向け、第1波長の光と第1波長とは異なる第2波長の光を同時に発する発光素子と、
発光素子から発せられる光を直接受光しない位置に設けられ、第1波長の光に感度をもつ第1受光素子と、
発光素子から発せられる光を直接受光しない他の位置に設けられ、第2波長の光に感度をもつ第2受光素子と、
を備え、
第1受光素子からの第1受光出力と第2受光素子からの第2受光出力との比率を所定の閾値と比較することにより、検煙空間に流入した煙の種類又は当該煙を発生させた火災の種類を識別し、第1受光出力又は第2受光出力の大きさに応じて閾値を変化させることを特徴とする。
(Photoelectric smoke detector 1)
The present invention is a photoelectric smoke detector, comprising:
a light emitting element that simultaneously emits light at a first wavelength and light at a second wavelength different from the first wavelength toward a smoke detection space;
a first light-receiving element that is provided at a position that does not directly receive the light emitted from the light-emitting element and is sensitive to light of a first wavelength;
a second light-receiving element that is provided at another position that does not directly receive the light emitted from the light-emitting element and is sensitive to light of a second wavelength;
Equipped with
By comparing the ratio of the first light receiving output from the first light receiving element and the second light receiving output from the second light receiving element with a predetermined threshold value, the type of smoke that has flowed into the smoke detection space or the generation of the smoke is determined. It is characterized in that the type of fire is identified and the threshold value is changed depending on the magnitude of the first light reception output or the second light reception output.

(光電式煙感知器2)
本発明は、光電式煙感知器であって、
検煙空間に向けて第1波長の光と第1波長とは異なる第2波長の光を同時に発する発光素子と、
発光素子から発せられる第1波長の光を受光する第1受光素子と、
発光素子から発せられる第2波長の光を受光する第2受光素子と、
を備え、
第1受光素子からの第1受光出力と第2受光素子からの第2受光出力との比率を所定の閾値と比較することにより、検煙空間に流入した煙の種類又は当該煙を発生させた火災の種類を識別し、第1受光出力又は第2受光出力が大きくなるに従い閾値を増加させることを特徴とする。
(Photoelectric smoke detector 2)
The present invention is a photoelectric smoke detector, comprising:
a light-emitting element that simultaneously emits light at a first wavelength and light at a second wavelength different from the first wavelength toward a smoke detection space;
a first light receiving element that receives light of a first wavelength emitted from the light emitting element;
a second light receiving element that receives light of a second wavelength emitted from the light emitting element;
Equipped with
By comparing the ratio of the first light receiving output from the first light receiving element and the second light receiving output from the second light receiving element with a predetermined threshold value, the type of smoke that has flowed into the smoke detection space or the generation of the smoke is determined. It is characterized in that the type of fire is identified and the threshold value is increased as the first light reception output or the second light reception output becomes larger.

(光電式煙感知器3)
本発明は、光電式煙感知器に於いて、
検煙空間に向けて第1波長の光と第1波長とは異なる第2波長の光を同時に発する発光素子と、
発光素子から発せられる第1波長の光を受光する第1受光素子と、
発光素子から発せられる第2波長の光を受光する第2受光素子と、
を備え、
第1受光素子からの第1受光出力と第2受光素子からの第2受光出力との比率を第1閾値と比較することにより、検煙空間に流入した煙の種類又は当該煙を発生させた火災の種類を識別し、第1受光出力と第2受光出力との比率を第2閾値と比較することにより、検煙空間に流入したものが煙であるか湯気であるかを識別することを特徴とする。
(Photoelectric smoke detector 3)
The present invention provides a photoelectric smoke detector that includes:
a light-emitting element that simultaneously emits light at a first wavelength and light at a second wavelength different from the first wavelength toward a smoke detection space;
a first light receiving element that receives light of a first wavelength emitted from the light emitting element;
a second light receiving element that receives light of a second wavelength emitted from the light emitting element;
Equipped with
By comparing the ratio of the first light receiving output from the first light receiving element and the second light receiving output from the second light receiving element with the first threshold value, the type of smoke that has flowed into the smoke detection space or the generation of the smoke is determined. By identifying the type of fire and comparing the ratio of the first light receiving output and the second light receiving output with a second threshold value, it is possible to identify whether what has flowed into the smoke detection space is smoke or steam. Features.

煙の種類を識別した場合は、識別結果である煙の種類を示す情報を火災受信機へ送信する。 When the type of smoke is identified, information indicating the type of smoke, which is the identification result, is transmitted to the fire receiver.

湯気を識別した場合は、識別結果が湯気である旨を示す情報を火災受信機へ送信する。 If steam is identified, information indicating that the identification result is steam is transmitted to the fire receiver.

(基本的な効果)
本発明は、光電式煙感知器に於いて、検煙空間に向け、第1波長の光と第1波長とは異なる第2波長の光を同時に発する発光素子と、発光素子から発せられる光を直接受光しない位置に設けられ、第1波長の光に感度をもつ第1受光素子と、発光素子から発せられる光を直接受光しない他の位置に設けられ、第2波長の光に感度をもつ第2受光素子とを備えたため、発光素子から検煙空間に第1波長と第2波長の光が照射されて第1受光素子と第2受光素子が同時に散乱光を受光できるため、第1波長と第2波長の光による測定タイミングのずれが生じず、検煙空間に流入した煙濃度が短時間に揺らいでも影響を受けることがなく、煙の種類を識別する精度を高めることができる。
(basic effect)
The present invention provides a photoelectric smoke detector that includes a light emitting element that simultaneously emits light of a first wavelength and light of a second wavelength different from the first wavelength toward a smoke detection space; A first light-receiving element is provided in a position that does not directly receive light and is sensitive to light of a first wavelength, and a second light-receiving element is provided in another position that does not directly receive light emitted from the light-emitting element and is sensitive to light of a second wavelength. Since it is equipped with two light-receiving elements, the light-emitting element illuminates the smoke detection space with light of the first wavelength and the second wavelength, and the first and second light-receiving elements can simultaneously receive the scattered light. There is no deviation in the measurement timing due to the light of the second wavelength, and even if the concentration of smoke flowing into the smoke detection space fluctuates in a short time, it is not affected, and the accuracy of identifying the type of smoke can be improved.

(閾値を変更する効果)
第1受光素子からの第1受光出力と第2受光素子からの第2受光出力との比率を所定の閾値と比較することにより、検煙空間に流入した煙の種類又は当該煙を発生させた火災の種類を識別し、第1受光出力又は第2受光出力の大きさに応じて閾値を変化させるため、極端に煙濃度が大きくなった場合、2次散乱の影響により閾値から外れることが考えられるため、それを補完するために閾値を変更して、高い精度で煙の種類を判断することができる。
(Effect of changing threshold)
By comparing the ratio of the first light receiving output from the first light receiving element and the second light receiving output from the second light receiving element with a predetermined threshold value, the type of smoke that has flowed into the smoke detection space or the generation of the smoke is determined. Since the type of fire is identified and the threshold value is changed according to the magnitude of the first light reception output or the second light reception output, if the smoke density becomes extremely high, it is possible that the fire will deviate from the threshold value due to the influence of secondary scattering. Therefore, by changing the threshold value to compensate for this, it is possible to judge the type of smoke with high accuracy.

(閾値を増加する効果)
第1受光素子からの第1受光出力と第2受光素子からの第2受光出力との比率を所定の閾値と比較することにより、検煙空間に流入した煙の種類又は当該煙を発生させた火災の種類を識別し、第1受光出力又は第2受光出力が大きくなるに従い閾値を増加させるため、極端に煙濃度が大きくなった場合、2次散乱の影響により閾値から外れることが考えられるため、それを補完するために閾値を変更して、高い精度で煙の種類を判断することができる。
(Effect of increasing threshold)
By comparing the ratio of the first light receiving output from the first light receiving element and the second light receiving output from the second light receiving element with a predetermined threshold value, the type of smoke that has flowed into the smoke detection space or the generation of the smoke is determined. The type of fire is identified and the threshold value is increased as the first light reception output or the second light reception output increases, so if the smoke density becomes extremely high, it may deviate from the threshold value due to the influence of secondary scattering. , by changing the threshold value to complement it, it is possible to judge the type of smoke with high accuracy.

(煙と湯気を識別する効果)
第1受光素子からの第1受光出力と第2受光素子からの第2受光出力との比率を第1閾値と比較することにより、検煙空間に流入した煙の種類又は当該煙を発生させた火災の種類を識別し、第1受光出力と第2受光出力との比率を第2閾値と比較することにより、検煙空間に流入したものが煙であるか湯気であるかを識別するため、湯気等の非火災要因が判別された場合には、湯気を示す非火災情報を含む状態信号を受信機に送信することで、火災警報ではなく注意警報を受信機から出力させることができる。
(Effect of distinguishing between smoke and steam)
By comparing the ratio of the first light receiving output from the first light receiving element and the second light receiving output from the second light receiving element with the first threshold value, the type of smoke that has flowed into the smoke detection space or the generation of the smoke is determined. In order to identify whether what has flowed into the smoke detection space is smoke or steam by identifying the type of fire and comparing the ratio of the first light reception output and the second light reception output with a second threshold value, If a non-fire cause such as steam is determined, a status signal including non-fire information indicating steam is sent to the receiver, thereby allowing the receiver to output a caution warning instead of a fire alarm.

(識別結果を火災受信機へ送信する効果)
煙の種類を識別した場合は、識別結果である煙の種類を示す情報を、湯気を識別した場合は、識別結果が湯気である旨を示す情報を火災受信機へ送信するため、火災受信機から当該情報に応じた警報を出力することができる。
(Effect of transmitting identification results to fire receiver)
If the type of smoke is identified, information indicating the type of smoke is sent to the fire receiver, and if steam is identified, information indicating that the identification result is steam is sent to the fire receiver. It is possible to output an alarm according to the information.

本発明による光電式煙感知器の回路構成を示したブロック図A block diagram showing the circuit configuration of a photoelectric smoke detector according to the present invention 検煙部構造の実施形態を示した説明図Explanatory diagram showing an embodiment of the structure of the smoke detection part 綿灯芯とケロシンを燃焼した場合の煙に対する図2の検煙部構造により検出された第1受光素子と第2受光素子の受光出力とその比率を示した説明図Explanatory diagram showing the light reception output of the first light receiving element and the second light receiving element and the ratio thereof detected by the smoke detection section structure of Fig. 2 for smoke when cotton wick and kerosene are burned. 第1受光素子と第2受光素子の受光出力に応じて煙の種類及を識別する比率閾値を変更する設定テーブルを示した説明図An explanatory diagram showing a setting table for changing the ratio threshold for identifying the type of smoke according to the light receiving output of the first light receiving element and the second light receiving element. 第1受光素子と第2受光素子の受光出力に応じて煙の種類及び非火災要因を識別する比率閾値の設定テーブルを示した説明図An explanatory diagram showing a setting table of ratio threshold values for identifying types of smoke and non-fire causes according to the light receiving outputs of the first light receiving element and the second light receiving element. 図2の検煙部構造を用いた図1の回路ブロックによる火災感知制御の実施形態を示したフローチャートA flowchart showing an embodiment of fire detection control using the circuit block of FIG. 1 using the smoke detector structure of FIG. 2.

[光電式煙感知器の回路構成]
図1は本発明による光電式煙感知器の回路構成を示したブロック図である。図1に示すように、本実施形態の光電式煙感知器10は、CPU、メモリ及び各種の入出力ポートを備えたコンピュータ回路で構成される制御部12、S端子とSC端子に接続された伝送線11a,11bを介して火災受信機との間で信号を送受信する伝送部14、伝送線11a,11bを介して供給された電源電圧を所定の安定化電圧に変換して出力する電源部15、発光駆動部16、検煙部18、増幅回路部26,28で構成される。
[Circuit configuration of photoelectric smoke detector]
FIG. 1 is a block diagram showing the circuit configuration of a photoelectric smoke detector according to the present invention. As shown in FIG. 1, the photoelectric smoke detector 10 of this embodiment includes a control unit 12, which is composed of a computer circuit equipped with a CPU, memory, and various input/output ports, and is connected to an S terminal and an SC terminal. A transmission unit 14 that transmits and receives signals to and from the fire receiver via the transmission lines 11a and 11b, and a power supply unit that converts the power supply voltage supplied via the transmission lines 11a and 11b into a predetermined stabilized voltage and outputs it. 15, a light emission drive section 16, a smoke detection section 18, and an amplification circuit section 26, 28.

検煙部18には第1波長λ1と第2波長λ2を含む光を同時に発する発光素子20が設けられる。発光素子20から発せられる第1波長λ1の光は中心波長を600nm以上に定められ、また第2波長λ2の光は中心波長を500nm以下に定めており、本実施形態にあっては、第1波長λ1を例えば700nmに定め、第2波長λ2を例えば450nmに定めている。 The smoke detection section 18 is provided with a light emitting element 20 that simultaneously emits light including a first wavelength λ1 and a second wavelength λ2. The center wavelength of the light with the first wavelength λ1 emitted from the light emitting element 20 is determined to be 600 nm or more, and the center wavelength of the light with the second wavelength λ2 is determined to be 500 nm or less. The wavelength λ1 is set to, for example, 700 nm, and the second wavelength λ2 is set to, for example, 450 nm.

本実施形態にあっては、発光素子20として白色LED(白色発光ダイオード)を使用している。白色LEDは、例えば、青色LEDと蛍光体を組み合わせており、青色LEDの光を蛍光体に通して白色を発光させ、この発光色には、第1波長λ1=700nmの光と、第2波長λ2=450nmの光が含まれており、検煙部18内に、第1波長λ1と第2波長λ2の光を同時に照射することができる。 In this embodiment, a white LED (white light emitting diode) is used as the light emitting element 20. A white LED, for example, is a combination of a blue LED and a phosphor, and the light of the blue LED is passed through the phosphor to emit white light. Light of λ2=450 nm is included, and the smoke detection section 18 can be irradiated with light of the first wavelength λ1 and the light of the second wavelength λ2 at the same time.

また、本実施形態の発光素子20としては、2色LED(2色発光ダイオード)を使用することもできる。2色LEDは、第1波長λ1=700nmの光を発する第1発光チップと、第2波長λ2=450nmの光を発する第2発光チップを備え、両者を同時に駆動することにより、第1波長λ1と第2波長λ2の光を検煙部18内に同時に照射することができる。 Moreover, as the light emitting element 20 of this embodiment, a two-color LED (two-color light emitting diode) can also be used. The two-color LED includes a first light emitting chip that emits light with a first wavelength λ1 = 700 nm and a second light emitting chip that emits light with a second wavelength λ2 = 450 nm, and by driving both simultaneously, the first wavelength λ1 is emitted. and the second wavelength λ2 can be irradiated into the smoke detection section 18 at the same time.

第1受光素子22には第1波長λ1に感度をもつフォトダイオード(PD)が使用され、第2受光素子24を第2波長λ2に感度をもつフォトダイオード(PD)が使用される。 A photodiode (PD) sensitive to a first wavelength λ1 is used as the first light receiving element 22, and a photodiode (PD) sensitive to a second wavelength λ2 is used as the second light receiving element 24.

また、第1受光素子22及び第2受光素子24としては、可視光波長帯域に感度をもつ広帯域フォトダイオードに、第1波長λ1と第2波長λ2のそれぞれの波長帯域のみを受光するフィルタ層をPDモールディング(透明カバー部材)に設けても良いし、広帯域フォトダイオードの前方に、第1波長λ1と第2波長λ2のそれぞれの波長帯域を透過するフィルタを配置しても良い。 The first light receiving element 22 and the second light receiving element 24 are broadband photodiodes sensitive to the visible wavelength band, and filter layers that receive only the first wavelength λ1 and the second wavelength λ2, respectively. It may be provided in the PD molding (transparent cover member), or a filter that transmits the respective wavelength bands of the first wavelength λ1 and the second wavelength λ2 may be placed in front of the broadband photodiode.

増幅回路部26は第1受光素子22で受光された第1波長λ1の煙散乱光の受光信号を増幅し、制御部12に受光出力A1を与える。また、増幅回路部28は第2受光素子24で受光された煙散乱光の受光信号を増幅し、制御部12に受光出力A2を与える。 The amplifier circuit section 26 amplifies the light reception signal of the smoke scattered light of the first wavelength λ1 received by the first light receiving element 22, and provides the control section 12 with a light reception output A1. Further, the amplifying circuit section 28 amplifies the light reception signal of the smoke scattered light received by the second light receiving element 24, and provides the control section 12 with a light reception output A2.

[検煙部の実施形態]
図2は図1における検煙部の構造の実施形態を示した説明図である。図2に示すように、外部からの煙が流入する検煙部18内には発光素子20、第1受光素子22及び第2受光素子24が配置されている。
[Embodiment of smoke detection section]
FIG. 2 is an explanatory diagram showing an embodiment of the structure of the smoke detection section in FIG. 1. As shown in FIG. 2, a light emitting element 20, a first light receiving element 22, and a second light receiving element 24 are arranged within the smoke detection section 18 into which smoke from the outside flows.

例えば白色LEDを用いた発光素子20は、第1波長λ1及び第2波長λ2を含む光を光軸20aの方向に照射し、前述したように、第1波長λ1の光は700nmに設定し、また、第2波長λ2の光は450nmに設定している。 For example, the light emitting element 20 using a white LED emits light including a first wavelength λ1 and a second wavelength λ2 in the direction of the optical axis 20a, and as described above, the light with the first wavelength λ1 is set to 700 nm, Further, the light having the second wavelength λ2 is set to 450 nm.

発光素子20の光軸20aと第1受光素子22の光軸22aの交差で構成される第1散乱角θ1を20°~70°の範囲に定め、発光素子20の光軸20aと第1受光素子22の光軸22aが110°~160°の範囲の所定角度で交差するように配置している。 The first scattering angle θ1 formed by the intersection of the optical axis 20a of the light emitting element 20 and the optical axis 22a of the first light receiving element 22 is set in the range of 20° to 70°, and the optical axis 20a of the light emitting element 20 and the first light receiving element 22 are intersected. The elements 22 are arranged so that their optical axes 22a intersect at a predetermined angle in the range of 110° to 160°.

また、発光素子20の光軸20aと第2受光素子24の光軸24aの交差で構成される第2散乱角θ2を110°~150°の範囲に定め、発光素子20と第2受光素子24の光軸24aが30°~70°の範囲の所定角度で交差するように配置している。 Further, the second scattering angle θ2 formed by the intersection of the optical axis 20a of the light emitting element 20 and the optical axis 24a of the second light receiving element 24 is set in the range of 110° to 150°. are arranged so that their optical axes 24a intersect at a predetermined angle in the range of 30° to 70°.

本実施形態では、第1散乱角θ1は30°に定めていることから、発光素子20の光軸20aと第1受光素子22の光軸22aは例えば150°の交差角で交差するように配置され、また、第2散乱角θ2は120°に定めていることから、発光素子20の光軸20aと第2受光素子24の光軸24aは例えば60°の交差角で交差するように配置される。 In this embodiment, since the first scattering angle θ1 is set to 30°, the optical axis 20a of the light emitting element 20 and the optical axis 22a of the first light receiving element 22 are arranged to intersect at an intersection angle of 150°, for example. Furthermore, since the second scattering angle θ2 is set to 120°, the optical axis 20a of the light emitting element 20 and the optical axis 24a of the second light receiving element 24 are arranged to intersect at an intersection angle of, for example, 60°. Ru.

第1受光素子22は発光素子20から発せられる第1波長λ1=700nmの光に感度をもつことから、発光素子20が第1波長λ1の光を発すると、検煙部18に流入した煙による散乱角θ1=30°の散乱光が第1受光素子22で受光され、受光出力A1が得られる。ここで、受光出力A1は、第1波長λ1と第1散乱角θ1により検出された煙濃度検出出力ということができる。 Since the first light receiving element 22 is sensitive to the light of the first wavelength λ1 = 700 nm emitted from the light emitting element 20, when the light emitting element 20 emits light of the first wavelength λ1, the smoke that has entered the smoke detection section 18 Scattered light with a scattering angle θ1=30° is received by the first light receiving element 22, and a light receiving output A1 is obtained. Here, the light reception output A1 can be said to be a smoke density detection output detected using the first wavelength λ1 and the first scattering angle θ1.

また、第2受光素子24は発光素子20から発せられる第2波長λ2=450nmの光に感度をもつことから、発光素子20が第1波長λ1の光と同時に第2波長λ2の光を発すると、検煙部18に流入した煙による第2散乱角θ2=120°の散乱光が第2受光素子24で受光され、受光出力A2が同時に得られる。ここで、受光出力A2は、第2波長λ2と第2散乱角θ2により検出された煙濃度検出出力ということができる。 Furthermore, since the second light receiving element 24 is sensitive to the light of the second wavelength λ2=450 nm emitted from the light emitting element 20, if the light emitting element 20 emits the light of the second wavelength λ2 at the same time as the light of the first wavelength λ1, , the scattered light at the second scattering angle θ2=120° due to the smoke flowing into the smoke detection section 18 is received by the second light receiving element 24, and the light receiving output A2 is obtained at the same time. Here, the light reception output A2 can be said to be a smoke concentration detection output detected using the second wavelength λ2 and the second scattering angle θ2.

[制御部による煙の識別]
図1に示した制御部12は、発光駆動部16に指示して発光素子20を所定周期で間欠駆動することにより、第1波長λ1と第2波長λ2を含む白色光を発し、第1波長λ1による第1散乱角θ1=30°の後方散乱光が第1受光素子22で受光され、これに対応して増幅回路部28から出力される受光出力A1を検出してメモリに記憶する。
[Smoke identification by control unit]
The control unit 12 shown in FIG. 1 instructs the light emission driving unit 16 to intermittently drive the light emitting element 20 at a predetermined period, thereby emitting white light including a first wavelength λ1 and a second wavelength λ2, and emitting white light having a first wavelength λ1 and a second wavelength λ2. The backscattered light at the first scattering angle θ1=30° due to λ1 is received by the first light receiving element 22, and correspondingly, the light receiving output A1 output from the amplifier circuit section 28 is detected and stored in the memory.

同時に、第2波長λ2による第2散乱角θ2=120°の後方散乱光が第2受光素子24で受光されることから、制御部12は、第2受光素子24の受光に対応して増幅回路部26から出力される受光出力A2を検出してメモリに記憶する。 At the same time, the second light receiving element 24 receives the backscattered light with the second scattering angle θ2 = 120° due to the second wavelength λ2. The light reception output A2 outputted from the section 26 is detected and stored in the memory.

続いて、制御部12は、第1受光素子22に対応した受光出力A1と第2受光素子24に対応した受光出力A2とを比較することにより、煙の種類を識別し、煙の種類に応じた判断基準により火災判断を行う。 Next, the control unit 12 identifies the type of smoke by comparing the light receiving output A1 corresponding to the first light receiving element 22 and the light receiving output A2 corresponding to the second light receiving element 24, and determines the type of smoke according to the type of smoke. A fire judgment will be made based on the criteria.

[受光出力の比率による煙種類の判断]
図3は綿灯芯とケロシンを燃焼した場合の煙に対する図2の検煙部構造により検出された受光出力とその比率を示した説明図である。
[Judgment of smoke type based on the ratio of received light output]
FIG. 3 is an explanatory diagram showing the light reception output detected by the smoke detector structure of FIG. 2 and its ratio with respect to smoke when cotton wick and kerosene are burned.

図3に示すように、受光出力A1は、第1波長λ1=700nm、第1散乱角θ1=30°の散乱光の受光出力となり、また、受光出力A2は、第2波長λ2=450nm、第2散乱角θ2=120°の散乱光の受光出力となる。 As shown in FIG. 3, the light receiving output A1 is the light receiving output of the scattered light with the first wavelength λ1 = 700 nm and the first scattering angle θ1 = 30°, and the light receiving output A2 is the light receiving output of the scattered light with the first wavelength λ1 = 700 nm and the first scattering angle θ1 = 30°. 2 This is the light reception output of scattered light with a scattering angle θ2=120°.

このような綿灯芯とケロシンの燃焼で測定された受光出力A1,A2の比率R=A1/A2を取ると、綿灯芯の場合はR=8.0となり、ケロシンの場合はR=2.3となり、綿灯芯とケロシンでは両者の比率Rに顕著な差異が表れ、比率Rに基づく煙の種類の識別が可能となる。 Taking the ratio R=A1/A2 of the received light outputs A1 and A2 measured in the combustion of such a cotton wick and kerosene, in the case of cotton wick, R=8.0, and in the case of kerosene, R=2.3. Therefore, there is a noticeable difference in the ratio R between cotton wicks and kerosene, and it is possible to identify the type of smoke based on the ratio R.

このため制御部12は、比率閾値Rth1として例えばRth1=5を設定し、R>5の場合は燻焼による白煙が発生していると判断し、R<5の場合には燃焼による黒煙が発生していると判断し、判断した煙の種類を示す情報を含む火災信号を受信機に送信して火災警報を出力させる制御を行う。 For this reason, the control unit 12 sets Rth1=5 as the ratio threshold value Rth1, for example, and determines that white smoke is generated due to smoldering when R>5, and black smoke due to combustion when R<5. It determines that smoke is occurring, and controls the receiver to output a fire alarm by transmitting a fire signal containing information indicating the determined type of smoke.

[比率閾値の変更]
図3に示した煙の種類を識別するための比率閾値Rth1は、図2に示す検煙部18に設けた第1受光素子22及び第2受光素子24に対する散乱角θ1,θ2と発光素子20から発する第1波長λ1及び第2波長λ2により、適宜変更することができる。
[Change ratio threshold]
The ratio threshold value Rth1 for identifying the type of smoke shown in FIG. The first wavelength λ1 and the second wavelength λ2 emitted from the wavelength can be changed as appropriate.

また、図3にあっては、比率閾値Rthを一定としたが、受光出力A1,A2の大きさに応じて煙識別のレベルを変化させても良い。 Further, in FIG. 3, the ratio threshold value Rth is set constant, but the level of smoke discrimination may be changed depending on the magnitude of the received light outputs A1 and A2.

図4は第1受光素子と第2受光素子の受光出力に応じて煙の種類を識別する比率閾値を変更する設定テーブルを示した説明図である。図4に示すように、比率閾値の設定テーブルは、第1波長λ1=700nm、第1散乱角θ1=30°による第1受光素子22に対応した受光出力A1と、第2波長λ2=450nm、第2散乱角θ2=120°による第2受光素子24に対応した受光出力A2の2次元テーブルであり、例えば受光出力A1が大きくなるに従い比率閾値Rth1を5.0→5.2→5.5 と変化させて煙の種類を判断する。 FIG. 4 is an explanatory diagram showing a setting table for changing the ratio threshold value for identifying the type of smoke according to the light receiving outputs of the first light receiving element and the second light receiving element. As shown in FIG. 4, the ratio threshold setting table includes the light receiving output A1 corresponding to the first light receiving element 22 with the first wavelength λ1 = 700 nm and the first scattering angle θ1 = 30°, the second wavelength λ2 = 450 nm, This is a two-dimensional table of the light receiving output A2 corresponding to the second light receiving element 24 with the second scattering angle θ2 = 120°. For example, as the light receiving output A1 increases, the ratio threshold Rth1 is changed from 5.0 to 5.2 to 5.5. to determine the type of smoke.

これは極端に煙濃度が大きくなった場合、2次散乱の影響により図3で設定した比率閾値Rth1=5から外れることが考えられるため、それを補完するために比率閾値Rth1を変更して、高い精度で煙の種類を判断可能とする。 This is because when the smoke density becomes extremely large, it is possible that the ratio threshold value Rth1 = 5 set in Fig. 3 may deviate from the influence of secondary scattering, so in order to compensate for this, the ratio threshold value Rth1 is changed. To make it possible to judge the type of smoke with high accuracy.

[非火災要因の識別]
図5は第1受光素子と第2受光素子の受光出力に応じて煙の種類及び非火災要因を識別する比率閾値の設定テーブルを示した説明図である。
[Identification of non-fire factors]
FIG. 5 is an explanatory diagram showing a setting table of ratio threshold values for identifying types of smoke and non-fire causes according to the light receiving outputs of the first light receiving element and the second light receiving element.

図5に示すように、比率閾値の設定テーブルは、第1受光素子22に対応した受光出力A1と第2受光素子24に対応した受光出力A2の2次元テーブルであり、図4の煙の種類を識別する比率閾値Rth1=5~5.5に加え、非火災要因となる湯気を識別するための比率閾値Rth2=12を設定している。 As shown in FIG. 5, the ratio threshold setting table is a two-dimensional table of the light receiving output A1 corresponding to the first light receiving element 22 and the light receiving output A2 corresponding to the second light receiving element 24. In addition to the ratio threshold value Rth1=5 to 5.5 for identifying non-fire causes, a ratio threshold value Rth2=12 is set for identifying steam that is a non-fire cause.

例えば、バスルーム等からの湯気が光電式煙感知器10に流入した場合、従来の煙感知器はこれを火災による煙と誤診し火災警報を発してしまうが、本実施形態においては、例えば受光出力A1に応じて比率閾値Rth2=12を選択し、R<12であれば火災煙であることを識別し、R>12であれば湯気等の非火災要因であることを識別する。これにより湯気等の非火災要因が判別された場合には、湯気を示す非火災情報を含む状態信号を受信機に送信することで、火災警報ではなく注意警報を受信機から出力させることができる。 For example, when steam from a bathroom or the like flows into the photoelectric smoke detector 10, conventional smoke detectors misdiagnose this as smoke from a fire and issue a fire alarm. A ratio threshold value Rth2=12 is selected according to the output A1, and if R<12, it is identified as fire smoke, and if R>12, it is identified as a non-fire cause such as steam. If a non-fire cause such as steam is determined, a status signal containing non-fire information indicating steam is sent to the receiver, allowing the receiver to output a caution warning instead of a fire alarm. .

[感知器制御の実施形態]
図6は図2の検煙部構造を用いた図1の回路ブロックによる火災感知制御の実施形態を示したフローチャートであり、制御部12による制御動作となる。
[Embodiment of sensor control]
FIG. 6 is a flowchart showing an embodiment of fire detection control by the circuit block of FIG. 1 using the structure of the smoke detection section of FIG. 2, and is a control operation by the control section 12.

図6に示すように、制御部12は、ステップS1で発光駆動部16に指示して白色LEDを用いた発光素子20を所定周期で間欠的に発光駆動して第1波長λ1及び第2波長λ2を含む白色光を検煙部18内に照射し、ステップS2で第1受光素子22により受光された第1波長λ1の散乱光に対応した受光出力A1を検出してステップS3でメモリに記憶し、続いて、ステップS4で第2受光素子24により受光された第2波長λ2の散乱光に対応した受光出力A2を検出してステップS5でメモリに記憶する。 As shown in FIG. 6, in step S1, the control unit 12 instructs the light emission driving unit 16 to drive the light emitting element 20 using a white LED to emit light intermittently at a predetermined period to emit light at a first wavelength λ1 and a second wavelength. λ2 is irradiated into the smoke detection section 18, and in step S2, the light receiving output A1 corresponding to the scattered light of the first wavelength λ1 received by the first light receiving element 22 is detected and stored in the memory in step S3. Then, in step S4, the light receiving output A2 corresponding to the scattered light of the second wavelength λ2 received by the second light receiving element 24 is detected and stored in the memory in step S5.

続いて、制御部12は、ステップS6で受光出力A1,A2の比率R=A1/A2を算出し、ステップS7で比率Rを例えば閾値Rth1=5と比較し、比率Rが閾値Rth1=5以上であれば、ステップS8で非火災要因を識別する閾値Rth2=12と比較するが、閾値Rth2未満であることからステップS9に進み、白煙による燻焼火災と判断し、ステップS10で受光出力A1が注意警報を必要とする煙濃度に対応した閾値Ath1以上であることを判別するとステップS11に進み、白煙識別情報を含む火災信号を受信機に送信し、白煙による燻焼火災であることを示す火災警報を出力させる。 Subsequently, the control unit 12 calculates the ratio R=A1/A2 of the light reception outputs A1 and A2 in step S6, and compares the ratio R with, for example, a threshold value Rth1=5 in step S7, and determines that the ratio R is equal to or greater than the threshold value Rth1=5. If so, it is compared with the threshold value Rth2=12 for identifying non-fire causes in step S8, but since it is less than the threshold value Rth2, the process proceeds to step S9, where it is determined that the fire is smoldering due to white smoke, and in step S10, the received light output A1 is When it is determined that the fire is equal to or higher than the threshold value Ath1 corresponding to the smoke concentration that requires a caution alarm, the process proceeds to step S11, where a fire signal including white smoke identification information is transmitted to the receiver, and it is determined that the fire is a smoldering fire due to white smoke. Outputs a fire alarm indicating.

一方、制御部12は、ステップS9で比率Rが閾値Rth1=5未満であれば、ステップS12に進んで黒煙による燃焼火災と判断し、ステップS13で受光出力A2が注意警報を必要とする煙濃度に対応した閾値Ath2以上であることを判別するとステップS14に進み、黒煙識別情報を含む火災信号を受信機に送信し、黒煙による燃焼火災であることを示す火災警報を出力させる。 On the other hand, if the ratio R is less than the threshold value Rth1=5 in step S9, the control unit 12 proceeds to step S12 and determines that the fire is a combustion fire caused by black smoke, and in step S13, the control unit 12 determines that the received light output A2 indicates smoke that requires a warning. If it is determined that the concentration is equal to or higher than the threshold value Ath2, the process proceeds to step S14, where a fire signal including black smoke identification information is transmitted to the receiver, and a fire alarm indicating that it is a combustion fire due to black smoke is output.

また、制御部12は、比率RがステップS7で閾値Rth1=5以上で且つステップS8で閾値Rth2=12以上と判別された場合にはステップS15に進んで湯気等による非火災要因と判断し、ステップS16で受光出力A1が注意警報を必要とする煙濃度に対応した閾値Ath1以上であることを判別するとステップS17に進み、非火災要因の識別情報を含む火災信号を受信機に送信し、湯気等の非火災要因による非火災発報であることを示す注意警報等を出力させる。 Further, if the ratio R is determined to be equal to or higher than the threshold value Rth1=5 in step S7 and equal to or higher than the threshold value Rth2=12 in step S8, the control unit 12 proceeds to step S15 and determines that the non-fire cause is due to steam etc. If it is determined in step S16 that the received light output A1 is equal to or higher than the threshold value Ath1 corresponding to the smoke concentration that requires a caution alarm, the process proceeds to step S17, where a fire signal including identification information of non-fire causes is transmitted to the receiver, and the steam A cautionary warning, etc. is output to indicate that a non-fire alarm has been issued due to a non-fire cause such as.

なお、図6の制御にあっては、白色LEDを発光駆動する毎に、受光出力A1,A2の比率を算出して白煙か黒煙かを判別しているが、受光出力が例えば注意警報を必要とする煙濃度に対応した閾値Ath1以上の場合に比率Rの算出による煙の識別を行っても良い。これにより通常監視状態での受光出力A1,A2の検出記憶による比率計算を行って行わないことで、制御部12の処理負荷を低減し、光電式煙感知器10の消費電流を低減することができる。 In addition, in the control shown in FIG. 6, each time the white LED is driven to emit light, the ratio of the light reception outputs A1 and A2 is calculated to determine whether it is white smoke or black smoke. Smoke may be identified by calculating the ratio R when it is equal to or higher than the threshold value Ath1 corresponding to the smoke density that requires . As a result, the processing load on the control unit 12 can be reduced and the current consumption of the photoelectric smoke detector 10 can be reduced by not calculating the ratio based on the detection memory of the light reception outputs A1 and A2 in the normal monitoring state. can.

[本発明の変形例]
上記の実施形態は、発光素子として白色LED又は2色LEDを設けているが、第1波長λ1を発するLEDと、第2波長λ2を発するLEDを並べて配置し、同時に発光駆動するようにしても良い。
[Modification of the present invention]
In the above embodiment, a white LED or a two-color LED is provided as a light emitting element, but an LED that emits the first wavelength λ1 and an LED that emits the second wavelength λ2 may be arranged side by side and driven to emit light at the same time. good.

また、本発明は、その目的と利点を損なうことのない適宜の変形を含み、更に、上記の実施形態に示した数値による限定は受けない。 Furthermore, the present invention includes appropriate modifications without impairing its objects and advantages, and is not limited by the numerical values shown in the above embodiments.

10:光電式煙感知器
11a,11b:伝送線
12:制御部
14:伝送部
15:電源部
16:発光駆動部
18:検煙部
20:発光素子
20a,22a,24a:光軸
22:第1受光素子
24:第2受光素子
26,28:増幅回路部
10: Photoelectric smoke detector 11a, 11b: Transmission line 12: Control section 14: Transmission section 15: Power supply section 16: Light emitting drive section 18: Smoke detection section 20: Light emitting elements 20a, 22a, 24a: Optical axis 22: No. 1 light receiving element 24: 2nd light receiving element 26, 28: amplifier circuit section

Claims (3)

検煙空間に向けて第1波長の光と前記第1波長とは異なる第2波長の光を同時に発する発光素子と、
前記発光素子から発せられる前記第1波長の光を受光する第1受光素子と、
前記発光素子から発せられる前記第2波長の光を受光する第2受光素子と、
を備え、
前記第1受光素子からの第1受光出力と前記第2受光素子からの第2受光出力との比率を所定の閾値と比較することにより、前記検煙空間に流入した煙の種類又は当該煙を発生させた火災の種類を識別し、前記第1受光出力又は前記第2受光出力の大きさに応じて前記閾値を変化させることを特徴とする光電式煙感知器。
a light emitting element that simultaneously emits light at a first wavelength and light at a second wavelength different from the first wavelength toward a smoke detection space;
a first light receiving element that receives light of the first wavelength emitted from the light emitting element;
a second light receiving element that receives light of the second wavelength emitted from the light emitting element;
Equipped with
By comparing the ratio of the first light receiving output from the first light receiving element and the second light receiving output from the second light receiving element with a predetermined threshold value, the type of smoke that has flowed into the smoke detection space or the smoke concerned can be determined. A photoelectric smoke detector characterized in that the type of fire that has occurred is identified, and the threshold value is changed according to the magnitude of the first light reception output or the second light reception output.
検煙空間に向けて第1波長の光と前記第1波長とは異なる第2波長の光を同時に発する発光素子と、
前記発光素子から発せられる前記第1波長の光を受光する第1受光素子と、
前記発光素子から発せられる前記第2波長の光を受光する第2受光素子と、
を備え、
前記第1受光素子からの第1受光出力と前記第2受光素子からの第2受光出力との比率を所定の閾値と比較することにより、前記検煙空間に流入した煙の種類又は当該煙を発生させた火災の種類を識別し、前記第1受光出力又は前記第2受光出力が大きくなるに従い前記閾値を増加させることを特徴とする光電式煙感知器。
a light emitting element that simultaneously emits light at a first wavelength and light at a second wavelength different from the first wavelength toward a smoke detection space;
a first light receiving element that receives light of the first wavelength emitted from the light emitting element;
a second light receiving element that receives light of the second wavelength emitted from the light emitting element;
Equipped with
By comparing the ratio of the first light receiving output from the first light receiving element and the second light receiving output from the second light receiving element with a predetermined threshold value, the type of smoke that has flowed into the smoke detection space or the smoke concerned can be determined. A photoelectric smoke detector characterized in that the type of fire that has occurred is identified, and the threshold value is increased as the first light reception output or the second light reception output increases.
請求項1又は2の何れかに記載の光電式煙感知器であって
前記煙の種類を識別した場合は、識別結果である煙の種類を示す情報を火災受信機へ送信することを特徴とする光電式煙感知器。

The photoelectric smoke detector according to claim 1 or 2 ,
A photoelectric smoke detector characterized in that, when the type of smoke is identified, information indicating the type of smoke, which is the identification result, is transmitted to a fire receiver.

JP2022135520A 2018-08-28 2022-08-29 photoelectric smoke detector Active JP7397934B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022135520A JP7397934B2 (en) 2018-08-28 2022-08-29 photoelectric smoke detector
JP2023189128A JP2023181526A (en) 2018-08-28 2023-11-06 photoelectric smoke detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018158806A JP7133396B2 (en) 2018-08-28 2018-08-28 photoelectric smoke detector
JP2022135520A JP7397934B2 (en) 2018-08-28 2022-08-29 photoelectric smoke detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018158806A Division JP7133396B2 (en) 2018-08-28 2018-08-28 photoelectric smoke detector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023189128A Division JP2023181526A (en) 2018-08-28 2023-11-06 photoelectric smoke detector

Publications (2)

Publication Number Publication Date
JP2022165428A JP2022165428A (en) 2022-10-31
JP7397934B2 true JP7397934B2 (en) 2023-12-13

Family

ID=69668086

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018158806A Active JP7133396B2 (en) 2018-08-28 2018-08-28 photoelectric smoke detector
JP2022135520A Active JP7397934B2 (en) 2018-08-28 2022-08-29 photoelectric smoke detector
JP2023189128A Pending JP2023181526A (en) 2018-08-28 2023-11-06 photoelectric smoke detector

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018158806A Active JP7133396B2 (en) 2018-08-28 2018-08-28 photoelectric smoke detector

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023189128A Pending JP2023181526A (en) 2018-08-28 2023-11-06 photoelectric smoke detector

Country Status (1)

Country Link
JP (3) JP7133396B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291175A (en) 2000-02-01 2001-10-19 Nittan Co Ltd Sensor and monitoring and controlling system
JP2003248873A (en) 2002-02-25 2003-09-05 Matsushita Electric Works Ltd Composite fire sensor
JP2004325211A (en) 2003-04-24 2004-11-18 Hochiki Corp Light scattering smoke detector
WO2005048208A1 (en) 2003-11-17 2005-05-26 Hochiki Corporation Smoke sensor using scattering light

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109631A (en) * 1991-10-31 1994-04-22 Hochiki Corp Fire alarm

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291175A (en) 2000-02-01 2001-10-19 Nittan Co Ltd Sensor and monitoring and controlling system
JP2003248873A (en) 2002-02-25 2003-09-05 Matsushita Electric Works Ltd Composite fire sensor
JP2004325211A (en) 2003-04-24 2004-11-18 Hochiki Corp Light scattering smoke detector
WO2005048208A1 (en) 2003-11-17 2005-05-26 Hochiki Corporation Smoke sensor using scattering light

Also Published As

Publication number Publication date
JP2020035029A (en) 2020-03-05
JP2022165428A (en) 2022-10-31
JP7133396B2 (en) 2022-09-08
JP2023181526A (en) 2023-12-21

Similar Documents

Publication Publication Date Title
US9541501B2 (en) Scattered-light smoke detector with a two-color light-emitting diode
US9569946B2 (en) Smoke alarm according to the scattered light principle having a two-color light-emitting diode with different sizes of LED chips
CN109601019B (en) Method for fire detection based on the scattered light principle and scattered light smoke alarm
US7474227B2 (en) Multiwavelength smoke detector using white light LED
US9666049B2 (en) Smoke detection unit with light-emitting diode and photo-detector, and with an LED chip arranged in the light-emitting diode and with a photosensor for determining a degree of aging and/or a compensation value for a light current, as well as a light-emitting diode
CN106448029A (en) Smoke detector and optical smoke detection unit for smoke detector
JP6420651B2 (en) Photoelectric smoke detector
AU2006251047B9 (en) A flame detector and a method
JP4010455B2 (en) Scattered smoke detector
AU2006251046B2 (en) Detector
JP7397934B2 (en) photoelectric smoke detector
US11506590B2 (en) Scattered light smoke detector having a two-color LED, a photosensor, and a wavelength-selective polarizer connected upstream of the photosensor or connected downstream of the two-color LED, and suitable use of such a polarizer
JPH04205400A (en) Smoke sensor
JP7166386B2 (en) Smoke detectors
JP7150497B2 (en) photoelectric smoke detector
JP2002056475A (en) Photoelectric smoke detector
JP7131982B2 (en) Smoke detectors and smoke detection systems
RU2805772C1 (en) Fiber optic smoke and heat convection flow sensor
JP2022097329A (en) Fire detection device, disaster prevention facility, and fire detection method
JP2004320373A (en) Photodetecting sensor device
JP4323360B2 (en) Status information acquisition system for fire detectors
JPS63167242A (en) Fire judging device
CN115482643A (en) Fire smoke detector and detection method thereof
JPH056489A (en) Photoelectric smoke sensor
JPS60134399A (en) Fire sensor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231201

R150 Certificate of patent or registration of utility model

Ref document number: 7397934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150