JP2751353B2 - Method and apparatus for electrically measuring wafer characteristics - Google Patents

Method and apparatus for electrically measuring wafer characteristics

Info

Publication number
JP2751353B2
JP2751353B2 JP7662889A JP7662889A JP2751353B2 JP 2751353 B2 JP2751353 B2 JP 2751353B2 JP 7662889 A JP7662889 A JP 7662889A JP 7662889 A JP7662889 A JP 7662889A JP 2751353 B2 JP2751353 B2 JP 2751353B2
Authority
JP
Japan
Prior art keywords
wafer
measurement
pressure
measuring
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7662889A
Other languages
Japanese (ja)
Other versions
JPH02257071A (en
Inventor
晶 宇佐美
峰夫 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP7662889A priority Critical patent/JP2751353B2/en
Publication of JPH02257071A publication Critical patent/JPH02257071A/en
Application granted granted Critical
Publication of JP2751353B2 publication Critical patent/JP2751353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ウェハ特性の電気的測定方法および装置、
特にMOS型半導体集積回路の製造工程におけるMOS型半導
体のC−V特性,C−t特性などの高速多点測定に好適な
方法および装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method and an apparatus for electrically measuring wafer characteristics,
In particular, the present invention relates to a method and an apparatus suitable for high-speed multipoint measurement of CV characteristics, Ct characteristics, etc. of a MOS semiconductor in a manufacturing process of a MOS semiconductor integrated circuit.

[従来の技術] MOS型半導体デバイスの開発においては、MOSの不純物
濃度,小数キャリアの発生ライフタイムおよび小数キャ
リアの発生速度などを測定してデバイスの性能向上や製
造プロセスでの歩留り向上に寄与するために、MOS型半
導体のC−V特性,C−t特性などの測定を行っている。
通常、この測定は、ウェハ状態のまま行われ、ウェハの
表面に数百Å〜数千Åの金属薄膜からなる多数の評価用
電極を設け、その評価用電極とウェハ裏面全体に蒸着で
設けたオーミック電極との間の容量の電圧依存性(C−
V特性)およびパルス的な電圧印加後の容量の過渡応答
特性(C−t特性)を容量計にて測定する方法がとられ
ている(M.Zerbst;A.Angrew Phys.22(1960)30および
宇佐美晶:応用物理47,(1978),660参照)。
[Prior art] In the development of a MOS type semiconductor device, the impurity concentration of a MOS, the generation lifetime of a minority carrier, the generation speed of a minority carrier, and the like are measured to contribute to the improvement of device performance and the yield in a manufacturing process. For this purpose, CV characteristics and Ct characteristics of MOS type semiconductors are measured.
Normally, this measurement is performed in a wafer state, and a large number of evaluation electrodes made of a metal thin film of several hundred to several thousand square meters are provided on the surface of the wafer, and the evaluation electrodes and the entire back surface of the wafer are provided by vapor deposition. Voltage dependence of capacitance between ohmic electrode (C-
V. characteristic and the transient response characteristic (Ct characteristic) of the capacitance after pulse-like voltage application are measured by a capacitance meter (M. Zerbst; A. Angrew Phys. 22 (1960) 30). And Akira Usami: Applied Physics 47, (1978), 660).

この際、容量計とウェハの評価用電極との電気的接続
は、従来、金属性針状プローブを用いて行っている。そ
して、プローブを被測定電極に対して押圧して測定を行
い、測定点が多点に及ぶ場合には、1箇所の測定を行っ
た後、測定を終えた被測定電極からプローブを離し、次
の被測定電極へプローブを位置合わせし、そして、該被
測定電極にプローブを押圧するという操作を行ったのち
測定を行うという手順を繰返していた。
At this time, the electrical connection between the capacitance meter and the evaluation electrode of the wafer is conventionally performed using a metallic needle probe. Then, the probe is pressed against the electrode to be measured, and the measurement is performed. When the measurement points reach multiple points, the measurement is performed at one point, and then the probe is separated from the electrode to be measured, and the next step is performed. The procedure of positioning the probe to the electrode to be measured, pressing the probe against the electrode to be measured, and then performing the measurement was repeated.

[発明が解決しようとする課題] しかしながら、前述のような金属性プローブは評価用
電極との接触を完全なものとするために、先端部が鋭利
な金属製針状プローブであるので、評価用電極およびウ
ェハを損傷することが避け難いという問題があった。さ
らに前述のように1箇所測定する毎に、ウェハまたはプ
ローブを移動する方法では、1枚のウェハを測定するの
に多大の時間を要するという問題があった。これらの理
由から、従来の方法では、製造工程での評価には使えな
いという問題があった。
[Problems to be Solved by the Invention] However, since the metallic probe as described above is a metal needle probe having a sharp tip in order to complete the contact with the electrode for evaluation, There is a problem that it is unavoidable to damage the electrodes and the wafer. Further, as described above, the method of moving the wafer or the probe every time one measurement is performed has a problem that it takes a lot of time to measure one wafer. For these reasons, the conventional method has a problem that it cannot be used for evaluation in a manufacturing process.

本発明の目的は前記問題点を解消し、被測定電極およ
びウェハを損傷することなく、しかも高速で多点の測定
が可能なウェハ特性の電気的測定方法および装置を提供
することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method and an apparatus for electrically measuring wafer characteristics capable of solving the above-mentioned problems and performing high-speed multi-point measurement without damaging an electrode to be measured and a wafer.

[課題を解決するための手段] 上記目的を達成するために、本発明のウェハ特性の電
気的測定方法は、被測定電極群が形成されたウェハの上
に、粒子径が1〜200μmの導電粒子を5〜20体積%で
含み、厚みが0.1〜2mmでその厚み方向に圧力が加えられ
た部分が導電性状態となる感圧導電性ゴム板と、被測定
電極群に対応して位置する測定用端子群を備えた端子保
持板とをこの順に重ね、これらに圧接力を付与した状態
で被測定点を切換えて順次測定する工程を含むことを特
徴とする。
[Means for Solving the Problems] In order to achieve the above object, the method for electrically measuring wafer characteristics according to the present invention provides a method for electrically measuring wafer characteristics, comprising the steps of: A pressure-sensitive conductive rubber plate that contains particles at 5 to 20% by volume and has a thickness of 0.1 to 2 mm and a pressure applied in the thickness direction is in a conductive state, and is located corresponding to the electrode group to be measured. The method includes a step of stacking a terminal holding plate provided with a group of measuring terminals in this order, switching the points to be measured in a state where a pressing force is applied thereto, and sequentially measuring.

また、本発明のウェハ特性の電気的測定装置は、一面
が被測定電極群が形成されたウェハに当接され、粒子径
が1〜200μmの導電粒子を5〜20体積%で含み、厚み
が0.1〜2mmでその厚み方向に圧力が加えられた部分が導
電性状態となる感圧導電性ゴム板と、この感圧導電性ゴ
ム板の他面と対向し所定の間隙を有して設けられた絶縁
性の端子保持板と、この端子保持板に保持され、端子保
持板の表面から間隙内に突出する測定用端子群と、端子
保持板を感圧導電性ゴム板と共にウェハに圧接させ、圧
接力を付与する圧接力付与手段と、測定用端子群の測定
点を切換えて順次測定する測定手段とを備えたことを特
徴とする。
The apparatus for electrically measuring wafer characteristics according to the present invention is configured such that one surface thereof is in contact with the wafer on which the electrode group to be measured is formed, contains 5 to 20% by volume of conductive particles having a particle diameter of 1 to 200 μm, and has a thickness of 5 to 20% by volume. A pressure-sensitive conductive rubber plate whose pressure is applied in the thickness direction at a thickness of 0.1 to 2 mm is in a conductive state, and is provided with a predetermined gap facing the other surface of the pressure-sensitive conductive rubber plate. An insulating terminal holding plate, a group of measuring terminals held by the terminal holding plate and protruding into the gap from the surface of the terminal holding plate, and the terminal holding plate pressed against the wafer together with the pressure-sensitive conductive rubber plate, It is characterized by comprising a pressing force applying means for applying a pressing force, and a measuring means for sequentially measuring by switching measurement points of the measuring terminal group.

本発明におけるウェハとは、電流を印加することによ
り、電位差が生ずるウェハであり、代表的にはMOS型半
導体が形成されシリコンウェハが挙げられる。
The wafer in the present invention is a wafer in which a potential difference is generated by applying a current, and typically, a silicon wafer on which a MOS type semiconductor is formed.

本発明におけるウェハ特性とは、ウェハに通電するこ
とによって得られる特性であり、抵抗,静電容量および
リアクタンスならびにウェハに組込まれた回路の正常あ
るいは異常などである。
The wafer characteristic in the present invention is a characteristic obtained by energizing the wafer, and includes a resistance, a capacitance, a reactance, and a normal or abnormal circuit incorporated in the wafer.

本発明において電気的測定とは、ウェハに電流あるい
は電圧を印加して測定を行うことをいう。
In the present invention, the electrical measurement refers to performing a measurement by applying a current or a voltage to a wafer.

本発明における被測定電極とは、ウェハ上に予め測定
用に設けられた配列パターン、例えばアルミニウム,
金,アルミニウム−シリコン,インジウムチンオキサイ
ドなどによる配列パターンの他、測定用に配列パターン
が形成されていなくとも感圧導電性ゴム板を圧接させて
通電する部分のことを意味する。
The electrode to be measured in the present invention is an array pattern provided in advance on the wafer for measurement, for example, aluminum,
In addition to an array pattern made of gold, aluminum-silicon, indium tin oxide, etc., it means a portion to which a pressure-sensitive conductive rubber plate is pressed and energized even if no array pattern is formed for measurement.

[実施例] 以下、図面に基いて本発明の実施例を説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明にかかるウェハ特性の電気的測定装置
の一実施例を示す断面図であり、1は被測定物であるウ
ェハAが載置されるステージで、樹脂等で形成されてい
る。ステージ1は不図示のメインフレームに固定され、
その上面に金メッキを施した銅製端子板11が設けられて
いる。2は、例えばエポキシ,ポリエステル,ポリイミ
ドなどの樹脂、あるいはそれらとガラス繊維や無機充填
剤との複合材、またはガラスやセラミックよりなる絶縁
性の端子保持板であり、その中央部においてウェハAの
表面に形成される後述の被測定電極群の配列パターンに
対応した位置において測定用端子群21が設けられてい
る。測定用端子群21はリベット状導電体、あるいはメッ
キ,エッチング蒸着,印刷などの手段により端子保持板
2に形成することもできる。端子保持板2の下方には、
その厚さ方向に圧力が加えられたとき、その部分が厚さ
方向に導電性状態となる感圧導電性ゴム板3が所定の間
隙S(例えば50μm)離間した状態でリテーナ31により
保持されている。そして、前述した測定用端子群21の先
端部は間隙S内に突出し感圧導電性ゴム板3と当接され
ている。端子保持板2の周辺部には測定用端子群21の個
数に対応した個数の接続用端子群22が設けられ、測定用
端子群21と接続用端子群22との個々の端子は、それぞれ
プリント配線23によって接続されている。そして、測定
用端子群21の上端側はプリント配線23を含みエポキシ樹
脂などの絶縁レジスト24でもって被覆されている。
FIG. 1 is a cross-sectional view showing an embodiment of an electric measurement apparatus for measuring wafer characteristics according to the present invention. Reference numeral 1 denotes a stage on which a wafer A to be measured is mounted, which is formed of resin or the like. . Stage 1 is fixed to a main frame (not shown),
A gold-plated copper terminal plate 11 is provided on the upper surface. Reference numeral 2 denotes an insulating terminal holding plate made of a resin such as epoxy, polyester, polyimide, or the like, or a composite material thereof with glass fiber or an inorganic filler, or an insulating terminal holding plate made of glass or ceramic. The measurement terminal group 21 is provided at a position corresponding to the arrangement pattern of the electrode group to be measured, which will be described later. The measurement terminal group 21 can also be formed on the terminal holding plate 2 by means of a rivet-shaped conductor, plating, etching vapor deposition, printing, or the like. Below the terminal holding plate 2,
When pressure is applied in the thickness direction, the pressure-sensitive conductive rubber plate 3 whose portion becomes conductive in the thickness direction is held by the retainer 31 with a predetermined gap S (for example, 50 μm) apart. I have. The tip of the measuring terminal group 21 projects into the gap S and is in contact with the pressure-sensitive conductive rubber plate 3. A number of connection terminal groups 22 corresponding to the number of measurement terminal groups 21 are provided in the peripheral portion of the terminal holding plate 2, and the individual terminals of the measurement terminal group 21 and the connection terminal group 22 are printed. They are connected by wiring 23. The upper end side of the measuring terminal group 21 includes the printed wiring 23 and is covered with an insulating resist 24 such as epoxy resin.

さらに、端子保持板2は絶縁レジスト24を介在させ
て、加圧を均一に行うための発泡ウレタンまたは発泡ゴ
ムからなる弾性板4と、弾性板4は加圧板5とそれぞれ
連接されている。加圧板5は不図示のメインフレームに
上下動可能に支持されたロッド51に保持され、ロッド51
は不図示のエアシリンダのピストンと連結されている。
Further, the terminal holding plate 2 is connected to the elastic plate 4 made of urethane foam or foam rubber for uniform pressing with the insulating resist 24 interposed therebetween, and the elastic plate 4 is connected to the pressing plate 5 respectively. The pressure plate 5 is held by a rod 51 supported on a main frame (not shown) so as to be vertically movable.
Is connected to a piston of an air cylinder (not shown).

6はスキャナであり前述の接続用端子群22の個々の端
子と配線62でもって、およびステージ1の端子板11と配
線61でもって接続され、スキャナ6はコンピュータを含
む計測制御器7に接続されている。
Reference numeral 6 denotes a scanner, which is connected to the individual terminals of the connection terminal group 22 and the wiring 62, and to the terminal plate 11 of the stage 1 by a wiring 61, and the scanner 6 is connected to a measurement controller 7 including a computer. ing.

本発明に用いる感圧導電性ゴム板3の素材としては、
絶縁性弾性体中に導電粒子を混合してなる導電性ゴムで
あり、(イ)導電粒子が主として圧接方向に配列して導
電路を形成したもの、および(ロ)導電粒子がウェハA
の被測定電極群の配列パターンに対応させて偏在されつ
つ、厚み方向に配列したものを用いることができるが、
後者の方が被測定電極の面積が小さい場合(例えば0.2m
m2以下)および被測定電極間の間隙が狭い場合(例えば
0.2mm以下)に所望箇所の導通が確実に得られ、好まし
い。絶縁性弾性体としては、シリコンゴム,ウレタンゴ
ム,ネオプレンゴム,アクリルゴム,ポリブタジエンゴ
ム,ブチルゴム,ブリイソプレンゴム,フッ素ゴム,ホ
スファーゼンゴムなどのゴム弾性性であり、導電粒子と
してはカーボンおよび金,銀,銅,ニッケル,錫,アウ
ミニウムなどの金属粒子、およびそれらに貴金属メッキ
を施したもの、およびポリスチレンなどのポリマー粒子
やジルコニア,アルミナ,シリカ,チタニアなどの無機
粒子に貴金属メッキを施したものである。さらに導電粒
子は、その粒子径が1〜200μmの範囲であることが必
要である。粒子径が1μm未満になると、測定を行うに
十分な接触状態が得られ難くなる。また、200μmを越
えると、被測定電極を損傷するおそれが生じる。
As a material of the pressure-sensitive conductive rubber plate 3 used in the present invention,
A conductive rubber in which conductive particles are mixed in an insulating elastic body; (a) conductive particles mainly formed in a pressing direction to form a conductive path; and (b) conductive particles formed on a wafer A.
While it is unevenly distributed corresponding to the arrangement pattern of the electrode group to be measured, it is possible to use those arranged in the thickness direction,
In the latter case, the area of the electrode to be measured is smaller (for example, 0.2 m
m 2 or less) and when the gap between the electrodes to be measured is narrow (for example,
(0.2 mm or less), which is preferable because conduction at a desired portion can be reliably obtained. The insulating elastic body has rubber elasticity such as silicon rubber, urethane rubber, neoprene rubber, acrylic rubber, polybutadiene rubber, butyl rubber, briisoprene rubber, fluorine rubber, phosphazene rubber, and the conductive particles include carbon and gold. , Silver, copper, nickel, tin, auminium and other metal particles, and those with noble metal plating, and polymer particles such as polystyrene and inorganic particles such as zirconia, alumina, silica, and titania with noble metal plating It is. Further, the conductive particles need to have a particle diameter in the range of 1 to 200 μm. When the particle diameter is less than 1 μm, it is difficult to obtain a sufficient contact state for performing the measurement. If it exceeds 200 μm, the electrode to be measured may be damaged.

また、感圧導電性ゴム板3は、厚さが0.1〜2mm、さら
に導電粒子の混合量が5〜20体積%であることが圧接時
における導電路の形成上必要であり、その硬度が20〜55
(JIS-AHs)であることが好ましい。このような感圧導
電性ゴム板としては、例えば、日本合成ゴム(株)製JS
R PCR305-02を用いることができる。
The pressure-sensitive conductive rubber plate 3 needs to have a thickness of 0.1 to 2 mm and a mixed amount of conductive particles of 5 to 20% by volume in order to form a conductive path at the time of pressure welding. ~ 55
(JIS-AHs). As such a pressure-sensitive conductive rubber plate, for example, JS manufactured by Nippon Synthetic Rubber Co., Ltd.
R PCR305-02 can be used.

なお、被測定物であるウェハAには、その下面にオー
ミック電極A1が全面に蒸着などにより形成され、上面に
例えば第2図に示すように等ピッチで被測定電極として
ショットキー電極A2が形成される。
Incidentally, the wafer A to be measured, an ohmic electrode A 1 is formed by vapor deposition on the entire surface on its lower surface, the Schottky electrode A 2 as measured electrodes at an equal pitch, as shown in FIG. 2 for example on the upper surface Is formed.

かかるウェハAの特性を上述した電気的測定装置で測
定するに際しては、まず、ステージ1の上にオーミック
電極A1と端子板11とが接触するようにウェハAを載置す
る。そして、不図示のエアシリンダなどにより端子保持
板2を含み加圧板5を下降し、感圧導電性ゴム板3とウ
ェハAの表面とを当接させ加圧し、例えば端子保持板2
と感圧導電性ゴム板3との間隙Sが消失するまで加圧
し、これにより加圧導電性ゴム板3において測定用端子
群21とこれに対応するウェハAの被測定電極としてのシ
ョットキー電極A2との間を感圧導電性ゴム板3を介して
電気的に接続する。このとき感圧導電性ゴム板に加わる
圧接力が、通常、5〜1000g/mm2、好ましくは10〜500g/
mm2となるようにエアシリンダなどによる加圧力を調整
する。圧接力が5g/mm2未満であると測定を行うに必要な
充分な導通状態が得られず、1000g/mm2を越えると被測
定電極ひいてはウェハAに損傷を与えることとなる。
In measuring an electrical measuring apparatus described above the properties of such wafers A, first, placing the wafer A so that the ohmic electrodes A 1 and the terminal plate 11 on the stage 1 is in contact. Then, the pressure plate 5 including the terminal holding plate 2 is lowered by an air cylinder or the like (not shown), and the pressure-sensitive conductive rubber plate 3 is brought into contact with the surface of the wafer A and pressurized.
The pressure is applied until the gap S between the pressure-sensitive conductive rubber plate 3 and the pressure-sensitive conductive rubber plate 3 disappears, so that the measurement terminal group 21 and the corresponding Schottky electrode as the electrode to be measured on the wafer A in the pressed conductive rubber plate 3 between the a 2 via the pressure-sensitive conductive rubber plate 3 are electrically connected. At this time, the pressing force applied to the pressure-sensitive conductive rubber plate is usually 5 to 1000 g / mm 2 , preferably 10 to 500 g /
Adjust the pressing force by an air cylinder or the like so as to obtain mm 2 . If the pressing force is less than 5 g / mm 2 , a sufficient conduction state required for measurement cannot be obtained, and if it exceeds 1000 g / mm 2 , the electrode to be measured and thus the wafer A will be damaged.

かくて、上記圧接力を付与した状態でスキャナ6およ
び計測制御器7により、被測定電極群の中から所定の電
極を選択し、ウェハAの特定の電気的測定を行えばよ
い。例えばウェハA表面に設けられた多数のMOS型半導
体のC−V特性およびC−t特性を測定する場合には、
ウェハA表面の被測定電極群と感圧導電性ゴム板を介し
て電気的に接続された測定用端子群の中から1つの測定
用端子を選択し、ウェハAのオーミック電極A1と接触す
る端子板11を共通電極として測定を行う。この1つの測
定用端子の計測が終了したら、計測制御器に接続された
スキャナ6によって次の測定用端子に切換え、同様に測
定を行う。このようにして、ウェハA上の多数のMOS型
半導体について、測定用端子のウェハAからの離間,移
動および加圧を繰返して行うことなくスキャナ6によっ
て測定用端子の切換えを行うので、高速の測定を行うこ
とができる。
Thus, a predetermined electrode may be selected from the group of electrodes to be measured by the scanner 6 and the measurement controller 7 in a state where the pressing force is applied, and specific electrical measurement of the wafer A may be performed. For example, when measuring CV characteristics and Ct characteristics of many MOS type semiconductors provided on the surface of the wafer A,
Select one of the measuring terminals from the electrically connected to measuring terminal group via the measured electrode group and the pressure-sensitive conductive rubber plate of the wafer A surface in contact with the ohmic electrode A 1 of the wafer A The measurement is performed using the terminal plate 11 as a common electrode. When the measurement of this one measurement terminal is completed, the measurement is switched to the next measurement terminal by the scanner 6 connected to the measurement controller, and the measurement is performed similarly. In this manner, the measurement terminals are switched by the scanner 6 without repeating the separation, movement, and pressurization of the measurement terminals from the wafer A for a large number of MOS semiconductors on the wafer A. A measurement can be made.

また、例えば四探針法を用いて測定する場合には、被
測定電極と感圧導電性ゴム板3を介して電気的に接続さ
れた測定用端子群21の中から4個以上の複数の測定用端
子を選び、これらの任意の2点間に電流を流し、少なく
とも他の2点間の電圧を測定する。その後、これらの電
極を切換え制御することにより、四探針法によるウェハ
の電気的測定を行うことができる。
For example, when the measurement is performed by using the four-point probe method, four or more measurement terminals 21 are electrically connected to the electrode to be measured via the pressure-sensitive conductive rubber plate 3. A measurement terminal is selected, a current is applied between these two arbitrary points, and at least a voltage between the other two points is measured. Thereafter, by switching and controlling these electrodes, electrical measurement of the wafer by the four probe method can be performed.

(実施例) 第1図に示す如き測定装置を用いて、被測定用ウェハ
Aとして第2図に示す如き被測定電極群を形成したPチ
ャンネルMOS型半導体を形成したシリコンウェハを用
い、電気的測定を行った。ショットキー電極A2のピッチ
は3mm、径は1.2mmとした。感圧導電性ゴム板3として、
日本合成ゴム(株)製JSR PCR305-02を用い、端子保持
板2には感圧導電性ゴム板3と当接する先端に金メッキ
を施した直径1.2mmの測定用端子群21をショットキー電
極A2と対応する位置に形成し、弾性板4としては市販の
厚さ10mmの発泡ゴム板を用いた。そして、ウェハのC−
V特性,C−t特性,およびC−t特性から得られる緩和
時間Tfの測定を行い、それぞれ第3図,第4図および第
5図の結果を得た。
(Embodiment) Using a measuring device as shown in FIG. 1, a silicon wafer on which a P-channel MOS type semiconductor having a group of electrodes to be measured as shown in FIG. A measurement was made. The pitch of the Schottky electrode A 2 is 3 mm, the diameter was 1.2 mm. As the pressure-sensitive conductive rubber plate 3,
Using a JSR PCR305-02 manufactured by Nippon Synthetic Rubber Co., Ltd., the terminal holding plate 2 is a gold-plated tip for contacting the pressure-sensitive conductive rubber plate 3 with a measuring terminal group 21 having a diameter of 1.2 mm and a Schottky electrode A. The elastic plate 4 was formed at a position corresponding to 2, and a commercially available foamed rubber plate having a thickness of 10 mm was used. And C-
The V characteristic, the Ct characteristic, and the relaxation time Tf obtained from the Ct characteristic were measured, and the results shown in FIGS. 3, 4, and 5, respectively, were obtained.

第3図は容量Cと電圧Vの関係を示し、MOSキャパシ
タの典型的なC−V特性が得られることがわかる。
FIG. 3 shows the relationship between the capacitance C and the voltage V, and it can be seen that typical CV characteristics of a MOS capacitor can be obtained.

第4図はMOSキャパシタにおける電圧パルス印加後の
容量Cの過渡応答特性を示す。緩和時間Tfは容量Cが飽
和値に達する時間tより求められる。
FIG. 4 shows a transient response characteristic of the capacitance C after application of a voltage pulse in the MOS capacitor. The relaxation time Tf is obtained from the time t at which the capacitance C reaches the saturation value.

第5図は感圧導電性ゴム板を加圧する圧力と緩和時間
Tfとの関係を示し、測定用端子の断面積あたりの圧接力
が20g/mm2以上で良好な測定が行えることがわかる。
Fig. 5 shows the pressure and relaxation time for pressing the pressure-sensitive conductive rubber plate.
The relationship with Tf is shown, and it can be seen that good measurement can be performed when the pressure contact force per section area of the measuring terminal is 20 g / mm 2 or more.

第6図は第3図に示した測定結果をもとにしてMOS型
半導体のキャパシタンスの変化から小数キャリアの発生
ライフタイム(τg)および発生速度(Sg)の算出のた
めのゼルプスト解析を行った結果を示し、これから発生
ライフタイム(τg)=2.54μsecと、発生速度(Sg)
=0.228cm/secと求められ、従来の金属性針状プローブ
を用いて測定し算出した発生ライフタイム(τg)=2.
78μsec、発生速度(Sg)=0.272cm/secと同等であっ
た。
FIG. 6 shows a Zelpst analysis for calculating the generation lifetime (τg) and generation speed (Sg) of the minority carrier from the change in the capacitance of the MOS semiconductor based on the measurement results shown in FIG. The results are shown, and the generation lifetime (τg) = 2.54 μsec and the generation speed (Sg)
= 0.228 cm / sec, and the calculated lifetime calculated using a conventional metallic needle probe (τg) = 2.
The generation speed (Sg) was equivalent to 78 μsec and 0.272 cm / sec.

[発明の効果] 以上の説明から明らかなように、本発明にかかるウェ
ハ特性の電気的測定方法によれば、ウェハの損傷を伴う
ことなく、微細ピッチの被測定電極および多点の被測定
電極に対しても同時に測定端子を配置して測定すること
ができる利点を有し、半導体集積回路の開発を容易にす
るとともに、一度に多点の測定が可能となり、半導体集
積回路の生産性を向上させることができる。また、本発
明にかかるウェハ特性の測定装置では、上述した方法を
実施する上で好適に用いられ、構造が簡単でコスト的に
有利である。
[Effects of the Invention] As is clear from the above description, according to the method for electrically measuring wafer characteristics according to the present invention, the electrode to be measured at a fine pitch and the electrode to be measured at multiple points without damaging the wafer. Has the advantage that measurement terminals can be arranged and measured at the same time, making it easy to develop semiconductor integrated circuits and enabling multiple measurements at one time, improving the productivity of semiconductor integrated circuits. Can be done. Further, the apparatus for measuring wafer characteristics according to the present invention is suitably used for performing the above-described method, has a simple structure, and is advantageous in cost.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のウェハ特性の測定装置の一実施例を示
す断面図、 第2図はウェハ上に設けられる被測定電極の一例を示す
配列パターン図、 第3図はpチャンネルMOS型半導体を形成したシリコン
ウェハのC−V特性の評価結果を示すグラフ、 第4図は同じくC−t特性の評価結果を示すグラフ、 第5図は同じく圧力−緩和時間の関係測定結果を示すグ
ラフ、 第6図は第3図の結果に基いてゼルプスト解析を行った
結果を示すグラフである。 1……ステージ、2……端子保持板、3……感圧導電性
ゴム板、4……弾性板、5……加圧板、6……スキャ
ナ、7……計測制御器、21……測定用端子群、22……接
続用端子群。
FIG. 1 is a cross-sectional view showing an embodiment of a wafer characteristic measuring apparatus according to the present invention, FIG. 2 is an array pattern diagram showing an example of an electrode to be measured provided on a wafer, and FIG. 3 is a p-channel MOS type semiconductor. FIG. 4 is a graph showing the evaluation results of the Ct characteristics of the silicon wafer on which is formed, FIG. 4 is also a graph showing the evaluation results of the Ct characteristics, FIG. FIG. 6 is a graph showing the result of performing a Zelpst analysis based on the result of FIG. DESCRIPTION OF SYMBOLS 1 ... Stage, 2 ... Terminal holding plate, 3 ... Pressure sensitive conductive rubber plate, 4 ... Elastic plate, 5 ... Pressing plate, 6 ... Scanner, 7 ... Measurement controller, 21 ... Measurement Terminal group, 22 ... Connection terminal group.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被測定電極群が形成されたウェハの上に、
粒子径が1〜200μmの導電粒子を5〜20体積%で含
み、厚みが0.1〜2mmでその厚み方向に圧力が加えられた
部分が導電性状態となる感圧導電性ゴム板と、前記被測
定電極群に対応して位置する測定用端子群を備えた端子
保持板とをこの順に重ね、これらに圧接力を付与した状
態で被測定点を切換えて順次測定する工程を含むことを
特徴とするウェハ特性の電気的測定方法。
1. A wafer on which a group of electrodes to be measured is formed,
A pressure-sensitive conductive rubber plate containing 5 to 20% by volume of conductive particles having a particle size of 1 to 200 μm, a thickness of 0.1 to 2 mm, and a portion where pressure is applied in the thickness direction being in a conductive state; A terminal holding plate provided with a measuring terminal group located in correspondence with the measuring electrode group is stacked in this order, and a step of sequentially measuring by switching measurement points in a state in which a pressing force is applied to the terminal holding plate is provided. Method for electrical measurement of wafer characteristics.
【請求項2】一面が、被測定電極群が形成されたウェハ
に当接され、粒子径が1〜200μmの導電粒子を5〜20
体積%で含み、厚みが0.1〜2mmでその厚み方向に圧力が
加えられた部分が導電性状態となる感圧導電性ゴム板
と、 この感圧導電性ゴム板の他面と対向し所定の間隙を有し
て設けられた絶縁性の端子保持板と、 この端子保持板に保持され、端子保持板の表面から前記
間隙内に突出する測定用端子群と、 前記端子保持板を前記感圧導電性ゴム板と共に前記ウェ
ハに圧接させ、圧接力を付与する圧接力付与手段と、 前記測定用端子群の測定点を切換えて順次測定する測定
手段と、 を備えたことを特徴とするウェハ特性の電気的測定装
置。
2. One surface is brought into contact with a wafer on which a group of electrodes to be measured is formed, and conductive particles having a particle size of
A pressure-sensitive conductive rubber plate containing 0.1% to 2 mm in thickness and having a thickness of 0.1 to 2 mm and in which a pressure is applied in the thickness direction being in a conductive state; and a predetermined surface facing the other surface of the pressure-sensitive conductive rubber plate. An insulating terminal holding plate provided with a gap, a terminal group for measurement held by the terminal holding plate and protruding from the surface of the terminal holding plate into the gap, Wafer characteristics, comprising: a pressing force applying means for pressing the wafer together with the conductive rubber plate to apply a pressing force; and a measuring means for sequentially measuring by switching measurement points of the measurement terminal group. Electrical measuring device.
JP7662889A 1989-03-30 1989-03-30 Method and apparatus for electrically measuring wafer characteristics Expired - Fee Related JP2751353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7662889A JP2751353B2 (en) 1989-03-30 1989-03-30 Method and apparatus for electrically measuring wafer characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7662889A JP2751353B2 (en) 1989-03-30 1989-03-30 Method and apparatus for electrically measuring wafer characteristics

Publications (2)

Publication Number Publication Date
JPH02257071A JPH02257071A (en) 1990-10-17
JP2751353B2 true JP2751353B2 (en) 1998-05-18

Family

ID=13610632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7662889A Expired - Fee Related JP2751353B2 (en) 1989-03-30 1989-03-30 Method and apparatus for electrically measuring wafer characteristics

Country Status (1)

Country Link
JP (1) JP2751353B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2928955B2 (en) * 1991-03-29 1999-08-03 東京エレクトロン株式会社 Semiconductor device batch inspection method and apparatus

Also Published As

Publication number Publication date
JPH02257071A (en) 1990-10-17

Similar Documents

Publication Publication Date Title
EP1596212B1 (en) Work function controlled probe for measuring properties of a semiconductor wafer and method of use thereof
CN100381989C (en) Position detection device
JP2002139542A (en) Inspection method and inspection device
US7633309B2 (en) Inspection method, inspection apparatus and computer-readable storage medium storing program for inspecting an electrical property of an object
EP1637893B1 (en) Method and apparatus for testing electrical characteristics of object under test
EP1584932A1 (en) Method of testing semiconductor wafers with non-penetrating probes
JP3276267B2 (en) Electric resistance measuring device and electric resistance measuring method
JP2751353B2 (en) Method and apparatus for electrically measuring wafer characteristics
JP2751460B2 (en) Resistance measuring device
CN209784246U (en) Electrical testing device for functional thin film
JPH08111438A (en) Probe for integrated circuit element
US4990218A (en) Method of testing conductor film quality
JP2003121468A (en) Electrode prober
KR101657986B1 (en) Contact Resistance Measuring Module of Thermal Device and Measuring Apparatus Having The Same
JPS5917259A (en) Method for measuring semiconductor element
JP2901781B2 (en) Inspection method for semiconductor device
JPH06295942A (en) Substrate inspecting instrument
JPH05206233A (en) Aging equipment for semiconductor
JPH0669294A (en) Test probe device for integrated circuit
JP2707119B2 (en) Probe for board
JPH03148074A (en) Conductor-pattern testing method using measuring probe
JPS6225433A (en) Semiconductor element characteristic measuring device
JP2002257876A (en) Controlled specimen for four-probe resistance measurement device, and control method for the measurement device
JPH0961485A (en) Method for inspecting wiring of printed-wiring board and apparatus therefor
SU1045177A1 (en) Device for testing protective dielectric coating of semiconductor devices

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees