JP2745819B2 - Vapor phase film growth equipment - Google Patents

Vapor phase film growth equipment

Info

Publication number
JP2745819B2
JP2745819B2 JP40974890A JP40974890A JP2745819B2 JP 2745819 B2 JP2745819 B2 JP 2745819B2 JP 40974890 A JP40974890 A JP 40974890A JP 40974890 A JP40974890 A JP 40974890A JP 2745819 B2 JP2745819 B2 JP 2745819B2
Authority
JP
Japan
Prior art keywords
susceptor
exhaust
substrate
phase film
growth furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP40974890A
Other languages
Japanese (ja)
Other versions
JPH04209794A (en
Inventor
春典 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP40974890A priority Critical patent/JP2745819B2/en
Publication of JPH04209794A publication Critical patent/JPH04209794A/en
Application granted granted Critical
Publication of JP2745819B2 publication Critical patent/JP2745819B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は化合物半導体結晶等の成
長膜を製造する気相膜成長装置に係り、特に膜厚の均一
性を改善したもので、例えば有機金属気相成長装置(M
OCVD)に適用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase film growth apparatus for producing a growth film of a compound semiconductor crystal or the like, and more particularly to an apparatus having improved film thickness uniformity.
OCVD).

【0002】[0002]

【従来の技術】気相膜成長装置、例えば薄膜形成に有効
なMOCVDにおいては、図2に示すように成長炉20
を縦型のパンケーキ型とし、低速回転するサセプタ25
に載せた基板24に垂直に原料ガスを吹き付けてエピタ
キシャル成長させるものがある。しかし、この縦型MO
CVDでは図示するようにガス流22が大きく曲げられ
る。その結果、基板24上のガス流境界層23が平坦に
ならず、エピタキシャル層の厚さの分布は凹面状にな
る。
2. Description of the Related Art In a vapor phase film growth apparatus, for example, MOCVD effective for forming a thin film, a growth furnace 20 is used as shown in FIG.
Into a vertical pancake mold, and a susceptor 25 that rotates at a low speed.
There is a type in which a source gas is blown vertically to the substrate 24 placed on the substrate to perform epitaxial growth. However, this vertical MO
In the CVD, the gas flow 22 is largely bent as shown. As a result, the gas flow boundary layer 23 on the substrate 24 does not become flat, and the distribution of the thickness of the epitaxial layer becomes concave.

【0003】そこで従来、基板を載せたサセプタを高速
回転(1000〜1500rpm)しながらエピタキシ
ャル成長を行う方式が提案された( 例えば、米国EMC
ORE社のTurboDisk(商品名))。この方式では上部より
サセプタに垂直に吹き付けた原料ガス流が、サセプタの
回転によりサセプタ中心に引きよせられた後、外周方向
へ吐き出されるためサセプタ上に均一なガス流境界層が
形成され、これにより均一なエピタキシャル層が基板上
に成長するとされている。
Therefore, a method has been proposed in which epitaxial growth is performed while rotating a susceptor on which a substrate is mounted at a high speed (1000 to 1500 rpm) (for example, US EMC).
ORE TurboDisk (trade name)). In this method, the source gas flow blown vertically to the susceptor from the upper part is drawn to the center of the susceptor by the rotation of the susceptor, and then discharged in the outer peripheral direction, so that a uniform gas flow boundary layer is formed on the susceptor. It is stated that a uniform epitaxial layer grows on the substrate.

【0004】この均一なエピタキシャル層が成長すると
される理由は次の原理によっている。半無限平面にガス
流が衝突した場合ガス流境界層は均一となる。サセプタ
を高速回転すると、あたかも半無限平面にガス流が衝突
した場合と同様な効果がもたらされる。図3に理想的に
いったときのガス流32とガス流境界層33の様子を示
す。
The reason why this uniform epitaxial layer is grown is based on the following principle. When the gas flow collides with the semi-infinite plane, the gas flow boundary layer becomes uniform. Rotating the susceptor at high speed has the same effect as if the gas flow collides with a semi-infinite plane. FIG. 3 shows the state of the gas flow 32 and the gas flow boundary layer 33 when idealized.

【0005】[0005]

【発明が解決しようとする課題】しかし、実際の高速回
転型の縦型MOCVDでは、図4に示すように排気口が
成長炉20の下方に設けられているので、サセプタ25
の外周辺へ向かう原料ガス流42が曲げられて下方へ排
気されることになり、その曲げられた部分で「エッジ効
果」が生じ、サセプタ25周辺部のガス流境界層43が
薄くなる。その結果、通常の低速回転型成長炉ほどでは
ないが、周辺部のエピタキシャル膜厚が厚くなって均一
性が悪くなるという問題があった。
However, in an actual high-speed rotation type vertical MOCVD, the exhaust port is provided below the growth furnace 20 as shown in FIG.
The raw material gas flow 42 toward the outer periphery of the susceptor 25 is bent and exhausted downward, and an "edge effect" occurs at the bent portion, and the gas flow boundary layer 43 around the susceptor 25 becomes thin. As a result, there is a problem that the epitaxial film thickness in the peripheral portion is increased and the uniformity is deteriorated, though not as much as in a normal low-speed rotation type growth furnace.

【0006】この問題は縦型のものに限定されることな
く、原料ガスが基板に垂直に吹き付けられるものであれ
ば、成長炉が横型配置のものにも共通する。また、薄膜
のみならず厚膜であっても同様である。
[0006] This problem is not limited to the vertical type, and is common to the horizontal type of the growth furnace as long as the source gas is blown vertically to the substrate. The same applies to a thick film as well as a thin film.

【0007】本発明の目的は、半無限平面と同様なガス
流状態を強制的に作ることによって、上述した従来技術
の欠点を解消し、成長膜の均一性に優れ、しかも原料利
用効率の高い膜を成長できる気相膜成長装置を提供する
ことにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art by forcibly creating a gas flow state similar to that of a semi-infinite plane, to achieve excellent uniformity of a grown film and high efficiency in raw material utilization. An object of the present invention is to provide a vapor phase film growth apparatus capable of growing a film.

【0008】[0008]

【課題を解決するための手段】本発明は実施例で示した
図1のように、成長炉10内に導入される原料ガスが成
長炉10外へ吸引排気される際に、成長炉10内でサセ
プタ15を回転しつつサセプタ15に載せた基板14に
原料ガスを垂直に吹き付けて膜を成長させる気相膜成長
装置に適用される。
According to the present invention, as shown in FIG. 1 in the embodiment, when a raw material gas introduced into the growth furnace 10 is sucked and exhausted out of the growth furnace 10, the inside of the growth furnace 10 is removed. The present invention is applied to a vapor phase film growth apparatus for growing a film by vertically blowing a source gas onto a substrate 14 placed on the susceptor 15 while rotating the susceptor 15.

【0009】基板14に垂直に吹き付けられて吸引排気
される原料ガスを、その排気流量を制御しつつサセプタ
15の径方向外方に導いて水平に吐き出す排気整流部3
0を設け、この排気整流部30をサセプタ面の略延長面
上の成長炉10の周壁に沿って設けるようにしたもので
ある。ここでサセプタ面の略延長面上とは、サセプタ面
と面一の延長面上以外にサセプタ面近傍の、サセプタ面
と平行な面の延長面上も含まれることを意味している。
The exhaust gas rectification unit 3 guides the raw material gas blown vertically to the substrate 14 and sucked and exhausted to the outside in the radial direction of the susceptor 15 while controlling the exhaust gas flow rate to discharge the gas horizontally.
0, and the exhaust gas rectification unit 30 is provided along the peripheral wall of the growth furnace 10 on a substantially extended surface of the susceptor surface. Here, “substantially on the extension surface of the susceptor surface” means not only on the extension surface flush with the susceptor surface but also on the extension surface near the susceptor surface and parallel to the susceptor surface.

【0010】また、排気整流部30は、排気流速を上げ
るためのオリフィス16と、粒子など排気物質の逆流を
防止する網17と、排気流量を調整する弁18と、排気
流量を測定しその測定結果に応じて上記弁を制御する弁
制御手段19とから構成することが好ましい。
The exhaust rectification section 30 includes an orifice 16 for increasing the exhaust flow velocity, a net 17 for preventing backflow of exhaust substances such as particles, a valve 18 for adjusting an exhaust flow rate, and measuring and measuring the exhaust flow rate. It is preferable to comprise a valve control means 19 for controlling the valve according to the result.

【0011】さらに、排気整流部30は、成長炉壁の全
周に設けるようにしてもよいが、サセプタ15の回転中
心軸9に対して回転対称の位置に放射状に設けることが
技術的にも経済的にも望ましい。この場合、各排気整流
部30を流れる排気流量を各々調節できるようにする。
Further, the exhaust gas rectification unit 30 may be provided on the entire circumference of the growth reactor wall. Economically desirable. In this case, the flow rate of exhaust gas flowing through each exhaust rectification unit 30 can be adjusted.

【0012】[0012]

【作用】サセプタ周辺の径方向外方の空間でガス流が下
方に曲がると、その影響を受けてサセプタ面上のガス流
がサセプタ面と平行にならず、特にサセプタ周辺部では
外側に向かって斜め下方に速度ベクトルを持った流れと
なる。従って、サセプタ周辺部のガス流境界層は中心部
に比べて薄くなり、形成膜厚は中心部に比べ厚くなって
しまう。これがいわゆる「エッジ効果」といわれるもの
であり、膜厚の均一性を悪くする。この原因は、サセプ
タ周辺部でガス流が下方に曲げられるためであり、これ
は排気口がサセプタより下方にあることに起因する。
When the gas flow bends downward in the radially outer space around the susceptor, the gas flow on the susceptor surface does not become parallel to the susceptor surface due to the influence of the gas flow. The flow has a velocity vector diagonally downward. Therefore, the gas flow boundary layer around the susceptor is thinner than the central part, and the formed film thickness is thicker than the central part. This is the so-called “edge effect”, which deteriorates the uniformity of the film thickness. The reason for this is that the gas flow is bent downward around the susceptor, and this is due to the exhaust port being below the susceptor.

【0013】従って、これを解決するためには、サセプ
タ面上を中心から外方に向かって流れるガス流から見
て、その速度ベクトルの行先がサセプタ面と平行な径方
向外方にあるようにすればよい。
Therefore, in order to solve this problem, the destination of the velocity vector is located radially outward parallel to the susceptor surface when viewed from the gas flow flowing outward from the center on the susceptor surface. do it.

【0014】即ち、図1に示すように排気整流部30が
サセプタ15面の延長面外方上の成長炉壁に設けられて
いれば、サセプタ15上のガス流12はサセプタ15、
即ち基板14上をこの面に平行に中心から外方に流れ
る。さらに、その排気流量が制御されれば原料ガス流の
均一性が確保され、周辺部でも厚くならず均一なガス流
境界層13ができる。
That is, as shown in FIG. 1, if the exhaust rectification section 30 is provided on the growth reactor wall on the outer side of the extension of the susceptor 15, the gas flow 12 on the susceptor 15
That is, it flows outward from the center on the substrate 14 in parallel with this surface. Furthermore, if the exhaust flow rate is controlled, the uniformity of the raw material gas flow is ensured, and a uniform gas flow boundary layer 13 can be formed without being thick even in the peripheral portion.

【0015】このように基板14上の原料ガス流をサセ
プタ15面に平行に外周へ吐き出すことにより、回転型
の特徴である原料利用効率の向上を損なうことなく成長
膜の均一性を大幅に向上させることができる。
By discharging the source gas flow on the substrate 14 to the outer periphery in parallel with the surface of the susceptor 15 as described above, the uniformity of the grown film is greatly improved without impairing the improvement of the source utilization efficiency which is a feature of the rotary type. Can be done.

【0016】[0016]

【実施例】以下、本発明の実施例を図1および図7を用
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0017】図1は縦型MOCVDに適用した本実施例
の原理構成図を示す。縦型成長炉10は、ガス導入口1
1との接続部にあたる肩部19が下がっているパンケー
キ型ではなく、肩部19が水平なフラット型構成をして
いる。この成長炉10内に、サセプタ15が回転自在か
つその面を水平にして設けられている。成長炉10内に
導入され排気口31より炉外へ吸引排気されることにな
る原料ガスは、まずサセプタ15の中心部上方のガス導
入口11よりサセプタ15の中心に向かって吹きつけら
れ、次いでサセプタ15の高速回転(例えば1000r
pm)によりサセプタ中心部へ吹き寄せられる。サセプ
タ15上には基板14が載せられサセプタ15と共に回
転する。
FIG. 1 is a diagram showing the principle of the present embodiment applied to a vertical MOCVD. The vertical growth reactor 10 has a gas inlet 1
It is not a pancake type in which the shoulder 19 corresponding to the connecting portion with the connector 1 is lowered, but has a flat flat configuration in which the shoulder 19 is horizontal. In this growth furnace 10, a susceptor 15 is provided rotatable and its surface is horizontal. The raw material gas to be introduced into the growth furnace 10 and to be sucked and exhausted out of the furnace through the exhaust port 31 is first blown from the gas inlet 11 above the center of the susceptor 15 toward the center of the susceptor 15, and then High speed rotation of the susceptor 15 (for example, 1000 r
pm) to the center of the susceptor. The substrate 14 is placed on the susceptor 15 and rotates together with the susceptor 15.

【0018】サセプタ15の基板載置面の延長面外方の
成長炉10の炉壁には原料ガスを炉外に排出するための
排気口31が設けられる。この排気口3の途中には、サ
セプタ中心部に吹き寄せられた原料ガスを、その排気流
量を制御しつつサセプタ15の径方向外方に導いて水平
に吐き出す排気整流部30が設けられている。この排気
整流部30は上流から下流に向って順次設けられたオリ
フィス16、逆流防止網17、弁18、弁制御手段19
から構成される。オリフィス16は排気流速を速くする
ために、また逆流防止網17は粒子等の逆流を防止する
ために設けられている。弁18は排気流量を調整するた
めに、弁制御手段19は排気流量を測定しその測定結果
に応じて弁18を制御するために設けられている。
An exhaust port 31 for discharging a source gas to the outside of the furnace is provided on the furnace wall of the growth furnace 10 outside the extension surface of the substrate mounting surface of the susceptor 15. In the middle of the exhaust port 3, there is provided an exhaust rectifying unit 30 that guides the raw material gas blown to the center of the susceptor to the outside in the radial direction of the susceptor 15 while controlling the exhaust flow rate and horizontally discharges the exhaust gas. The exhaust rectification unit 30 includes an orifice 16, a backflow prevention net 17, a valve 18, and a valve control unit 19 which are sequentially provided from upstream to downstream.
Consists of The orifice 16 is provided to increase the exhaust flow velocity, and the backflow prevention net 17 is provided to prevent backflow of particles and the like. The valve 18 is provided for adjusting the exhaust flow rate, and the valve control means 19 is provided for measuring the exhaust flow rate and controlling the valve 18 according to the measurement result.

【0019】このように構成される排気整流部30は、
排気ガス流12をサセプタ回転面と平行で径方向外方に
案内させるために、サセプタ回転面の延長面上に放射状
に又は全周に渡って設ける。
The exhaust rectification unit 30 configured as described above is
In order to guide the exhaust gas flow 12 radially outward parallel to the susceptor rotation surface, the exhaust gas flow 12 is provided radially or over the entire circumference on the extension surface of the susceptor rotation surface.

【0020】サセプタ中心に垂直にぶつかった原料ガス
はサセプタ15の径方向外方に向かって基板14上を水
平に流れ、そのまま水平かつ径方向外方にある排気整流
部30に吸い込まれ成長炉10から外部に排気される。
排気口31から排出される排気流量は、それが多いと弁
制御手段19により制御される弁18の弁開度が小さく
なって減量され、逆に排気流量が少ないと弁制御手段1
9により制御される弁18の弁開度が大きくなって増量
される。この過程で、エピタキシャル膜は加熱された基
板14上で分解した原料がガス流境界層13を拡散し基
板14上に堆積して成長する。
The raw material gas, which hits perpendicularly to the center of the susceptor, flows horizontally on the substrate 14 toward the outside of the susceptor 15 in the radial direction, and is sucked as it is into the exhaust rectification unit 30 which is horizontal and outside in the radial direction. Exhausted to the outside.
If the exhaust flow rate discharged from the exhaust port 31 is large, the valve opening degree of the valve 18 controlled by the valve control means 19 is reduced and decreased, and conversely, if the exhaust flow rate is small, the valve control means 1 is reduced.
The valve opening of the valve 18 controlled by the valve 9 is increased and increased. In this process, the raw material decomposed on the heated substrate 14 diffuses through the gas flow boundary layer 13 and deposits on the substrate 14 to grow the epitaxial film.

【0021】次に、上記した縦型MOCVDの具体例に
ついて図5及び図6を用いて説明する。
Next, a specific example of the above vertical MOCVD will be described with reference to FIGS.

【0022】円盤状のサセプタ51の下面側にヒータ5
2を設け、このヒータ52によりサセプタ51の温度を
450℃〜800℃とする。このサセプタ51上にはφ
4インチのGaAs基板59を回転対称の位置に3枚載
せた円形トレイ58が載置され、サセプタ51と共に回
転する。ここでは500rpm〜2000rpmの回転
数でトイレ58を載せたサセプタ51を回転した。な
お、基板59とトレイ58とは面一とする( 図5( a)
参照) 。原料はトリメチルガリウム、トリメチルアルミ
ニウム、トリメチルインジウム、アルシン、ジシランを
用いた。キャリアガスは水素を用い、上記原料と混合し
て原料ガスとし計100 1/minの流量を、成長炉
60の上部中央に設けたガス導入口50より成長炉60
内へ導入した。成長炉60は天井部内壁がフラットタイ
プの円筒体で構成されている。導入された原料ガスは成
長炉60に設けた複数の排気管55から炉外へ排気され
る。排気管55は、トレイ58面の延長面上の成長炉壁
にサセプタ51の回転中心軸63に対して回転対称の位
置に放射状に設けられている。図示例では8本設けた場
合を示している。原料ガスを炉外へ吸引排気するために
成長炉内の圧力は20torr〜大気圧とした。
A heater 5 is provided on the lower surface of the disc-shaped susceptor 51.
2, the temperature of the susceptor 51 is set to 450 ° C. to 800 ° C. by the heater 52. Φ on this susceptor 51
A circular tray 58 in which three 4-inch GaAs substrates 59 are placed at rotationally symmetric positions is placed, and rotates together with the susceptor 51. Here, the susceptor 51 on which the toilet 58 was mounted was rotated at a rotation speed of 500 rpm to 2000 rpm. The substrate 59 and the tray 58 are flush (FIG. 5A).
See). The raw materials used were trimethylgallium, trimethylaluminum, trimethylindium, arsine, and disilane. Hydrogen is used as a carrier gas, and the raw material is mixed with the above raw material to obtain a raw material gas.
Introduced inside. The growth furnace 60 has a ceiling inner wall formed of a flat cylindrical body. The introduced source gas is exhausted from the plurality of exhaust pipes 55 provided in the growth furnace 60 to the outside of the furnace. The exhaust pipe 55 is provided radially at a position rotationally symmetric with respect to the rotation center axis 63 of the susceptor 51 on the growth furnace wall on the extension surface of the tray 58 surface. The illustrated example shows a case where eight are provided. The pressure inside the growth furnace was set at 20 torr to atmospheric pressure in order to suck and exhaust the source gas outside the furnace.

【0023】上記した排気管55の設置場所は、より正
確にはサセプタ51上のトレイ58に載った基板59面
と平行で、その延長面と交わる炉壁64上に描いた円よ
りやや上方に設けられる。この排気管55の排気経路上
に排気整流部61が介設され、これは上流側から下流側
に向って設けられたオリフィス53と、逆流防止網54
と、ニードルバルブ68と、流量制御計69とから構成
される。
The location of the exhaust pipe 55 is more precisely parallel to the surface of the substrate 59 placed on the tray 58 on the susceptor 51 and slightly above the circle drawn on the furnace wall 64 intersecting the extension surface thereof. Provided. An exhaust rectifying section 61 is provided on the exhaust path of the exhaust pipe 55, and includes an orifice 53 provided from the upstream side to the downstream side, and a backflow prevention net 54.
, A needle valve 68 and a flow controller 69.

【0024】基板59に垂直に吹き付けられた原料ガス
を水平方向外方に案内して、排気管55に排出させるオ
リフィス53が形成されている。このオリフィス53は
排気流速を上げるためにガス流路を狭くすることにより
形成されている。オリフィス53の出口側にはダスト等
の逆流を防ぎ排気を放射状に均一に行うための網54が
設けられる。なお、網54はオリフィス53の入口側に
設けてもよい。
An orifice 53 is formed to guide the raw material gas blown vertically to the substrate 59 outward in the horizontal direction and discharge the gas to the exhaust pipe 55. The orifice 53 is formed by narrowing the gas flow path in order to increase the exhaust flow velocity. At the outlet side of the orifice 53, there is provided a net 54 for preventing backflow of dust and the like and uniformly exhausting the air radially. The net 54 may be provided on the inlet side of the orifice 53.

【0025】排気管55内には上流側に排気流量を調節
するためのニードルバルブ68と、下流側に排気流量を
監視してその監視結果に応じてニードルバルブ68の弁
体を制御して排気流量を調節するための流量制御計69
とが介設される。これらにより各排気管55から排気さ
れる排気流量は個別に調節され得るようになっている。
このオリフィス53と網54との存在により、ガス流は
基板59に対して平行に流れ、オリフィス53、網54
を通過した後に成長炉外へ排気される。また、ニードル
バルブ68と流量制御計69との存在により、成長炉外
へ排気される排気流量の均一化が図れ、基板59上のガ
ス流境界層が均一になる。なお、排気ガス流を基板59
に平行に流すために成長炉60の天井部内壁も水平にし
ておくことは重要である。
In the exhaust pipe 55, a needle valve 68 for adjusting the exhaust flow rate is provided on the upstream side, and the exhaust flow rate is monitored on the downstream side, and the valve body of the needle valve 68 is controlled in accordance with the monitoring result. Flow controller 69 for adjusting the flow rate
And are interposed. Thus, the flow rate of exhaust gas exhausted from each exhaust pipe 55 can be adjusted individually.
Due to the presence of the orifice 53 and the mesh 54, the gas flow flows parallel to the substrate 59, and the orifice 53 and the mesh 54
Is exhausted outside the growth furnace after passing through. Further, the presence of the needle valve 68 and the flow controller 69 makes it possible to equalize the exhaust flow rate exhausted to the outside of the growth furnace, and to make the gas flow boundary layer on the substrate 59 uniform. Note that the exhaust gas flow is
It is important to keep the inner wall of the ceiling of the growth furnace 60 horizontal in order to make the flow parallel to

【0026】このように排気整流部61により基板59
上のガス流境界層の厚さは均一となり、その結果エピタ
キシャル膜厚が均一となる。また、逆流を防ぐ網54の
存在により粒子の舞い上がりがなくなるとともに、排気
がサセプタから外側に向ってサセプタ面上で放射状に均
一に行なわれるため表面欠陥のないエピタキシャル結晶
が得られる。さらにニードルバルブ68,流量制御計6
9によりサセプタ面状の排気流即ちガス流れの均一性を
調整できるため、エピタキシャル特性の均一性を調整、
制御することができる。また、この排気整流部65があ
るため基板59上の空間で対流が発生せず炉内での原料
ガスの切り替えが高速に行われる。従って急峻な界面を
有するヘテロ接合エピタキシャル結晶を成長させること
ができる。次に具体例について述べると、成長温度65
0℃、アルシンとトリメチルガリウム及びトリメチルア
ルミニウム、n型のドーパントとしてSi2 H6 を用い
て図7に示すようなn型GaAlAs/GaAs選択ド
ープ構造のエピタキシャル結晶を成長した結果、φ4イ
ンチウェハにおける膜厚バラツキは±1%以下であり、
同時成長した3枚のφ4インチウェハのバラツキは±2
%以下であった。
As described above, the exhaust gas rectification section 61 allows the substrate 59
The thickness of the upper gas flow boundary layer is uniform, resulting in a uniform epitaxial film thickness. In addition, the presence of the net 54 for preventing the backflow prevents the particles from rising, and the exhaust is performed radially and uniformly on the susceptor surface from the susceptor to the outside, so that an epitaxial crystal having no surface defects can be obtained. Needle valve 68, flow controller 6
9, it is possible to adjust the uniformity of the susceptor plane exhaust flow, that is, the gas flow.
Can be controlled. Further, since the exhaust rectification section 65 is provided, convection does not occur in the space above the substrate 59, and the source gas is switched in the furnace at high speed. Therefore, a heterojunction epitaxial crystal having a steep interface can be grown. Next, a specific example will be described.
As shown in FIG. 7, an epitaxial crystal having an n-type GaAlAs / GaAs selective doping structure as shown in FIG. 7 was grown at 0.degree. Is ± 1% or less,
The variation of three simultaneously grown φ4 inch wafers is ± 2
% Or less.

【0027】n型GaAlAsのキャリア濃度のバラツ
キは±2%以下、Al混晶比のバラツキは±0.3%以
下であった。シートキャリア濃度は1.2×1012cm
2 ±1%であり移動度は6200±2%と非常に均一で
あった。
The variation in carrier concentration of n-type GaAlAs was ± 2% or less, and the variation in Al mixed crystal ratio was ± 0.3% or less. The sheet carrier density is 1.2 × 10 12 cm
The mobility was 2 ± 1% and the mobility was very uniform at 6200 ± 2%.

【0028】なお、InGaAsの成長においても膜厚
バラツキはGaAsと同等であり、キャリア濃度や混晶
比の均一性も良好であった。
In the growth of InGaAs, the thickness variation was equivalent to that of GaAs, and the carrier concentration and the uniformity of the mixed crystal ratio were good.

【0029】本実施例において、原料の利用効率を効果
的に高めるためにサセプタ回転数を500rpm以上と
することが望ましいが、原料の利用効率をそれ程望ま
ず、非常に均一なエピタキシャル膜成長を安定に行わせ
ることのみを目的とするのであれば、本発明は、サセプ
タ回転数が500rpm以下でも、あるいは2000r
pm以上でも基本的に有効である。
In this embodiment, the susceptor rotation speed is desirably 500 rpm or more in order to effectively increase the utilization efficiency of the raw material. However, the utilization efficiency of the raw material is not so desired, and a very uniform epitaxial film can be stably grown. If the purpose of the present invention is only to make the susceptor rotation speed 500 rpm or less, or 2000 rpm
It is basically effective even at pm or more.

【0030】また、上記実施例では成長炉を縦に配置し
た例を説明したが、横に配置した場合であっても原料が
基板に垂直に吹き付けられるものであれば本発明を適用
することは可能である。また、薄膜に限らず厚膜にも適
用できることはもちろんである。
Further, in the above embodiment, an example in which the growth furnace is arranged vertically has been described. However, even if the growth furnace is arranged horizontally, the present invention can be applied as long as the raw material can be sprayed vertically on the substrate. It is possible. Further, it is needless to say that the present invention can be applied not only to a thin film but also to a thick film.

【0031】また、本実施例では排気管をサセプタ面の
略延長面上に設けるようにしたが、サセプタ面の略延長
面上に設けるのは排気整流部のみで足り、排気整流部を
経た後に排気ガスがどの様に引き回されるかは本発明で
はあまり重要ではなく、従って排気管への経路が設けら
れているのであれば、排気管は従来同様に成長炉の下方
に設けられていてもよい。
In this embodiment, the exhaust pipe is provided on the substantially extended surface of the susceptor surface. However, only the exhaust rectification portion is provided on the substantially extended surface of the susceptor surface. How the exhaust gas is routed is not critical in the present invention, so if a path to the exhaust pipe is provided, the exhaust pipe is conventionally provided below the growth furnace. Is also good.

【0032】[0032]

【発明の効果】本発明によれば、排気整流部を設けて基
板に垂直に吹き付けた原料ガスを排気流量を制御しつつ
水平に吐き出すようにしたので、半無限平面と同様なガ
ス流状態を強制的に作ることが可能となり、均一性に優
れた膜を成長できる。
According to the present invention, since the exhaust gas rectifying section is provided to discharge the raw material gas blown vertically to the substrate horizontally while controlling the exhaust flow rate, the gas flow state similar to that of the semi-infinite plane is obtained. Forcibly, it is possible to grow a film having excellent uniformity.

【0033】特にサセプタの回転数を100rpm以上
とすることにより原料利用効率の高い膜を成長できる。
In particular, by setting the rotation speed of the susceptor to 100 rpm or more, a film having high raw material use efficiency can be grown.

【図面の簡単な説明】[Brief description of the drawings]

【図1】縦型成長炉におけるガス流と排気方法の関係を
示す説明図であって、本実施例の原理構成図。
FIG. 1 is an explanatory diagram showing a relationship between a gas flow and an exhaust method in a vertical growth furnace, and is a principle configuration diagram of the present embodiment.

【図2】縦型成長炉におけるガス流と排気方法の関係を
示す説明図であって、一般例の構成図。
FIG. 2 is an explanatory diagram showing a relationship between a gas flow and an exhaust method in a vertical growth furnace, and is a configuration diagram of a general example.

【図3】縦型成長炉におけるガス流と排気方法の関係を
示す説明図であって、理想例の構成図。
FIG. 3 is an explanatory diagram showing a relationship between a gas flow and an exhaust method in a vertical growth furnace, and is a configuration diagram of an ideal example.

【図4】縦型成長炉におけるガス流と排気方法の関係を
示す説明図であって、従来例の構成図。
FIG. 4 is an explanatory diagram showing a relationship between a gas flow and an exhaust method in a vertical growth furnace, and is a configuration diagram of a conventional example.

【図5】本発明の気相膜成長装置の実施例を示す構成
図。
FIG. 5 is a configuration diagram showing an embodiment of a vapor phase film growth apparatus of the present invention.

【図6】本発明の気相膜成長装置の実施例を示す断面
図。
FIG. 6 is a sectional view showing an embodiment of the vapor phase film growth apparatus of the present invention.

【図7】本実施例の成長特性評価に用いたGaAlAs
/GaAs選択ドープ構造のエピタキシャル結晶断面
図。
FIG. 7 shows GaAlAs used for evaluating the growth characteristics of the present example.
FIG. 5 is an epitaxial crystal cross-sectional view of a / GaAs selective doping structure.

【符号の説明】[Explanation of symbols]

9 サセプタの回転中心軸 10 成長炉 11 ガス導入口 12 ガス流 13 ガス流境界層 14 基板 15 サセプタ 15 オリフィス 17 逆流防止網 18 弁 19 弁制御手段 30 排気整流部 50 ガス導入口 51 サセプタ 52 ヒータ 53 オリフィス 54 逆流防止網 55 排気管 58 トレイ 59 基板 60 成長炉 61 排気整流部 63 サセプタの回転中心軸 68 ニードルバルブ 69 流量制御計 Reference Signs List 9 rotation center axis of susceptor 10 growth furnace 11 gas inlet 12 gas flow 13 gas flow boundary layer 14 substrate 15 susceptor 15 orifice 17 backflow prevention network 18 valve 19 valve control means 30 exhaust rectification unit 50 gas inlet 51 susceptor 52 heater 53 Orifice 54 Backflow prevention net 55 Exhaust pipe 58 Tray 59 Substrate 60 Growth furnace 61 Exhaust rectification unit 63 Susceptor rotation center axis 68 Needle valve 69 Flow controller

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 成長炉内に導いた原料ガスを成長炉外へ
吸引排気する際に、回転するサセプタに載せた基板に原
料ガスを垂直に吹き付けて膜を成長させる気相膜成長装
置において、 サセプタ面の略延長面上の成長炉壁に、基板に垂直に吹
き付けられて吸引排気される原料ガスを、その排気流量
を制御しつつサセプタの径方向外方に導いて水平に吐き
出す排気整流部を設けたことを特徴とする気相膜成長装
置。
1. A vapor-phase film growth apparatus for growing a film by vertically blowing a source gas onto a substrate mounted on a rotating susceptor when sucking and exhausting a source gas introduced into the growth furnace out of the growth furnace, An exhaust rectification unit that guides a source gas, which is blown vertically to a substrate and sucked and exhausted, onto a growth furnace wall on a substantially extended surface of the susceptor surface, while controlling the exhaust flow rate, to the outside in the radial direction of the susceptor to discharge horizontally. An apparatus for growing a vapor phase film, comprising:
【請求項2】 上記排気整流部が、 排気流速を上げるオリフィスと、 粒子の逆流を防止する網と、 排気流量を調整する弁と、 排気流量を測定しその測定結果に応じて上記弁を制御す
る弁制御手段と から構成されていることを特徴とする請求項1に記載の
気相膜成長装置。
2. An exhaust rectification unit comprising: an orifice for increasing exhaust flow velocity; a net for preventing backflow of particles; a valve for adjusting exhaust flow rate; and measuring the exhaust flow rate and controlling the valve in accordance with the measurement result. 2. The vapor phase film growing apparatus according to claim 1, further comprising:
【請求項3】 上記排気整流部がサセプタの回転中心軸
に対して回転対称の位置に放射状に設けられていること
を特徴とする請求項1または2に記載の気相膜成長装
置。
3. The vapor phase film growth apparatus according to claim 1, wherein the exhaust rectification unit is provided radially at a position rotationally symmetric with respect to a rotation center axis of the susceptor.
JP40974890A 1990-12-10 1990-12-10 Vapor phase film growth equipment Expired - Lifetime JP2745819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40974890A JP2745819B2 (en) 1990-12-10 1990-12-10 Vapor phase film growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40974890A JP2745819B2 (en) 1990-12-10 1990-12-10 Vapor phase film growth equipment

Publications (2)

Publication Number Publication Date
JPH04209794A JPH04209794A (en) 1992-07-31
JP2745819B2 true JP2745819B2 (en) 1998-04-28

Family

ID=18519035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40974890A Expired - Lifetime JP2745819B2 (en) 1990-12-10 1990-12-10 Vapor phase film growth equipment

Country Status (1)

Country Link
JP (1) JP2745819B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536406B2 (en) * 1993-06-25 1996-09-18 日本電気株式会社 Semiconductor manufacturing equipment
US6325855B1 (en) * 2000-08-09 2001-12-04 Itt Manufacturing Enterprises, Inc. Gas collector for epitaxial reactors
DE10043599A1 (en) * 2000-09-01 2002-03-14 Aixtron Ag Device for depositing, in particular, crystalline layers on one or more, in particular likewise, crystalline substrates
US20050178336A1 (en) 2003-07-15 2005-08-18 Heng Liu Chemical vapor deposition reactor having multiple inlets
US20050011459A1 (en) * 2003-07-15 2005-01-20 Heng Liu Chemical vapor deposition reactor
JP2007067213A (en) * 2005-08-31 2007-03-15 Mitsubishi Electric Corp Vapor-phase epitaxy device
US8216419B2 (en) 2008-03-28 2012-07-10 Bridgelux, Inc. Drilled CVD shower head
US20090096349A1 (en) 2007-04-26 2009-04-16 Moshtagh Vahid S Cross flow cvd reactor
US8668775B2 (en) 2007-10-31 2014-03-11 Toshiba Techno Center Inc. Machine CVD shower head
JP6786307B2 (en) * 2016-08-29 2020-11-18 株式会社ニューフレアテクノロジー Vapor deposition method

Also Published As

Publication number Publication date
JPH04209794A (en) 1992-07-31

Similar Documents

Publication Publication Date Title
EP0854210B1 (en) Vapor deposition apparatus for forming thin film
EP0502209A1 (en) Method and apparatus for growing compound semiconductor crystals
JP2008072122A (en) Wafer processing hardware for epitaxial deposition with which auto-doping and back surface defect are decreased
JP2745819B2 (en) Vapor phase film growth equipment
JPH04348031A (en) Chemical vapor growth equipment
JP3231996B2 (en) Vapor phase growth equipment
GB2282825A (en) Chemical vapour deposition apparatus
TWI502096B (en) Reaction device and manufacture method for chemical vapor deposition
JP7190894B2 (en) SiC chemical vapor deposition equipment
JPH0316208A (en) Apparatus for silicon epitaxial growth
WO2013143241A1 (en) Chemical vapour deposition method for organic metal compound and apparatus therefor
JP3731844B2 (en) Vapor thin film growth apparatus and vapor thin film growth method using the same
JPH0658880B2 (en) Vapor phase epitaxial growth system
JPH0616491B2 (en) Vapor phase epitaxial growth system
JP2009135238A (en) Vapor deposition apparatus and vapor deposition method
JPH01117315A (en) Vapor growth method for semiconductor thin film crystal
JPH1050615A (en) Single wafer processing gas-phase growth device
JP2004014535A (en) Vapor phase growing device and method therefor and susceptor for holding substrate
JPH0718765Y2 (en) Thin film forming equipment
JP3231312B2 (en) Vapor phase growth equipment
JPH04163912A (en) Vapor growth equipment
JPH01129973A (en) Reaction treatment equipment
JP2000349030A (en) Gas-phase reactor
JP3252644B2 (en) Vapor phase growth method and apparatus
JPH0235814Y2 (en)