JP2743397B2 - Carbon fiber reinforced carbon composite material and method of using the same - Google Patents

Carbon fiber reinforced carbon composite material and method of using the same

Info

Publication number
JP2743397B2
JP2743397B2 JP63225818A JP22581888A JP2743397B2 JP 2743397 B2 JP2743397 B2 JP 2743397B2 JP 63225818 A JP63225818 A JP 63225818A JP 22581888 A JP22581888 A JP 22581888A JP 2743397 B2 JP2743397 B2 JP 2743397B2
Authority
JP
Japan
Prior art keywords
thickness direction
composite material
thermal conductivity
carbon fiber
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63225818A
Other languages
Japanese (ja)
Other versions
JPH0230666A (en
Inventor
公平 奥山
一夫 丹羽
孝徳 高橋
公裕 伊尾木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP63225818A priority Critical patent/JP2743397B2/en
Application filed by Mitsubishi Chemical Corp, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Chemical Corp
Priority to DE68923901T priority patent/DE68923901T2/en
Priority to EP94112521A priority patent/EP0630875B1/en
Priority to EP89107551A priority patent/EP0339606B1/en
Priority to DE68929046T priority patent/DE68929046T2/en
Publication of JPH0230666A publication Critical patent/JPH0230666A/en
Priority to US07/873,683 priority patent/US5390217A/en
Priority to US08/450,640 priority patent/US5586152A/en
Application granted granted Critical
Publication of JP2743397B2 publication Critical patent/JP2743397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E30/128

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭素繊維強化炭素複合材料及びその使用方
法に関する。
Description: TECHNICAL FIELD The present invention relates to a carbon fiber reinforced carbon composite material and a method for using the same.

(従来の技術) 炭素繊維強化炭素複合材料(以下、C/C複合材料とい
う)は、軽量、高強度であり、耐熱、耐食性に優れてい
るという特徴を有する。このため、ロケットノズル、ノ
ーズコーン、航空機のディスクブレーキなどの航空宇宙
材料、発熱体、ホットプレス鋳型、その他の機械部品、
原子炉用部材等に用いられている。
(Prior Art) A carbon fiber reinforced carbon composite material (hereinafter, referred to as a C / C composite material) has features of being lightweight, high in strength, and excellent in heat resistance and corrosion resistance. For this reason, aerospace materials such as rocket nozzles, nose cones, aircraft disc brakes, heating elements, hot press molds, and other mechanical parts,
It is used for members for nuclear reactors.

このC/C複合材は、一般にポリアクリロニトリル系、
ピッチ系等の長繊維もしくは短繊維の炭素繊維にフェノ
ール樹脂フラン樹脂等の熱硬化性樹脂又はピッチ等の熱
可塑性樹脂等のマトリックス物質を含有又は混合して、
加熱成形したものを不活性ガス等の非酸化性雰囲気にお
いて、600〜1000℃程度で焼成、さらにピッチ、樹脂を
含浸した後焼成するか、化学蒸着法を用いる方法あるい
はこれらを組合わせる方法を用いて緻密化した後、必要
に応じて黒鉛化することにより製造されている。
This C / C composite is generally polyacrylonitrile-based,
Pitch-based carbon fibers such as long fibers or short fibers contain or mix a matrix material such as a thermosetting resin such as phenolic furan resin or a thermoplastic resin such as pitch,
In a non-oxidizing atmosphere such as an inert gas, bake at about 600 to 1000 ° C., further pitch, bake after impregnating resin, or use a method using chemical vapor deposition or a method combining these After densification, it is manufactured by graphitization as required.

(発明が解決しようとする問題点) しかしながら、得られるC/C複合材を、特に一方向、
すなわち厚み方向に熱を有効に伝導又は除去する用途に
使う必要がある場合には、必ずしも満足すべきものとは
いえず、実用に供するには問題があった。
(Problems to be solved by the invention) However, the obtained C / C composite material is not
That is, when it is necessary to use it for the purpose of effectively conducting or removing heat in the thickness direction, it is not always satisfactory, and there is a problem in practical use.

そこで、本発明者らは、上述の不十分さを克服したC/
C複合材を得るべく、種々検討を行い、一方向の熱伝導
率を大きくしたC/C複合材を得、本発明に到達した。
Therefore, the present inventors have overcome the above-mentioned insufficiency C /
Various studies were conducted to obtain a C composite material, and a C / C composite material having an increased one-way thermal conductivity was obtained.

すなわち、本発明の要旨は (1) 炭素繊維が実質的に厚み方向に配向しており、
厚み方向に直角の方向の熱伝導率に対する厚み方向の熱
伝導率の比率が2以上であり、かつ厚み方向の熱伝導率
が3W/cm・℃以上である炭素繊維強化炭素複合材料。
That is, the gist of the present invention is as follows: (1) the carbon fibers are substantially oriented in the thickness direction;
A carbon fiber reinforced carbon composite material in which the ratio of the thermal conductivity in the thickness direction to the thermal conductivity in the direction perpendicular to the thickness direction is 2 or more, and the thermal conductivity in the thickness direction is 3 W / cm · ° C. or more.

及び (2) 炭素繊維が実質的に厚み方向に配向しており、
厚み方向に直角の方向の熱伝導率に対する厚み方向の熱
伝導率の比率が2以上であり、かつ厚み方向の熱伝導率
が3W/cm・℃以上である炭素繊維強化炭素複合材料の、
厚み方向に対向する一方の面に高温の物質、他方の面に
低温の物質を接触させる伝熱方法にある。
And (2) the carbon fibers are substantially oriented in the thickness direction,
The ratio of the thermal conductivity in the thickness direction to the thermal conductivity in the direction perpendicular to the thickness direction is 2 or more, and the thermal conductivity in the thickness direction is 3 W / cm · ° C or more.
There is a heat transfer method in which a high-temperature substance contacts one surface facing the thickness direction and a low-temperature substance contacts the other surface.

(問題点を解決するための手段) 以下、本発明を詳細に説明する。(Means for Solving the Problems) Hereinafter, the present invention will be described in detail.

本発明で使用する炭素繊維は、ポリアクリロニトリル
(PAN)系、ピッチ系炭素繊維あるいは気相成長法炭素
繊維等、いずれの種類でもよいが、特に繊維軸方向の熱
伝導率が高い高特性のピッチ系炭素繊維が好適である。
The carbon fiber used in the present invention may be of any type such as polyacrylonitrile (PAN) -based, pitch-based carbon fiber, or vapor grown carbon fiber, and particularly high-performance pitch having high thermal conductivity in the fiber axis direction. System carbon fibers are preferred.

本発明に係るC/C複合材はこのような炭素繊維を用い
て得られ、炭素繊維が実質的に厚み方向に配向してお
り、厚み方向に直角の方向の熱伝導率に対する厚み方向
の熱伝導率の比率が2以上であり、かつ厚み方向の熱伝
導率が3W/cm・℃以上であることを特徴とする。
The C / C composite material according to the present invention is obtained using such carbon fibers, and the carbon fibers are substantially oriented in the thickness direction, and the heat conductivity in the thickness direction with respect to the heat conductivity in the direction perpendicular to the thickness direction. The conductivity ratio is 2 or more, and the thermal conductivity in the thickness direction is 3 W / cm · ° C. or more.

そして、このようなC/C複合材は、次のような方法に
よって得られる。
And such a C / C composite material is obtained by the following method.

まず、炭素繊維の長繊維を熱硬化性樹脂に含浸し、こ
れを加熱して半硬化させる。
First, a long fiber of carbon fiber is impregnated with a thermosetting resin, which is semi-cured by heating.

熱硬化性樹脂としては、例えばフェノール樹脂、フラ
ン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂等が挙
げられるが、フェノール樹脂特にレゾール型のフェノー
ル樹脂が好適に使用できる。これらの熱硬化性樹脂は通
常、エタノールのようなアルコール類、ヘキサンのよう
な炭化水素あるいはアセトンといった溶剤で溶解希釈し
て用いる。
Examples of the thermosetting resin include a phenol resin, a furan resin, an epoxy resin, and an unsaturated polyester resin, and a phenol resin, particularly a resol-type phenol resin can be preferably used. These thermosetting resins are usually dissolved and diluted with a solvent such as alcohols such as ethanol, hydrocarbons such as hexane, or acetone.

熱硬化性樹脂溶液の濃度としては通常10〜70wt%、好
ましくは20〜60wt%の範囲のものを使用する。
The concentration of the thermosetting resin solution is usually in the range of 10 to 70% by weight, preferably 20 to 60% by weight.

また、フラン樹脂、エポキシ樹脂等硬化剤を要するも
のは硬化剤も溶液中に添加されるがその量はそれぞれの
樹脂に適した量が添加される。
For those requiring a curing agent such as a furan resin and an epoxy resin, the curing agent is also added to the solution, but the amount is added in an amount suitable for each resin.

かかる熱硬化性樹脂溶液に炭素繊維の長繊維を含浸す
る方法としては、溶液中に炭素繊維を浸漬するといった
簡単な方法で良いが、長繊維ロービングであれば溶液の
満たされた槽内を連続的に走行させる方法が処理の効率
の点から好ましい。また、この際に溶液の満された槽に
10〜50KHz程度の超音波を作用させておくと各単繊維
間、織目間の気泡等による処理むらの影響を防ぐことが
できるので好ましい。
Such a thermosetting resin solution may be impregnated with long fibers of carbon fibers by a simple method such as immersing carbon fibers in the solution. It is preferable to use a method of running the vehicle from the viewpoint of processing efficiency. Also, at this time, the tank filled with the solution
It is preferable to apply an ultrasonic wave of about 10 to 50 KHz, because the influence of unevenness in treatment due to bubbles or the like between individual fibers or between weaves can be prevented.

熱硬化性樹脂溶液に含浸した炭素繊維は例えばローラ
ーを通すなどして余分な溶液を除去し、次いで加熱処理
を施される。
The carbon fibers impregnated in the thermosetting resin solution are removed by removing excess solution by, for example, passing through a roller, and then subjected to a heat treatment.

該加熱処理により、熱硬化性樹脂は熱硬化される。加
熱処理の条件は使用する熱硬化性樹脂の種類によってそ
れぞれ適正条件は異なるが通常50〜300℃、好ましくは8
0〜200℃の温度で0.2〜5時間、好ましくは0.2〜2時間
加熱処理される。この際、炭素繊維に塗布された熱硬化
性樹脂溶液からの急激な溶剤の脱離を避るため所定の温
度への昇温を徐々に行なわれることが望ましい。また、
加熱処理は炭素繊維を連続的に加熱炉内を走行させる方
法で行なうのが処理の効率の点から好ましい。
By the heat treatment, the thermosetting resin is thermoset. The appropriate conditions for the heat treatment vary depending on the type of thermosetting resin used, but usually 50 to 300 ° C., preferably 8
Heat treatment is performed at a temperature of 0 to 200 ° C. for 0.2 to 5 hours, preferably 0.2 to 2 hours. At this time, it is desirable to gradually raise the temperature to a predetermined temperature in order to avoid a rapid desorption of the solvent from the thermosetting resin solution applied to the carbon fibers. Also,
The heat treatment is preferably performed by a method in which carbon fibers are continuously run in a heating furnace from the viewpoint of treatment efficiency.

ついで、得られた繊維/樹脂の複合体を目的とするC/
C複合材の厚み方向より長く切断する。
Next, C /
C Cut longer than the thickness direction of the composite material.

この長さは通常は所望する目的物の厚さより少し長い
範囲から選定され、たとえば15〜100mmから選ばれる。
切断された複合体は、互いに実質的に平行となるように
一方向に揃えられ、その繊維の長さ方向に直角の方向に
圧力を加え、加熱、成型する。
This length is usually selected from a range slightly longer than the thickness of the desired object, for example from 15 to 100 mm.
The cut composites are aligned in one direction so that they are substantially parallel to each other, and are heated and molded by applying pressure in a direction perpendicular to the length of the fibers.

たとえば、金型にロート状の道具を使用して複合体を
供給することにより金型内に実質的に平行になるように
揃え、樹脂の硬化のために必要な温度の加熱下に、繊維
の長さ方向に直角の方向に圧力を加えて樹脂を硬化させ
ることにより成型体を得る。
For example, by feeding the composite using a funnel-shaped tool in the mold, the composite is aligned to be substantially parallel in the mold, and the fiber is heated under the temperature required for curing the resin. A molded body is obtained by applying pressure in a direction perpendicular to the length direction to cure the resin.

その後、成型体を容器に入れ、成型体をコークスブリ
ーズで取囲むような形とした後、容器を電気炉に入れ、
必要に応じてN2ガス流通下で1000℃程度まで昇温して炭
化する。
After that, put the molded body in a container, and shape the molded body to be surrounded by coke breeze, then put the container in an electric furnace,
If necessary, the temperature is raised to about 1000 ° C. under N 2 gas flow to carbonize.

必要に応じては、さらに黒鉛化炉に入れ、不活性雰囲
気下で2000℃以上の温度まで熱処理する。
If necessary, it is further placed in a graphitization furnace and heat-treated to a temperature of 2000 ° C. or more in an inert atmosphere.

ついで、得られた炭化物もしくは黒鉛化物を石油系、
石炭系ピッチあるいはフェノール樹脂、フラン樹脂等の
熱硬化性樹脂に含浸した後、また、熱硬化性樹脂を用い
た場合には樹脂を硬化させた後炭化させる。
Then, the obtained carbide or graphitized product is petroleum-based,
After impregnating a thermosetting resin such as coal-based pitch or a phenol resin or a furan resin, or when a thermosetting resin is used, the resin is cured and then carbonized.

その際、熱硬化性樹脂は、アルコール、アセトン、ア
ントラセン油等の溶媒に溶解して適当な粘度に調整した
ものを使用するのが一般的である。
At that time, the thermosetting resin is generally used by dissolving it in a solvent such as alcohol, acetone or anthracene oil and adjusting the viscosity to an appropriate value.

また、この場合、圧力下に含浸する方法が好適に採用
される。
In this case, a method of impregnating under pressure is preferably employed.

たとえば、成型体の炭化物もしくは黒鉛化物とピッチ
を低圧反応容器(オートクレーブ)内に入た真空中で加
熱してピッチを溶解し、炭化物もしくは黒鉛化物がピッ
チの溶融液の中に浸漬した状態となった後、N2ガスを導
入して低圧で550〜600℃程度に昇温する。
For example, the carbide or graphitized product and the pitch are heated in a vacuum placed in a low-pressure reaction vessel (autoclave) to melt the pitch, and the carbide or graphitized product is immersed in the pitch melt. After that, the temperature is raised to about 550 to 600 ° C. at a low pressure by introducing N 2 gas.

その後、冷却して炭化物もしくは黒鉛化物の緻密化物
を取出し、前述と同様の方法でこれを1000℃程度まで炭
化し、必要に応じて黒鉛化する。
Thereafter, it is cooled to take out a densified carbide or graphitized material, carbonized to about 1000 ° C. in the same manner as described above, and graphitized as necessary.

以上のいわゆる緻密化の方法を繰返して行なうことに
より比重1.6以上の高緻密のC/C複合材を得る。
By repeating the above-mentioned so-called densification method, a highly dense C / C composite material having a specific gravity of 1.6 or more is obtained.

この際、繊維/樹脂複合体の樹脂含量や緻密化が不十
分であったり、炭化、黒鉛化の際の昇温温度が大きすぎ
ると繊維の長さ方向に直角の方向の強度が小さくなり、
場合によっては破壊に至るので適切な条件を選ぶ必要が
ある。
At this time, if the resin content or densification of the fiber / resin composite is insufficient, or if the heating temperature at the time of carbonization or graphitization is too high, the strength in the direction perpendicular to the length direction of the fiber decreases,
Appropriate conditions need to be selected because they can lead to destruction in some cases.

得られたC/C複合材は厚み方向に高い熱伝導率、電気
伝導率を有する、異方性の材料となる。得られたC/C複
合材は、目的に応じ、厚み方向と直角方向の強度を向上
させるために、炭素繊維を材料とした長繊維等を用いて
周囲を巻くことができ、あるいはC/C複合材等の炭素材
料を適当な形にして結束することができる。また、複数
の複合材の面間を、フェノール樹脂を主体とする樹脂な
どを用いて接着し、これを再びC/C複合材が最終的に処
理された温度程度にまで昇温させてC/C複合材の小片を
複数枚互いに接着させて目的とする大きさの複合材とす
ることもできる。
The obtained C / C composite becomes an anisotropic material having high thermal conductivity and electrical conductivity in the thickness direction. Depending on the purpose, the obtained C / C composite material can be wound around using a long fiber or the like made of carbon fiber in order to improve the strength in the direction perpendicular to the thickness direction, or C / C A carbon material such as a composite material can be bound in an appropriate shape. In addition, the surfaces of the multiple composite materials are bonded using a resin mainly composed of phenol resin, and the temperature is raised again to a temperature at which the C / C composite material is finally treated, and C / C A plurality of small pieces of the C composite material may be bonded to each other to obtain a composite material having a desired size.

本発明におけるC/C複合材は、厚み方向に熱伝導、電
気伝導が一方向に高いものであり、熱を有効に除去した
り伝達したりしうる。また、厚み方向と直角の方向の耐
熱衝撃性も高く、高温炉での使用に耐えるものである。
The C / C composite material according to the present invention has high heat conduction and electric conduction in one direction in the thickness direction, and can effectively remove and transfer heat. In addition, it has high thermal shock resistance in a direction perpendicular to the thickness direction, and can withstand use in a high-temperature furnace.

すなわち、本発明のC/C複合材は、その厚み方向
(⊥)とその直角方向()の熱伝導率の比率が2以
上、好ましくは7以上、最適には10以上であり、かつ厚
み方向(⊥)の熱伝導率が3W/cm・℃以上であり、たと
えば、その一方の面に高温度に加熱された物質を置いて
も厚み方向の熱伝導率が高いため、他方の面に熱が伝わ
りやすく、この他方の面に冷却水を流した部分を接触さ
せることにより、この加熱した物質を有効に冷却するこ
とができる。すなわち、熱交換により物質を冷却する場
合に有効に使用しうる。
That is, the C / C composite material of the present invention has a thermal conductivity ratio of 2 or more, preferably 7 or more, optimally 10 or more in its thickness direction (⊥) and its perpendicular direction (), and in the thickness direction. (⊥) has a thermal conductivity of 3 W / cm · ° C or more. For example, even if a substance heated to a high temperature is placed on one surface, the thermal conductivity in the thickness direction is high, The heated material can be effectively cooled by bringing the other surface into contact with the portion where the cooling water has flowed. That is, it can be effectively used when cooling a substance by heat exchange.

なお、本発明において、繊維軸方向の熱伝導率が大き
いピッチ系、特に石炭ピッチ系の高特性の炭素繊維を用
いると、その効果がより大きくなるので好適である。
In the present invention, it is preferable to use a pitch-based carbon fiber having a high thermal conductivity in the fiber axis direction, in particular, a coal pitch-based high-performance carbon fiber, because the effect is further increased.

(実施例) 以下、本発明を実施例によりさらに詳細に説明する
が、本発明はこれらの実施例に限定されるものではな
い。
(Examples) Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

実施例1 ピッチ系炭素繊維(三菱化成株式会社製“ダイアリー
ド",4000フィラメント、繊維径10μ)の長繊維を、フェ
ノール樹脂のエタノール溶液に浸漬し、ついでこれを乾
燥器に入れ70℃でエタノールを除去した後、100℃以上
に昇温してフェノール樹脂を半硬化させた。得られた繊
維/樹脂の複合体(トウプリプレグ)(炭素繊維:樹脂
=56:44重量比)を長さ40mmに切断した。このものは繊
維が樹脂で固められ、棒状で剛直であった。この切断し
た複合体を互いに平行になるように金型内に一方向に揃
えて並べ、目的とするC/C複合材の寸法より大きくなる
ような形状に充填した。
Example 1 A long fiber of pitch-based carbon fiber ("Dialead", manufactured by Mitsubishi Kasei Corporation, 4000 filament, fiber diameter 10μ) was immersed in an ethanol solution of a phenol resin, and then placed in a drier to ethanol at 70 ° C. After removing the phenol resin, the phenol resin was semi-cured by raising the temperature to 100 ° C. or higher. The obtained fiber / resin composite (tow prepreg) (carbon fiber: resin = 56: 44 weight ratio) was cut into a length of 40 mm. The fiber was hardened with resin, and was rod-shaped and rigid. The cut composites were aligned in one direction in a mold so as to be parallel to each other, and filled into a shape larger than a target dimension of the C / C composite material.

ついで、150℃で低圧を付加し、1時間で250℃まで昇
温し、250℃で1時間保持し、成型、硬化した。
Then, a low pressure was applied at 150 ° C., the temperature was raised to 250 ° C. in one hour, and the temperature was maintained at 250 ° C. for one hour, followed by molding and curing.

成型後の寸法は、101.9×120.5×40.1mmであった。 The dimensions after molding were 101.9 × 120.5 × 40.1 mm.

ついで、この成型品をコークスブリーズを詰めた容器
の中に入れコークスブリーズでおおった状態で、約50時
間かけて1000℃まで昇温し樹脂の炭化を行なった。
Then, the molded product was placed in a container filled with coke breath, and covered with the coke breath, the temperature was raised to 1000 ° C. over about 50 hours to carbonize the resin.

ついで、この炭化した複合材と固形のピッチをオート
クレーブに入れ、減圧状態のまま250℃まで昇温し、つ
いでN2を入れることにより雰囲気を陽圧とした後、昇温
し8時間で500℃まで到達させた後、500℃で5時間保時
した。
Then, the carbonized composite material and the solid pitch were put into an autoclave, the temperature was raised to 250 ° C. in a reduced pressure state, the atmosphere was made positive by adding N 2 , and the temperature was raised to 500 ° C. for 8 hours. After that, the temperature was kept at 500 ° C. for 5 hours.

昇温の際に圧力は、オートクレーブに付属したバルブ
を使って一定に保持した。
During the heating, the pressure was kept constant using a valve attached to the autoclave.

オートクレーブを冷却し、複合材を取出し、成型品の
炭化と同様の方法で1000℃まで炭化した。上記のオート
クレーブ処理とその後の炭化処理を合計3回行なった
後、これを黒鉛化炉に入れアルゴン雰囲気中、2800℃ま
で昇温した後、冷却し、C/C複合材を得た。得られたC/C
複合材の嵩密度は1.8g/cm3で、厚み方向(繊維軸と同一
方向)とそれに直角の方向の熱伝導率をレーザーフラッ
シュ法熱定数測定装置(真空理工製)で測定した。
The autoclave was cooled, the composite material was taken out, and carbonized to 1000 ° C. in the same manner as the carbonization of the molded product. After the above-mentioned autoclave treatment and subsequent carbonization treatment were performed a total of three times, the mixture was placed in a graphitization furnace, heated to 2800 ° C. in an argon atmosphere, and then cooled to obtain a C / C composite material. C / C obtained
The bulk density of the composite material was 1.8 g / cm 3 , and the thermal conductivity in the thickness direction (the same direction as the fiber axis) and in the direction perpendicular thereto was measured by a laser flash method thermal constant measuring apparatus (manufactured by Vacuum Riko).

厚み方向の熱伝導率は3.70W/cm・℃、厚み方向に直角
の方向の熱伝導率は0.31W/cm・℃であり、その比率は1
2.0であった。
The thermal conductivity in the thickness direction is 3.70 W / cm · ° C, and the thermal conductivity in the direction perpendicular to the thickness direction is 0.31 W / cm · ° C.
2.0.

なお、このものは2500℃の加熱された黒鉛化炉内に急
速に入れても破壊せず、耐熱衝撃性にも優れていた。
This product did not break even when rapidly placed in a heated graphitization furnace at 2500 ° C., and had excellent thermal shock resistance.

実施例2 実施例1において、成型後の寸法を122×137×44mmと
したこと、及び、オートクレーブ処理とその後の炭化処
理を合計4回行なったこと、のほかは実施例1と同様に
してC/C複合材を得た。
Example 2 The procedure of Example 1 was repeated except that the size after molding was 122 × 137 × 44 mm, and that the autoclave treatment and the subsequent carbonization treatment were performed a total of four times. / C composite was obtained.

得られたC/C複合材の嵩密度は1.83g/cm3であった。厚
み方向の熱伝導率は3.61、厚み方向に直角の方向の熱伝
導率は0.51であり、その比率は7.08であった。
The bulk density of the obtained C / C composite material was 1.83 g / cm 3 . The thermal conductivity in the thickness direction was 3.61, the thermal conductivity in the direction perpendicular to the thickness direction was 0.51, and the ratio was 7.08.

このC/C複合材は2500℃に加熱された黒鉛化炉内に急
速に入れても破壊せず、耐熱衝撃性にもすぐれていた。
This C / C composite did not break even when rapidly placed in a graphitization furnace heated to 2500 ° C, and had excellent thermal shock resistance.

(発明の効果) 本発明に係るC/C複合材は、その厚み方向に大きい熱
伝導率、電気伝導率を有するため、特に一方向の熱もし
くは電気の伝導を必要とする場合に使用すると有効であ
り、たとえば熱除去、熱伝達をするような熱交換の材料
あるいはスイッチ材料などに使用しうる。
(Effect of the Invention) Since the C / C composite material according to the present invention has a large thermal conductivity and electrical conductivity in the thickness direction, it is particularly effective when used in a case where heat or electric conduction in one direction is required. For example, it can be used as a material for heat exchange such as heat removal or heat transfer, or a switch material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 孝徳 香川県坂出市番の州町1番地 三菱化成 株式会社坂出工場内 (72)発明者 伊尾木 公裕 東京都港区芝公園2丁目4番1号 三菱 原子力工業株式会社内 (56)参考文献 特開 昭63−252633(JP,A) ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Takanori Takahashi No. 1 Banno-cho, Sakaide-shi, Kagawa Prefecture Mitsubishi Kasei Co., Ltd. Sakaide Factory (72) Inventor Kimihiro Ioki 2-4-1 Shiba Park, Minato-ku, Tokyo Mitsubishi Nuclear (56) References JP-A-63-252633 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素繊維が実質的に厚み方向に配向してお
り、厚み方向に直角の方向の熱伝導率に対する厚み方向
の熱伝導率の比率が2以上であり、かつ厚み方向の熱伝
導率が3W/cm・℃以上である炭素繊維強化炭素複合材
料。
The carbon fiber is oriented substantially in the thickness direction, the ratio of the heat conductivity in the thickness direction to the heat conductivity in the direction perpendicular to the thickness direction is 2 or more, and the heat conductivity in the thickness direction is Carbon fiber reinforced carbon composite material with a rate of 3 W / cm · ° C or higher.
【請求項2】厚み方向に直角の方向の熱伝導率に対する
厚み方向の熱伝導率の比率が7以上である請求項1記載
の炭素繊維強化炭素複合材料。
2. The carbon fiber reinforced carbon composite material according to claim 1, wherein the ratio of the thermal conductivity in the thickness direction to the thermal conductivity in a direction perpendicular to the thickness direction is 7 or more.
【請求項3】厚み方向に直角の方向の熱伝導率に対する
厚み方向の熱伝導率の比率が10以上である請求項1記載
の炭素繊維強化炭素複合材料。
3. The carbon fiber reinforced carbon composite material according to claim 1, wherein the ratio of the thermal conductivity in the thickness direction to the thermal conductivity in a direction perpendicular to the thickness direction is 10 or more.
【請求項4】炭素繊維が実質的に厚み方向に配向してお
り、厚み方向に直角の方向の熱伝導率に対する厚み方向
の熱伝導率の比率が2以上であり、かつ厚み方向の熱伝
導率が3W/cm・℃以上である炭素繊維強化炭素複合材料
の、厚み方向に対向する一方の面に高温の物質、他方の
面には低温の物質を接触させる伝熱方法。
4. The carbon fiber is oriented substantially in the thickness direction, the ratio of the heat conductivity in the thickness direction to the heat conductivity in the direction perpendicular to the thickness direction is 2 or more, and the heat conduction in the thickness direction is performed. A heat transfer method in which a high-temperature substance is brought into contact with one surface facing the thickness direction and a low-temperature substance is brought into contact with the other surface of a carbon fiber reinforced carbon composite material having a rate of 3 W / cm · ° C or more.
【請求項5】厚み方向に直角の方向の熱伝導率に対する
厚み方向の熱伝導率の比率が7以上である請求項4記載
の伝熱方法。
5. The heat transfer method according to claim 4, wherein the ratio of the thermal conductivity in the thickness direction to the thermal conductivity in a direction perpendicular to the thickness direction is 7 or more.
JP63225818A 1988-04-28 1988-09-09 Carbon fiber reinforced carbon composite material and method of using the same Expired - Lifetime JP2743397B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63225818A JP2743397B2 (en) 1988-04-28 1988-09-09 Carbon fiber reinforced carbon composite material and method of using the same
EP94112521A EP0630875B1 (en) 1988-04-28 1989-04-26 Carbon fiber-reinforced carbon composite materials, processes for their production, and first walls of nuclear fusion reactors employing them
EP89107551A EP0339606B1 (en) 1988-04-28 1989-04-26 Carbon fiber-reinforced carbon composite materials, processes for their production, and first walls of nuclear fusion reactors employing them
DE68929046T DE68929046T2 (en) 1988-04-28 1989-04-26 Carbon fiber reinforced carbon composites, processes for their manufacture and their use as inner walls of nuclear fusion reactors
DE68923901T DE68923901T2 (en) 1988-04-28 1989-04-26 Carbon fiber reinforced carbon composites, processes for their production and their use as inner walls of nuclear fusion reactors.
US07/873,683 US5390217A (en) 1988-04-28 1992-04-24 Carbon fiber-reinforced carbon composite materials processes for their production, and first walls of nuclear fusion reactors employing them
US08/450,640 US5586152A (en) 1988-04-28 1995-05-25 Carbon fiber-reinforced carbon composite materials, processes for their production, and first walls of nuclear fusion reactors employing them

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-106158 1988-04-28
JP10615888 1988-04-28
JP63225818A JP2743397B2 (en) 1988-04-28 1988-09-09 Carbon fiber reinforced carbon composite material and method of using the same

Publications (2)

Publication Number Publication Date
JPH0230666A JPH0230666A (en) 1990-02-01
JP2743397B2 true JP2743397B2 (en) 1998-04-22

Family

ID=26446324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225818A Expired - Lifetime JP2743397B2 (en) 1988-04-28 1988-09-09 Carbon fiber reinforced carbon composite material and method of using the same

Country Status (1)

Country Link
JP (1) JP2743397B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7305938B2 (en) * 2018-09-05 2023-07-11 ウシオ電機株式会社 electric parts unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829987B2 (en) * 1986-10-23 1996-03-27 三菱化学株式会社 Method for producing carbon fiber reinforced carbon composite material

Also Published As

Publication number Publication date
JPH0230666A (en) 1990-02-01

Similar Documents

Publication Publication Date Title
EP0339606B1 (en) Carbon fiber-reinforced carbon composite materials, processes for their production, and first walls of nuclear fusion reactors employing them
EP0714869B1 (en) Carbon fiber-reinforced carbon composite material and process for the preparation thereof
CN105152672B (en) CfThe preparation method of/(BN SiC) composites
WO2006003774A1 (en) Method for manufacturing carbon fiber reinforced carbon composite material suitable for semiconductor heat sink
JP2664047B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPH03150266A (en) Production of carbon/carbon composite material
JP2743397B2 (en) Carbon fiber reinforced carbon composite material and method of using the same
JPH0242790B2 (en)
JP2811681B2 (en) First wall of fusion device
JP2699443B2 (en) Carbon fiber reinforced carbon composite material bonded to metal and method for producing the same
JP2775766B2 (en) Carbon fiber reinforced carbon composite and use thereof
CN104261852A (en) Preparation method of carbon-carbon composite heat-barrier material
JPH0816032B2 (en) High-strength carbon-carbon composite manufacturing method
JP2004014735A (en) Heat sink
KR0145784B1 (en) Carbon fiber-reinforced c/c composite
JP4356870B2 (en) C / C composite manufacturing method, rocket nozzle and re-entry capsule
JPH0551257A (en) Production of carbon fiber reinforced carbon material
JPH0365505A (en) Low density swollen graphite molded product and preparation thereof
JPS62212263A (en) Manufacture of carbon-carbon fiber composite material
JPH0829987B2 (en) Method for producing carbon fiber reinforced carbon composite material
JP3215701B2 (en) Method for producing high heat load resistant C / C material and first wall material of fusion reactor
CN106567283A (en) PVB (Polyvinyl Butyral) modified and phenolic resin reinforced carbon paper as well as preparation process and application thereof
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPH0127030B2 (en)
JPS62252371A (en) Manufacture of carbon fiber reinforced carbon composite material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11