JP2739824B2 - 半導体受光素子 - Google Patents

半導体受光素子

Info

Publication number
JP2739824B2
JP2739824B2 JP6138834A JP13883494A JP2739824B2 JP 2739824 B2 JP2739824 B2 JP 2739824B2 JP 6138834 A JP6138834 A JP 6138834A JP 13883494 A JP13883494 A JP 13883494A JP 2739824 B2 JP2739824 B2 JP 2739824B2
Authority
JP
Japan
Prior art keywords
layer
type
multiplication
superlattice
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6138834A
Other languages
English (en)
Other versions
JPH088455A (ja
Inventor
正芳 辻
紀久夫 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6138834A priority Critical patent/JP2739824B2/ja
Publication of JPH088455A publication Critical patent/JPH088455A/ja
Application granted granted Critical
Publication of JP2739824B2 publication Critical patent/JP2739824B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、光通信や光情報処理、
光計測等で用いられる半導体受光素子において、主にア
バランシェ増倍型半導体受光素子に関するものである。
【0002】
【従来の技術】従来、1〜1.6μm 帯の光通信用半導
体受光素子として、InP基板上に格子整合したIn
0.53Ga0.47As層(以下InGaAs層と略す)を光
吸収層とするPIN型半導体受光素子(「光通信素子光
学」、米津氏著、工学図書株式会社刊、371頁(19
83)に記載)、アバランシェ増倍型半導体受光素子
(エレクトロニクス・レターズ(Electronic
s Letters)1984年,20巻,pp.65
3−654に記載)が知られている。特に、後者は、ア
バランシェ増倍作用による内部利得効果及び高速応答を
する点で、長距離通信用として実用化されている。
【0003】図8に、典型的なInGaAs−APDの
構造図(アバランシェ増倍型半導体受光素子は以下AP
Dと略す。)を示す。動作原理は、InGaAs光吸収
層13で発生した光キャリアの中で、正孔キャリアが電
界によりInPアバランシェ層14に注入される。In
Pアバランシェ層14は、高電界が印加されているので
イオン化衝突が生じ、増倍特性に至る。この場合、素子
特性上重要な雑音・高速応答特性は、増倍過程でのキャ
リアのランダムなイオン化プロセスに支配されているこ
とが知られている。具体的には、増倍層であるInP層
の電子と正孔のイオン化率に差がある程、イオン化率比
が大きくとれ(電子及び正孔のイオン化率をそれぞれ
α、βとすると、α/β>1の時には電子、β/α>1
の時には正孔が、イオン化衝突を起こす主キャリアとな
るべきである。)、素子特性上望ましい。
【0004】ところが、イオン化率比(α/βまたはβ
/α)は、材料物性的に決定されており、InPでは高
々β/α=2程度である。これは、低雑音特性を有する
Siのα/β=20と大きな違いがあり、より低雑音及
び高速応答特性を実現するために、画期的な技術革新が
要求されている。
【0005】これに対し、近年、アバランシェ増倍型半
導体受光素子において、増倍層に超格子構造を適用し、
伝導帯不連続エネルギーによる電子のイオン化促進を意
図した超格子APDが研究される。特に、InAlAs
/InAlGaAs超格子層を増倍層とした超格子AP
Dにおいて、利得帯域幅積120GHzが報告されてい
る(アイ・イー・イー・イー フォトニクス テクノロ
ジー レターズ(IEEE Photonics Te
chnology Letters)1933年、5
巻、pp675−677に記載)。図9に、典型的なI
nAlAs/InAlGaAs超格子APDの構造図を
示す。素子形成は、まず気相成長法でn型InP基板1
上にn+ 型InPバッファ層2、n+ 型InAlAsバ
ッファ層3、n- 型InAlAs/InAlGaAs超
格子増倍層4、p+ 型電界緩和層5、p- 型光吸収層
6、p- 型InPキャップ層7及びp+ 型InGaAs
コンタクト層8を順次積層する。その後、Br系エッチ
ャントでメサ形成をし、SiNxをパッシベーション膜
9として表面に堆積させる。その後、n側10及びp側
11にオーミック電極を蒸着して完成する。入射光12
は表面から入射する。
【0006】
【発明が解決しようとする課題】従来の技術の欄で述べ
たように、従来の超格子APDでは伝導帯不連続エネル
ギーにより電子の衝突イオン化を促進させることを目的
としている。しかしながら、例えば、従来のInAlA
s/InAlGaAs超格子のAPDの例で言うなら
ば、伝導帯不連続エネルギー0.3eVのときには、価
電子帯不連続エネルギーも0.1eVあり、正孔の衝突
イオン化促進及び井戸層内での正孔のパイルアップ等が
懸念される。加えて、この超格子APDはメサ型の素子
構造であり、強電界が印加される増倍層がメサ端面で露
出するので、信頼性を有した素子を形成することが困難
となっている。
【0007】本発明の目的は、正孔を増倍層に注入する
構造のAPDにおいて、上述の課題を解決し、超格子構
造を利用し正孔のみを選択的に増倍させ、且つ、プレー
ナ構造を有する信頼性に優れた高感度・高速半導体受光
素子を提供することにある。
【0008】
【課題を解決するための手段】上記目的を達成するため
の構成を説明する。
【0009】本発明の半導体受光素子は、半導体基板上
に光吸収層及び伝導帯エネルギー差がほとんどない超格
子増倍層を有する半導体受光素子において、前記超格子
増倍層を構成する障壁層がInPであり、井戸層がIn
AlGaAsであることを特徴とする
【0010】また本発明の半導体受光素子は、前記井戸
層に引っ張り歪が加えられていることを特徴とする。
【0011】以上の特徴を有することにより、本発明は
上述した課題を解決することができる。
【0012】
【作用】図1は、本発明の半導体受光素子を説明するた
めの図であり、超格子増倍層のバンド図を示す。増倍層
として、InP/In0.5 Al0.23Ga0.27As超格子
構造を例にとり説明する。本発明のAPDは、光吸収層
で発生した光キャリアの内、正孔のみを増倍層に注入す
る正孔注入型の超格子APDである。図1に示すよう
に、該超格子構造の価電子帯エネルギー差は0.3eV
あり、これにより、注入された正孔のイオン化率が増大
される。一方、正孔の衝突イオン化により増倍層内で発
生した電子は、伝導帯不連続エネルギーがほとんど0e
Vであるために超格子構造におけるヘテロ界面でのエネ
ルギー供給がなく、イオン化率を抑圧することが出来
る。即ち、該超格子構造により正孔のみのイオン化率増
大を図ることができ、イオン化率比(β/α)を改善す
ることができる。さらに、本発明の超格子APDにおい
ては、高信頼性を得るために不可欠なプレーナ構造を比
較的容易に採用することができる。この理由を図2を用
いて説明する。
【0013】図2には、本発明の半導体受光素子の素子
構造と電界強度の例を示す。p+ −InPキャップ層7
と超格子増倍層19の界面がpn接合であり、電界印加
時に空乏層は基板側に一方向に伸びる(従来の電子注入
型の超格子APDでは、空乏層はpn接合から基板側及
び表面側の両方向に伸びる。)この場合には、容易にp
- 型の2重ガードリング構造を適用することが可能であ
り、プレーナ構造の素子を形成することができる。これ
より、高電界が印加される増倍層等の露出が防げ、高信
頼性が達成できる。
【0014】図3は、本発明の作用を説明するための図
であり、増倍層のバンド図を示す。前述のように、増倍
層内に注入された正孔は、ヘテロ界面の価電子帯エネル
ギー差ΔEvにより衝突イオン化が促進されるが、増倍
井戸層から障壁層に遷移するときにはこのΔEvが障壁
として働き、特に質量の重い正孔にとっては、パイルア
ップの原因となる。本発明では、増倍井戸層に引っ張り
応力が加えられているので、層方向に垂直に走行する正
孔の基底準位はライトホールバンドとなり、正孔の質量
がバルクのときと比べて1/8程度に軽くなる(このこ
とについては、カオらが、ジャーナル・アプライド・フ
ィジックス(J.Appl.Phys)57(198
5)p.5428に報告している。)これより、価電子
帯エネルギー差ΔEvによる正孔のパイルアップが緩和
されるのみならず、電子のイオン化率を上回る正孔のイ
オン化率を生じさせる
【0015】図4は、本発明の作用を説明するための図
であり、光吸収層、電界緩和層及び超格子増倍層のバン
ド図を示す。本発明の素子構造は、前述のように光吸収
層で発生した光キャリアの内、正孔のみを増倍層に注入
する構造であるが、InGaAs光吸収層とInP電界
緩和層の界面の価電子帯エネルギー差ΔEvは0.4e
Vと大きい。ここで、InP電界緩和層は光吸収層と超
格子増倍層を分離させ、InGaAs光吸収層でのトン
ネル暗電流の発生を抑制する目的で挿入されている。そ
れ故、この領域に印加される電界は通常150kV/c
m程度以下と小さく、且つ、正孔の質量が電子のそれよ
り8倍程度重いことを考慮すると、この界面での正孔の
パイルアップが懸念される。
【0016】本発明では、この界面にInAIGaAs
層あるいはInGaAs層20を挿入することにより、
この界面を階段状のバンド構造とし、正孔のパイルアッ
プを緩和することができる。これより、高速特性を改善
することができる。
【0017】
【実施例】本発明の実施例について、図面を用いて詳細
に説明する。
【0018】図5は、本発明の一実施例により形成され
たアバランシェ増倍型受光素子の断面図である。構造と
しては、まず、InP基板1上にn+ 型InPバッファ
層2を0.3μm 、n- 型InGaAs光吸収層13を
0.9μm 、n+ 型InP電界緩和層18を0.1μm
、n- 型InP/InAlGaAs超格子増倍層19
を0.2μm 、そしてn- 型InPキャップ層21を
2.5μm 積層する。ここで、上記InP/InAlG
aAs超格子構造の障壁層と井戸層の膜厚は、それぞれ
120オングストローム及び80オングストロームであ
る。その後、p- 型2重ガードリング構造22をBeの
2重注入(加速電圧110kV、ドーズ量5×1013cm
-2と、加速電圧60kV、ドーズ量3×1013cm-2)と
700℃、20分のアニールにより作製し、p+ 型受光
領域16はCd3 2 を拡散源とした570℃でのCd
拡散により作製した。さらに、パッシベーション膜とし
て表面にSiNx膜9を1500オングストローム堆積
させ、n側電極10として、AuGe/Niを1500
オングストローム、TiPtAuを500オングストロ
ーム堆積する。また、p側電極11として、AuZnを
1500オングストローム堆積することにより、素子構
造を完成する。
【0019】上述した素子構造のもとで、作用に述べた
原理により、正孔のイオン化が誇張され、実行イオン化
率比(β/α比)5、最大帯域15GHz、利得帯域幅
積120GHz、また量子効率70%の低雑音・高速応
答特性を有するアバランシェ増倍型半導体受光素子を実
現した。また本素子は、信頼性評価試験の結果、10万
時間以上の長寿命を有していた。本発明による素子構造
は、具体的には、MOVPE、MBE、ガスソースMB
E等の結晶成長技術により、作製することができる。
【0020】本発明の実施例について、図面を用いて詳
細に説明する。図6は、本発明の一実施例により形成さ
れたアバランシェ増倍型受光素子の断面図である。構造
としては、まず、InP基板1上にn+ 型InPバッフ
ァ層2を0.3μm、n- 型InGaAs光吸取層13
を0.9μm、n+ 型InP電界緩和層18を0.1μ
m、n- 型InP/InAIGaAs歪超格子増倍層2
3を0.2μm、そしてn- 型InPキャップ層21を
2.5μm堆積する。ここで、上記InP/InAIG
aAs歪超格子構造の障壁層と井戸層の膜厚は、それぞ
れ120オングストローム及び80オングストロームで
あり、且つ、該増倍井戸層には1.5%の引っ張り歪が
印加されている。その後、p- 型2重ガードリング構造
22をBeの2重注入(加速電圧110kV、ドーズ量
5×1013cm-2と、加速電圧60kV、ドーズ量3×
1013cm-2)と700℃、20分のアニールにより作
製し、p+ 型受光領域16はCd3 2 を拡散源とした
570℃でのCd拡散により作製した。さらに、パッシ
ベーション膜として表面にSiNx 膜9を1500オン
グストローム堆積させ、n側電極10として、AuGe
/Niを1500オングストローム、TiPtAuを5
00オングストローム堆積する。また、p側電極11と
して、AuZnを1500オングストローム堆積するこ
とにより、素子構造を完成する。
【0021】上述した素子構造のもとで、作用に述べた
原理により、正孔のイオン化が誇張され、実行イオン化
率比(β/α比)5、最大帯域17GHz、利得帯域幅
積125GHz、また量子効率70%の低雑音・高速応
答特性を有するアバランシェ増倍型半導体受光素子を実
現した。また本素子は、信頼性評価試験の結果、10万
時間以上の長寿命を有していた。本発明による素子構造
は、具体的には、MOVPE、MBE、ガスソースMB
E等の結晶成長技術により、作製することができる。
【0022】本発明の他の実施例について、図面を用い
て詳細に説明する。図7は、本発明の一実施例により形
成されたアバランシェ増倍型受光素子の断面図である。
構造としては、まず、InP基板1上にn+ 型InPバ
ッファ層2を0.3μm、n- 型InGaAs光吸収層
13を0.9μm、n- 型In0.75Ga0.25As0.25
0.75正孔パイルアップ緩和層20を500オングストロ
ーム、n+ 型InP電界緩和層18を0.1μm、n-
型InP/InAIGaAs超格子増倍層19を0.2
μm、そしてn- 型InPキャップ層21を2.5μm
堆積する。ここで、上記InP/InAIGaAs超格
子構造の障壁層と井戸層の膜厚は、それぞれ120オン
グストローム及び80オングストロームである。その
後、2重ガードリング構造22をBeの2重注入(加速
電圧110kV、ドーズ量5×1013cm-2と、加速電
圧60kV、ドーズ量3×1013cm-2)と700℃、
20分のアニールにより作製し、p+ 型受光領域16は
Cd3 2 を拡散源とした570℃でのCd拡散により
作製した。さらに、パッシベーション膜として表面にS
iNx 膜9を1500オングストローム堆積させ、n側
電極10として、AuGe/Niを1500オングスト
ローム、TiPtAuを500オングストローム堆積す
る。また、p側電極11として、AuZnを1500オ
ングストローム堆積することにより、素子構造を完成す
る。
【0023】上述した素子構造のもとで、作用に述べた
原理により、正孔のイオン化が誇張され、実行イオン化
率比(β/α比)5、最大帯域16GHz、利得帯域幅
積123GHz、また量子効率70%の低雑音・高速応
答特性を有するアバランシェ増倍型半導体受光素子を実
現した。また本素子は、信頼性評価試験の結果、10万
時間以上の長寿命を有していた。本発明による素子構造
は、具体的には、MOVPE、MBE、ガスソースMB
E等の結晶成長技術により、作製することができる。
【0024】
【発明の効果】本発明による半導体受光素子は、長距離
光通信に使用される1μm 帯の受光素子において、高感
度・高速特性を有し、且つ、高信頼性を有する素子を提
供することができる。
【図面の簡単な説明】
【図1】本発明の作用を説明するための図である。
【図2】本発明の作用を説明するための図である。
【図3】本発明の作用を説明するための図である。
【図4】本発明の作用を説明するための図である。
【図5】本発明の実施例を説明するための図である。
【図6】本発明の他の実施例を説明するための図であ
る。
【図7】本発明の他の実施例を説明するための図であ
る。
【図8】従来例のInGaAsAPDの構造図である。
【図9】従来例の超格子APDの構造図である。
【符号の説明】
1 n型InP基板 2 n+ 型InPバッファ層 3 n+ 型InAlAsバッファ層 4 n- 型InAlAs/InAlGaAs超格子増倍
層 5 p+ 型InP電界緩和層 6 p- 型InGaAs光吸収層 7 p+ 型InPキャップ層 8 p+ 型InGaAsコンタクト層 9 SiNX パッシベーション膜 10 n側オーミック電極 11 p側オーミック電極 12 入射光 13 n- 型InGaAs光吸収層 14 n型InP増倍層 15 n型InPキャップ層 16 p+ 型受光領域 17 p+ 型ガードリング領域 18 n+ 型InP電界緩和層 19 n- 型InP/InAlGaAs超格子増倍層 20 n- 型In0.75Ga0.25As0.250.75正孔パイ
ルアップ緩和層 21 n- 型InPキャップ層 22 p- 型2重ガードリング構造 23 n- 型InP/InAlGaAs歪超格子増倍層
フロントページの続き (56)参考文献 特開 平2−119274(JP,A) 特開 昭59−163878(JP,A) 特開 昭58−61679(JP,A) 特開 平4−355976(JP,A) 特開 平5−21829(JP,A) 特開 平6−169100(JP,A) 特開 平4−263477(JP,A) 特開 平5−67805(JP,A) 特開 平5−291609(JP,A)

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】半導体基板上に光吸収層及び伝導帯エネル
    ギー差がほとんどない超格子増倍層を有する半導体受光
    素子において、前記超格子増倍層を構成する障壁層がI
    nPであり、井戸層がInAlGaAsであり、井戸層
    に引っ張り歪が加えられていることを特徴とする半導体
    受光素子。
JP6138834A 1994-06-21 1994-06-21 半導体受光素子 Expired - Fee Related JP2739824B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6138834A JP2739824B2 (ja) 1994-06-21 1994-06-21 半導体受光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6138834A JP2739824B2 (ja) 1994-06-21 1994-06-21 半導体受光素子

Publications (2)

Publication Number Publication Date
JPH088455A JPH088455A (ja) 1996-01-12
JP2739824B2 true JP2739824B2 (ja) 1998-04-15

Family

ID=15231311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6138834A Expired - Fee Related JP2739824B2 (ja) 1994-06-21 1994-06-21 半導体受光素子

Country Status (1)

Country Link
JP (1) JP2739824B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326812B2 (ja) * 2009-05-22 2013-10-30 富士通株式会社 太陽電池
KR101933777B1 (ko) * 2017-01-23 2019-04-05 서울시립대학교 산학협력단 양자우물 구조를 채용한 광자 검출기
JP7344912B2 (ja) * 2018-07-11 2023-09-14 エスアールアイ インターナショナル 過剰雑音の出ない線形モードアバランシェフォトダイオード

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861679A (ja) * 1981-10-07 1983-04-12 Kokusai Denshin Denwa Co Ltd <Kdd> 量子井戸層付アバランシ・ホトダイオ−ド
JPS59163878A (ja) * 1983-03-09 1984-09-14 Fujitsu Ltd 半導体受光装置
JPH0282658A (ja) * 1988-09-20 1990-03-23 Fujitsu Ltd 半導体受光素子
JPH02119274A (ja) * 1988-10-28 1990-05-07 Fujitsu Ltd アバランシェフォトダイオード
JP2978572B2 (ja) * 1991-02-19 1999-11-15 日本電気株式会社 半導体受光素子
JP3018589B2 (ja) * 1991-03-28 2000-03-13 日本電気株式会社 半導体受光素子
JPH0521829A (ja) * 1991-07-12 1993-01-29 Hitachi Ltd 半導体装置
JP2893092B2 (ja) * 1991-09-09 1999-05-17 日本電信電話株式会社 アバランシェフォトダイオード
JPH05291609A (ja) * 1992-04-07 1993-11-05 Hitachi Ltd 光半導体装置
JP2998471B2 (ja) * 1992-11-30 2000-01-11 日本電気株式会社 半導体受光素子

Also Published As

Publication number Publication date
JPH088455A (ja) 1996-01-12

Similar Documents

Publication Publication Date Title
JP2601231B2 (ja) 超格子アバランシェフォトダイオード
JP2762939B2 (ja) 超格子アバランシェフォトダイオード
Lenox et al. Thin multiplication region InAlAs homojunction avalanche photodiodes
JP2937404B2 (ja) 半導体受光素子
JP2845081B2 (ja) 半導体受光素子
US6350998B1 (en) Ultraspeed low-voltage drive avalanche multiplication type semiconductor photodetector
JP2998375B2 (ja) アバランシェフォトダイオード
CN114361285A (zh) 1.55微米波段雪崩光电探测器及其制备方法
JPH0521829A (ja) 半導体装置
JPH08111541A (ja) 半導体装置
JPH06232442A (ja) 半導体受光素子
JP2002231992A (ja) 半導体受光素子
JP2739824B2 (ja) 半導体受光素子
JP2751846B2 (ja) 半導体受光素子
JP4058921B2 (ja) 半導体受光素子
JP2745826B2 (ja) アバランシェフォトダイオード
JP2730471B2 (ja) 超格子アバランシェフォトダイオード
JP2894910B2 (ja) 超格子アバランシェフォトダイオードおよびその製造方法
Umezawa et al. Waveguide avalanche photodetector using quantum-dot superlattice for optical fiber communications
JPH051629B2 (ja)
JPH07202254A (ja) 半導体受光素子
JPH04372178A (ja) 半導体受光素子
JP2998471B2 (ja) 半導体受光素子
JP3001291B2 (ja) 半導体受光素子
JP2661548B2 (ja) 半導体受光素子

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971224

LAPS Cancellation because of no payment of annual fees