JP2739778B2 - 3−5族化合物半導体の選択成長方法 - Google Patents

3−5族化合物半導体の選択成長方法

Info

Publication number
JP2739778B2
JP2739778B2 JP63291A JP63291A JP2739778B2 JP 2739778 B2 JP2739778 B2 JP 2739778B2 JP 63291 A JP63291 A JP 63291A JP 63291 A JP63291 A JP 63291A JP 2739778 B2 JP2739778 B2 JP 2739778B2
Authority
JP
Japan
Prior art keywords
group
compound
growth
compound semiconductor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63291A
Other languages
English (en)
Other versions
JPH04279023A (ja
Inventor
一男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63291A priority Critical patent/JP2739778B2/ja
Publication of JPH04279023A publication Critical patent/JPH04279023A/ja
Application granted granted Critical
Publication of JP2739778B2 publication Critical patent/JP2739778B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は品質の優れた3−5族化
合物半導体を低温で選択的に成長する方法に関するもの
である。
【0002】
【従来の技術】3−5族化合物半導体の選択エピタキシ
ャル成長は、発光ダイオ−ド(LED)やレ−ザ−ダイ
オ−ド(LD)に代表される光デバイス、また電界効果
トランジスタ(FET)やヘテロバイポーラトランジス
タ(HBT)に代表される高速デバイスの高性能化のた
めに極めて重要である。たとえばGaAsFETでは電
極形成前にソースおよびドレイン領域のみに選択的にN
+型コンタクト層を成長して寄生抵抗の低減することが
できる。また活性領域を高抵抗のAlGaAs層で埋め
込んだBHレーザーでは駆動電流の低減することができ
る。さらに光および高速デバイスを同一基板上へ集積化
し、高機能化をはかる際の素子分離などにも選択エピタ
キシャル成長技術は欠かすことができない。
【0003】ハロゲン輸送法や有機金属気相成長法(M
OCVD法)が実用化されるまでは、選択エピタキシャ
ル成長法としてもっぱら液相成長法(LPE法)が用い
られてきた。最近さらに高真空で成長する有機金属分子
線エピタキシャル成長法(MO−MBE法)などのガス
を用いる気相成長法(VPE法)が注目されている。
【0004】選択成長に加えてデバイス性能の向上に必
要な薄膜構造の成長が可能で、また量産性が優れてい
る。
【0005】3族有機金属化合物を原料とする気相成長
法のうち特に減圧MOCVD法が普及している。高真空
下で成長を行なうMO−MBE法の実用化が始まってい
る。
【0006】特に熱平衡により近い状態での気相成長手
法であるハロゲン輸送法の選択性が優れている。しかし
Alを構成元素に含む3−5族化合物半導体の成長が難
しいためあまり用いられていない。ホットウオール反応
管を用いるハロゲン輸送法ではAlと石英管壁との反応
が問題となり、管壁をカーボンでコーティングするなど
特別な工夫が必要となる。
【0007】3族有機金属化合物を原料とした選択成長
において、3族有機金属が基板結晶表面に比べてSiO
2 マスク上で分解しにくい性質を利用している。そのた
め3族有機金属原料としてトリエチルガリウム(TEG
a)などエチル基をもつものより、より分解しにくいト
リメチルガリウム(TMGa)などメチル基をもつ原料
を用いた方が選択性が優ているまた成長圧力が低くSi
2 マスク上での3族原料の表面拡散長が伸びるほど選
択性は良くなる。したがって高真空下で成長を行なうM
O−MBE法の方がより低温で良好な選択性が得る。
【0008】純粋な有機金属ではないが3族原子とハロ
ゲン元素、中でも塩素との結合を持つ有機金属化合物、
たとえばジエチルガリウムクロライド(DEGaCl)
を用いる方法が現在までに報告された中では最も良好な
選択性が得られる。これはDEGaClの分解で生じた
GaClが極めて安定で、SiO2上では分解しないた
めと考えられる。成長温度600℃以上で減圧MOCV
D法に適用した場合についてAPL(Applied
Physics Letters),vol.54,n
o.10,March,1989,pp.L910〜9
12に報告されている。
【0009】本発明者の実験結果では成長温度400℃
以下まで、すなわちDEGaClが分解し成長に寄与で
きる温度以上のすべての温度範囲で選択性のあることを
確認している。成長圧力に依存しないので、たとえば大
気圧下でも良好な選択性が得られる。
【0010】
【発明が解決しようとする課題】3族原料として3族元
素とハロゲン元素の結合を持つ有機金属化合物、たとえ
ば塩素と結合したDEGaClを用いた上記従来の選択
成長技術における問題点を考える。
【0011】DEGaClを用いると、DEGaClが
分解し成長する温度、400℃以上のすべての温度範囲
で選択性があり、成長圧力にも依存しない。しかしなが
ら低温ではカーボンが不純物として大量に取込まれてし
まうという問題点があり、これは原料の分解、すなわち
エチル基の脱離が低温では起こりにくく、エチル基に含
まれるカーボンが結晶中に取込まれてしまうためと考え
られる。そのため高純度の膜を得るためには500℃以
上の比較的高温で成長を行なう必要があった。
【0012】ところで熱的に安定なGa−Cl結合を持
つ化合物でさえあれば、本来はカーボンの取込みの原因
となる有機化合物を用いる必要性はなく、たとえばクロ
ロガラン(GaH2 Cl)やジクロロガラン(GaHC
2 )、さらにGaCl3 などの無機化合物を用いれば
カーボンの取込みを完全に防ぐことができると考えられ
る。
【0013】ところがGaH2 ClやGaHCl2 は常
温で極めて不安定で、蒸気圧も低いなど大きな問題があ
る。一方GaCl3 は安定で、所定の蒸気圧があるので
ガスとして配管内を移送しバルブで切り換えて反応容器
に供給できると思われる。
【0014】ところがGaCl3 は強い潮解性と腐食性
があるので、取扱いが極めて難しく、選択成長用の原料
とすることができなかった。
【0015】本発明の目的はこのような従来技術の問題
点を解消し、さらに低温で高品質の3−5族化合物半導
体を選択的に成長する方法を提供することにある。
【0016】
【課題を解決するための手段】本発明の3−5族化合物
半導体の選択成長方法は、3族化合物および5族化合物
からなる揮発性錯化合物と5族元素または5族揮発性化
合物とを基板上に供給する。ここで揮発性錯化合物を構
成する3族化合物は3族元素とハロゲン元素とが直接結
合した水素化合物である。また揮発性錯化合物を構成す
る5族化合物として窒素化合物を用いることができる。
【0017】
【作用】一般に3族化合物を構成する3族原子には空の
p電子軌道があり、そのためこれら化合物は電子受容体
(Lewis酸)として働く。一方、5族化合物を構成
する5族原子は孤立電子対をもつためこれら化合物は電
子供与体(Lewis塩基)として働く。その結果3族
化合物と5族化合物とがいわゆる酸・塩基の反応を起こ
す。すなわち3族原子の空のp電子軌道に5族原子の孤
立電子対が配位して、より安定な錯合体を形成しようと
する。
【0018】3族元素とハロゲン元素とが直接結合した
水素化合物、例えばGa−Cl結合を持つGaH2 Cl
やGaHCl2 などは常温で極めて不安定であるという
問題があった。しかしこの場合も適切な5族化合物を選
んでこれら水素化合物と反応させれば、常温で安定でか
つ適度な蒸気圧を持つ錯合体を形成することができる。
このような錯合体は成長温度では3族水素化合物と5族
化合物とに容易に分解する。
【0019】ここで5族化合物自体が安定で分解しなけ
れば、5族元素の供給は実質的にはないものと見なすこ
とができる。また分解さえしなければたとえ5族有機化
合物を用いてもカーボン不純物源とはならない。一方3
族水素化合物、例えばGaH2 Clは成長温度で容易に
分解するので、以上のプロセスによって最終的にはGa
−Clのみを基板表面に供給することができる。
【0020】さて5族化合物としてはヒ素や燐また窒素
などの化合物が3族水素化合物と安定な錯合体を形成す
る。しかしその中では原子番号の最も小さい窒素の化合
物、例えばNH3 や、また有機化合物では特にメチル基
を持つトリメチルアミン(TMN:N(CH33 )や
ジメチルアミン(DMNH:NH(CH32 )などが
最も熱的に安定であり、かつ得られる錯合体の蒸気圧も
高い。
【0021】したがって3族元素−ハロゲン元素の結合
をもつ3族水素化合物と5族窒素化合物とが反応して生
成する揮発性錯化合物、例えばGaH2 Cl・TMNを
3族原料として用いて、高品質な3−5族化合物半導体
をさらに低温で選択成長する方法が実現できる。
【0022】
【実施例】本発明の一実施例について、図面を参照して
詳細に説明する。
【0023】SiO2 マスクを形成したGaAs(10
0)基板にGaAsを成長させるために、図1に示す横
型減圧MOCVD装置を用いた。
【0024】反応容器1の中にサセプタホルダ4で支持
されたカ−ボンサセプタ2に基板結晶3を置いた。反応
容器1の外周の高周波コイル8でサセプタ2を加熱す
る。
【0025】フィルタ5を通して排気装置6および排気
管7が接続されている。
【0026】ガス導入系統としてAsH3 ガスボンベ
9、DEGaClバブラ10、GaH2 Cl・TMNバ
ブラ11およびキャリヤになるH2 ガス12が接続さ
れ、流量制御装置13とバルブ14によってガス流量が
制御される。
【0027】選択性の有無を調べるためGaAs基板3
の表面の一部にはSiO2 マスクが形成されている。
【0028】キャリアガスとなるH2 を9l/minと
し、反応管内圧力100Torr、GaAs基板3の温
度200℃〜700℃でGaAsを30分成長した。A
sH3 の反応管内分圧は1Torr、GaH2 Cl・T
MNの分圧は2×10-2Torrとした。
【0029】比較のためGaH2 Cl・TMNのかわり
に従来のDEGaClを用いた実験も行なった。成長
後、光学顕微鏡観察から選択性を評価した。SiO2
スクを除去してから、成長したGaAs層の膜厚を段差
計で測定した。
【0030】GaAsの成長速度の温度依存性を図2に
示す。この温度範囲ではほぼ一定で、SiO2 マスクへ
のGaAsの析出は認められない。選択成長が可能とい
える。
【0031】一方従来の原料であるDEGaClを用い
ると、図2に重ねて示すように400℃以下で成長速度
が大きく低下した。低温ではDEGaClの分解率が減
少するためと考えられる。
【0032】200℃〜700℃の温度範囲でGaH2
Cl・TMNおよびDEGaClを用いて成長した膜の
不純物密度をホール測定データを図3に示す。本実施例
のGaH2 Cl・TMNを用いて成長した膜はすべて1
14〜1015/cm3 の低濃度のN型伝導を示した。一
方従来のDEGaClを用いて成長した膜は500℃以
下でP型伝導を示し、低温になると不純物密度が増加す
る。このP型高濃度の不純物はSIMS測定からカーボ
ンであることが確かめられた。
【0033】本実施例においてGaH2 Cl・TMNを
3族原料として用いることによって、より低温でGaA
sの選択成長が実現できた。カーボン不純物の取込みは
認められなかった。
【0034】なお3族Ga原料としてはGaH2 Cl・
DMNHなどを用いることができ、5族元素の種類を変
えたGaPやGaSbの選択成長、またGaAsPなど
混晶の選択成長にも本発明を適用することができる。A
lH2 I・TMNとAsH3を用いたAlAsの選択成
長やInH2 Cl・TMNとPH3 を用いたInPの選
択成長などでも同様の効果得られる。そのほか広く3−
5族化合物半導体の選択成長に本発明を適用することが
できる。
【0035】本実施例では気相成長装置として減圧MO
CVD装置を用いたが、常圧MOCVD装置や真空中で
成長を行なうMOMBE装置でも同様の結果が得られ
る。
【0036】
【発明の効果】低温で選択性と十分な成長速度も得ら
れ、かつカーボン不純物の取込みがない、高品質な3−
5族化合物半導体の低温選択成長方法が実現できた。
【図面の簡単な説明】
【図1】本発明の一実施例で用いた気相成長装置の概略
図である。
【図2】GaH2 Cl・TMNおよびDEGaClを用
いた成長温度と成長速度との関係を示すグラフである。
【図3】半導体膜の成長温度と不純物濃度との関係を示
すグラフである。
【符号の説明】
1 反応容器 2 カーボンサセプタ 3 基板結晶 4 サセプタホルダ 5 フィルタ 6 排気装置 7 排気管 8 高周波誘導コイル 9 AsH3 ボンベ 10 DEGaClバブラ 11 GaH2 Cl・TMNバブラ 12 キャリアH2 ガス 13 流量制御装置 14 バルブ

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】 3族化合物および5族化合物からなる揮
    発性錯化合物と5族元素または5族揮発性化合物とを基
    板上に供給する3−5族化合物半導体の成長方法におい
    て、揮発性錯化合物を構成する3族化合物は3族元素と
    ハロゲン元素とが直接結合した水素化合物であることを
    特徴とする3−5族化合物半導体の選択成長方法。
  2. 【請求項2】 揮発性錯化合物を構成する5族化合物が
    窒素化合物である請求項1記載の3−5族化合物半導体
    の選択成長方法。
JP63291A 1991-01-08 1991-01-08 3−5族化合物半導体の選択成長方法 Expired - Lifetime JP2739778B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63291A JP2739778B2 (ja) 1991-01-08 1991-01-08 3−5族化合物半導体の選択成長方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63291A JP2739778B2 (ja) 1991-01-08 1991-01-08 3−5族化合物半導体の選択成長方法

Publications (2)

Publication Number Publication Date
JPH04279023A JPH04279023A (ja) 1992-10-05
JP2739778B2 true JP2739778B2 (ja) 1998-04-15

Family

ID=11479107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63291A Expired - Lifetime JP2739778B2 (ja) 1991-01-08 1991-01-08 3−5族化合物半導体の選択成長方法

Country Status (1)

Country Link
JP (1) JP2739778B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2646966B2 (ja) * 1993-07-15 1997-08-27 日本電気株式会社 Iii−v族化合物半導体の薄膜成長方法
US7390360B2 (en) * 2004-10-05 2008-06-24 Rohm And Haas Electronic Materials Llc Organometallic compounds
US20080018004A1 (en) * 2006-06-09 2008-01-24 Air Products And Chemicals, Inc. High Flow GaCl3 Delivery

Also Published As

Publication number Publication date
JPH04279023A (ja) 1992-10-05

Similar Documents

Publication Publication Date Title
US6890809B2 (en) Method for fabricating a P-N heterojunction device utilizing HVPE grown III-V compound layers and resultant device
JP3198912B2 (ja) 3−5族化合物半導体の製造方法
JP2001015437A (ja) Iii族窒化物結晶成長法
JP2789861B2 (ja) 有機金属分子線エピタキシャル成長方法
JP2739778B2 (ja) 3−5族化合物半導体の選択成長方法
JP3399642B2 (ja) 半導体発光素子層の形成方法
JP3013992B2 (ja) 化合物半導体結晶の成長方法
JPH0754802B2 (ja) GaAs薄膜の気相成長法
CN113053731A (zh) 镓金属薄膜的制作方法以及氮化镓衬底的保护方法
JPH11268996A (ja) 化合物半導体混晶の成長方法
JP2736655B2 (ja) 化合物半導体結晶成長方法
JP3141628B2 (ja) 化合物半導体素子及びその製造方法
JP3287921B2 (ja) 気相成長用マグネシウム原料およびこれを用いた気相成長法
JP2002154900A (ja) 窒化ガリウム系化合物半導体の結晶成長方法と窒化ガリウム系化合物半導体
JP4009043B2 (ja) p型III族窒化物半導体の製造方法
JPH0535719B2 (ja)
JPS63182299A (ja) 3−5族化合物半導体の気相成長方法
JP2587624B2 (ja) 化合物半導体のエピタキシヤル結晶成長方法
JPH1012624A (ja) 窒化物系化合物半導体の熱処理方法
JPH0534819B2 (ja)
JP2936620B2 (ja) 化合物半導体結晶の気相成長法
KR950011016B1 (ko) 초고진공 화학기상 증착법을 이용한 반도체 에피탁시 성장법
JP2793239B2 (ja) 化合物半導体薄膜の製造方法
Gotoda et al. Characteristics of carbon incorporation in GaAs grown by gas source molecular beam epitaxy
JPH0489399A (ja) 3―v族化合物半導体薄膜の形成方法

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971224