JP2733167B2 - Method for selective growth of compound semiconductor thin film - Google Patents

Method for selective growth of compound semiconductor thin film

Info

Publication number
JP2733167B2
JP2733167B2 JP4164603A JP16460392A JP2733167B2 JP 2733167 B2 JP2733167 B2 JP 2733167B2 JP 4164603 A JP4164603 A JP 4164603A JP 16460392 A JP16460392 A JP 16460392A JP 2733167 B2 JP2733167 B2 JP 2733167B2
Authority
JP
Japan
Prior art keywords
thin film
compound semiconductor
substrate
mask
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4164603A
Other languages
Japanese (ja)
Other versions
JPH065514A (en
Inventor
実 井田
小林  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4164603A priority Critical patent/JP2733167B2/en
Publication of JPH065514A publication Critical patent/JPH065514A/en
Application granted granted Critical
Publication of JP2733167B2 publication Critical patent/JP2733167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は化合物半導体薄膜の有機
金属気相成長(MOCVD)法に係り、特にマスクを用
いて半導体基板上に、選択的に化合物半導体のエピタキ
シャル層を成長させるのに好適な化合物半導体薄膜の選
択的成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to metal organic chemical vapor deposition (MOCVD) of a compound semiconductor thin film, and more particularly to a method for selectively growing an epitaxial layer of a compound semiconductor on a semiconductor substrate using a mask. And a method for selectively growing a compound semiconductor thin film.

【0002】[0002]

【従来の技術】MOCVD法を用いて、選択的に化合物
半導体のエピタキシャル層を成長させる方法として、絶
縁膜や金属膜をマスクとして用いる方法〔例えば、Y.D.
Galeuchet and P.Roentgen:J.Crystal Growth,107(199
1),p.147〜150〕がある。この方法において、化合物半
導体薄膜の構成元素を含む原料ガスは、加熱などの方法
により分解、もしくは一部分解された状態で、半導体基
板上のマスク材で覆われていない領域およびマスク材で
覆われている領域の両方に供給される。そして、マスク
材で覆われていない半導体基板表面上に到達した原料ガ
スは、半導体の持つ触媒作用により分解が促進され、半
導体基板表面上においてエピタキシャル成長層に取り込
まれる。他方、マスク材で覆われているマスク上に到達
した原料ガスの一部はマスクに吸着されるが、ある限ら
れた成長条件の下ではマスク上に堆積されずに再蒸発す
る。したがって、マスク上には化合物半導体薄膜が成長
されることなく、半導体基板表面が露出している部分に
のみ、選択的に化合物半導体のエピタキシャル成長層が
形成できることになる。しかしながら、原料ガスのマス
ク上への吸着および再蒸発は、原料ガスの種類、基板上
へ導入する速度、成長温度または反応室内の圧力等の薄
膜の成長条件に大きく依存しており、薄膜の成長条件に
よっては、マスク上に化合物半導体の結晶粒が成長して
しまうという問題が生じる。特に、上記薄膜の成長条件
において成長温度を下げることはマスク上に結晶粒がい
っそう堆積され易くなるため、化合物半導体の選択的成
長は困難となる。例えば、InP基板上に、InP層や
InGaAs層を選択成長させる場合には、通常600
℃以上の高温で成長を行うのが一般的である。
2. Description of the Related Art As a method for selectively growing an epitaxial layer of a compound semiconductor by MOCVD, a method using an insulating film or a metal film as a mask [for example, YD
Galeuchet and P. Roentgen: J. Crystal Growth, 107 (199
1), p.147-150]. In this method, the source gas containing the constituent elements of the compound semiconductor thin film is decomposed by a method such as heating, or is partially decomposed, and is covered with a region on the semiconductor substrate that is not covered by the mask material and the mask material. Supply to both areas. The source gas that has reached the surface of the semiconductor substrate that is not covered with the mask material is decomposed by the catalytic action of the semiconductor, and is taken into the epitaxial growth layer on the surface of the semiconductor substrate. On the other hand, a part of the source gas that has reached the mask covered with the mask material is adsorbed by the mask, but re-evaporates without being deposited on the mask under certain limited growth conditions. Therefore, the compound semiconductor thin film is not grown on the mask, and the compound semiconductor epitaxial growth layer can be selectively formed only on the portion where the surface of the semiconductor substrate is exposed. However, the adsorption and re-evaporation of the source gas on the mask greatly depends on the growth conditions of the thin film, such as the type of the source gas, the rate of introduction onto the substrate, the growth temperature, or the pressure in the reaction chamber. Depending on the conditions, there arises a problem that crystal grains of the compound semiconductor grow on the mask. In particular, lowering the growth temperature under the above-mentioned thin film growth conditions makes it more difficult for crystal grains to be deposited on the mask, making it difficult to selectively grow the compound semiconductor. For example, when an InP layer or an InGaAs layer is selectively grown on an InP substrate, usually 600
Generally, the growth is performed at a high temperature of not less than ° C.

【0003】[0003]

【発明が解決しようとする課題】上述したごとく、従来
のマスクを用いて基板上に化合物半導体薄膜を選択的に
成長させる場合に、良好な選択性を得るための薄膜成長
条件は大きな制約を受けることになる。特に、薄膜の成
長温度条件が厳しく、良好な選択性を得るための最低温
度が存在し、例えばInGaAsの場合においては約6
00℃以上の高温にする必要があった。
As described above, when a compound semiconductor thin film is selectively grown on a substrate using a conventional mask, the thin film growth conditions for obtaining good selectivity are greatly restricted. Will be. In particular, the growth temperature conditions for the thin film are severe, and there is a minimum temperature for obtaining good selectivity. In the case of InGaAs, for example, about 6
It was necessary to raise the temperature to 00 ° C. or higher.

【0004】本発明の目的は、上記従来技術における問
題点を解消するものであって、マスクを用いて半導体基
板上に、選択的に化合物半導体のエピタキシャル層を成
長させる方法において、薄膜の成長温度が600℃以下
の低温領域であっても、極めて選択性に優れた化合物半
導体薄膜の選択的成長方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art. In a method for selectively growing an epitaxial layer of a compound semiconductor on a semiconductor substrate using a mask, the present invention provides It is an object of the present invention to provide a method for selectively growing a compound semiconductor thin film having extremely excellent selectivity even in a low temperature region of 600 ° C. or lower.

【0005】[0005]

【課題を解決するための手段】上記本発明の目的を達成
するために、有機金属気相成長法により半導体基板上に
化合物半導体薄膜を選択的に成長させる方法において、
上記基板上に、該基板とは異なる材質からなる所定のパ
ターンを有するマスクを形成する工程と、上記マスクを
形成した基板もしくは該基板を載置した保持台を、例え
ば500回/分(rpm)以上の高速度で回転させなが
ら化合物半導体薄膜の構成元素を含む原料ガスを導入し
て、上記基板上のマスク材で覆われていない半導体基板
表面上の領域に所望する化合物半導体薄膜を選択的に成
長させる工程を少なくとも用いるものである。
In order to achieve the object of the present invention, there is provided a method for selectively growing a compound semiconductor thin film on a semiconductor substrate by metal organic chemical vapor deposition.
A step of forming a mask having a predetermined pattern made of a material different from that of the substrate on the substrate, and a step of, for example, 500 times / minute (rpm) The source gas containing the constituent elements of the compound semiconductor thin film is introduced while rotating at a high speed as described above, and a desired compound semiconductor thin film is selectively formed in a region on the surface of the semiconductor substrate which is not covered with the mask material on the substrate. At least a step of growing is used.

【0006】[0006]

【作用】MOCVD法により、マスクを設けた基板上に
化合物半導体薄膜を選択的に成長させる場合に、基板、
もしくは基板を載置した保持台を高速に回転させると、
基板上に原料ガスが拡散されていく境界層が薄くなる。
この境界層が薄くなることにより、半導体表面(マスク
材で覆われていない領域)およびマスク表面(マスク材
で覆われている領域)に原料ガスが到達するまでの時間
が短くなり、結果として未分解の原料ガスが半導体表面
およびマスク表面に到達する割合が大きくなる。そし
て、半導体表面に到達した未分解の原料ガスは、半導体
の持つ触媒作用により、ほぼ完全に分解されて化合物半
導体のエピタキシャル成長層に取り込まれていくが、マ
スク表面に到達した未分解の原料ガスは、分解された原
料ガスに比べてマスク表面に吸着される確率は極めて低
い。これにより、マスク上の結晶粒成長も抑えられ、選
択性が悪いとされている原料ガスおよび薄膜の成長条件
下においても、化合物半導体薄膜の成長の選択性を著し
く改善することができる。この効果は、特に成長温度6
00℃以下の低温領域において顕著に現われる。
When a compound semiconductor thin film is selectively grown on a substrate provided with a mask by the MOCVD method,
Or, if the holder on which the substrate is placed is rotated at high speed,
The boundary layer where the source gas is diffused on the substrate becomes thin.
When the boundary layer becomes thinner, the time required for the source gas to reach the semiconductor surface (the area not covered with the mask material) and the mask surface (the area covered with the mask material) is shortened. The rate at which the source gas for decomposition reaches the semiconductor surface and the mask surface increases. The undecomposed raw material gas that has reached the semiconductor surface is almost completely decomposed by the catalytic action of the semiconductor and is taken into the epitaxially grown layer of the compound semiconductor. The probability of being adsorbed on the mask surface is extremely low as compared with the decomposed source gas. As a result, the growth of crystal grains on the mask can be suppressed, and the selectivity of the growth of the compound semiconductor thin film can be significantly improved even under the conditions of the source gas and the thin film, which are considered to have poor selectivity. This effect is particularly noticeable at growth temperatures of 6
Appears remarkably in the low temperature region of 00 ° C. or less.

【0007】[0007]

【実施例】以下に本発明の実施例を挙げ、図面を用いて
さらに詳細に説明する。MOCVD装置(図示せず)
は、縦型で、基板の保持台の最高回転数が1500回/
分(rpm)のものを用いた。原料ガスとしては、アル
シン、TEGa(トリエチル・ガリウム)、 TMIn
(トリメチル・インジウム)を用い、 InP基板上
に、InGaAs層を選択成長させた。InP基板は、
成長前にあらかじめ光CVDを用いて、Sixyからな
る薄膜を100nmの膜厚に堆積し、その後、通常のフ
ォト工程によりパターンを転写し、レジストの載ってい
ない部分を、ECR−RIE(ECR型反応性イオンエ
ッチング装置)によるドライエッチングで厚さ1μmを
削り、メサを形成したものを用いた。薄膜の選択的成長
条件は、反応室内の圧力が60mmHg(Torr)、
V族元素/III族元素比は126とした。成長温度は、
575℃および450℃とし、基板の回転数が、140
rpm、500rpm、800rpm、1000rp
m、1400rpmの5種類について、それぞれ選択成
長させた。その後、各々の試料について、光学顕微鏡に
より50μm×50μmの正方形のマスク上に堆積した
結晶粒の数を測定した。その結果を図1に示す。図1か
ら明らかなごとく、成長温度が450℃、575℃の両
方共、堆積した結晶粒の数は、基板の回転数を上げると
共に減少する。また、成長温度が低いほど、高速回転が
必要であることが分かる。以上の結果から、基板を所定
の回転数以上で回転させながら化合物半導体薄膜を成長
させることにより、マスク上に結晶粒が堆積されること
なく、良好な選択的成長層が得られることが分かる。ま
た、500rpm未満の回転数では、通常のMOCVD
法による成長温度範囲(600〜800℃)において、
選択性に有意差はみられなかった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in more detail with reference to the drawings. MOCVD equipment (not shown)
Is a vertical type, and the maximum number of rotations of the substrate holder is 1500 times /
Minutes (rpm). Source gases include arsine, TEGa (triethyl gallium), TMIn
Using (trimethyl indium), an InGaAs layer was selectively grown on an InP substrate. The InP substrate is
Using a pre-optical CVD before the growth, Si x N thin films of y is deposited to a thickness of 100 nm, then transferring the pattern by a conventional photolithography process, portions not on the resist, ECR-RIE ( 1 μm in thickness was removed by dry etching using an ECR type reactive ion etching device) to form a mesa. The conditions for the selective growth of the thin film are as follows: the pressure in the reaction chamber is 60 mmHg (Torr);
The group V element / group III element ratio was 126. The growth temperature is
575 ° C. and 450 ° C., and the number of rotations of the substrate is 140
rpm, 500 rpm, 800 rpm, 1000 rpm
m and 1400 rpm were selectively grown. Thereafter, for each sample, the number of crystal grains deposited on a 50 μm × 50 μm square mask was measured using an optical microscope. The result is shown in FIG. As is evident from FIG. 1, the number of deposited grains decreases with increasing substrate rotation speed at both 450 ° C. and 575 ° C. growth temperatures. Also, it can be seen that the lower the growth temperature, the higher the speed of rotation. From the above results, it can be seen that a good selective growth layer can be obtained by growing the compound semiconductor thin film while rotating the substrate at a predetermined rotation speed or more without depositing crystal grains on the mask. At a rotational speed of less than 500 rpm, a normal MOCVD
In the growth temperature range (600-800 ° C) by the method,
There were no significant differences in selectivity.

【0008】[0008]

【発明の効果】以上詳細に説明したごとく、本発明の化
合物半導体薄膜の選択的成長法によれば、成長温度等の
薄膜の成長条件範囲が拡大される。特に、選択成長温度
の低温化は、亜鉛等の不純物を高濃度でドーピングする
ことが可能となり、また選択再成長の場合においては、
再成長基板内のドーパントの拡散が抑制されるため、急
峻なドーピングプロファイルを維持することが可能とな
る。
As described in detail above, according to the method for selectively growing a compound semiconductor thin film of the present invention, the range of the growth conditions of the thin film such as the growth temperature is expanded. In particular, lowering the selective growth temperature makes it possible to dope impurities such as zinc at a high concentration, and in the case of selective regrowth,
Since the diffusion of the dopant in the regrown substrate is suppressed, a steep doping profile can be maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で例示した基板の回転数とマス
ク上に堆積した結晶粒の数の関係を示すグラフ。
FIG. 1 is a graph showing the relationship between the number of rotations of a substrate and the number of crystal grains deposited on a mask as exemplified in an embodiment of the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機金属気相成長法によって、半導体基板
上に化合物半導体薄膜を選択的に成長させる方法におい
て、上記基板上に、該基板とは異なる材質からなる所定
のパターンを有するマスクを形成する工程と、上記マス
クを形成した基板を毎分500回以上の回転数で回転さ
せながら化合物半導体薄膜の構成元素を含む原料ガスを
導入して、上記基板上のマスク材で覆われていない半導
体基板表面上の領域に所望する化合物半導体薄膜を成長
させる工程を少なくとも含むことを特徴とする化合物半
導体薄膜の選択的成長方法。
In a method for selectively growing a compound semiconductor thin film on a semiconductor substrate by metal organic chemical vapor deposition, a mask having a predetermined pattern made of a material different from the substrate is formed on the substrate. And introducing a source gas containing the constituent elements of the compound semiconductor thin film while rotating the substrate on which the mask is formed at a rotation speed of 500 times or more per minute, and forming a semiconductor which is not covered with the mask material on the substrate. A method for selectively growing a compound semiconductor thin film, comprising at least a step of growing a desired compound semiconductor thin film in a region on a substrate surface.
JP4164603A 1992-06-23 1992-06-23 Method for selective growth of compound semiconductor thin film Expired - Fee Related JP2733167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4164603A JP2733167B2 (en) 1992-06-23 1992-06-23 Method for selective growth of compound semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4164603A JP2733167B2 (en) 1992-06-23 1992-06-23 Method for selective growth of compound semiconductor thin film

Publications (2)

Publication Number Publication Date
JPH065514A JPH065514A (en) 1994-01-14
JP2733167B2 true JP2733167B2 (en) 1998-03-30

Family

ID=15796320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4164603A Expired - Fee Related JP2733167B2 (en) 1992-06-23 1992-06-23 Method for selective growth of compound semiconductor thin film

Country Status (1)

Country Link
JP (1) JP2733167B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661088B2 (en) 2004-06-01 2011-03-30 住友化学株式会社 Method for manufacturing compound semiconductor substrate having pn junction
JP4695934B2 (en) * 2005-07-08 2011-06-08 株式会社ニューフレアテクノロジー Epitaxial growth equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497519A (en) * 1990-08-15 1992-03-30 Nec Corp Manufacture of semiconductor device
JPH04125919A (en) * 1990-09-17 1992-04-27 Hitachi Ltd Semiconductor manufacture equipment

Also Published As

Publication number Publication date
JPH065514A (en) 1994-01-14

Similar Documents

Publication Publication Date Title
US5760426A (en) Heteroepitaxial semiconductor device including silicon substrate, GaAs layer and GaN layer #13
EP0632145B1 (en) Method of forming crystalline silicon carbide coatings
JP3545459B2 (en) Method of making crystalline silicon carbide coating at low temperature
JP2009545886A (en) Method for forming carbon-containing silicon epitaxial layer
JPH05291140A (en) Growth method of compound semiconductor thin film
EP0573270B1 (en) Method of preparing compound semiconductor
US3661636A (en) Process for forming uniform and smooth surfaces
JP2733167B2 (en) Method for selective growth of compound semiconductor thin film
JPH0794494A (en) Manufacture of compound semiconductor device
CA1274429A (en) Vapor deposition method for the gaas thin film
JPS63237517A (en) Selective formation of iii-v compound film
JPH05335241A (en) Compound semiconductor and manufacture thereof
JP2845464B2 (en) Compound semiconductor growth method
JPH0258217A (en) Metallic film forming method
JPH06188197A (en) Selective growth method of semiconductor film
JP2983322B2 (en) Manufacturing method of epitaxial wafer
CN113161225B (en) Semiconductor structure, self-supporting gallium nitride layer and preparation method thereof
JP2897107B2 (en) Crystal growth method
JPH07122491A (en) Selective growth method of semiconductor thin film
JPS62132312A (en) Manufacture of semiconductor thin film
KR0119906B1 (en) Epitial growth
JP3112796B2 (en) Chemical vapor deposition method
JP3047523B2 (en) Selective epitaxial growth method
JP2569141B2 (en) Crystal formation method
JPH04127522A (en) Method for selective growth of semiconductor crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees