JP2725732B2 - Zirconia porous body and method for producing the same - Google Patents

Zirconia porous body and method for producing the same

Info

Publication number
JP2725732B2
JP2725732B2 JP3288005A JP28800591A JP2725732B2 JP 2725732 B2 JP2725732 B2 JP 2725732B2 JP 3288005 A JP3288005 A JP 3288005A JP 28800591 A JP28800591 A JP 28800591A JP 2725732 B2 JP2725732 B2 JP 2725732B2
Authority
JP
Japan
Prior art keywords
zirconia
parts
porous body
strength
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3288005A
Other languages
Japanese (ja)
Other versions
JPH05330938A (en
Inventor
敏貴 正寳
堯一 長谷川
武 長谷川
健次 森永
Original Assignee
科学技術庁長官官房会計課長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科学技術庁長官官房会計課長 filed Critical 科学技術庁長官官房会計課長
Priority to JP3288005A priority Critical patent/JP2725732B2/en
Publication of JPH05330938A publication Critical patent/JPH05330938A/en
Application granted granted Critical
Publication of JP2725732B2 publication Critical patent/JP2725732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/40Mortars, concrete or artificial stone characterised by specific physical values for gas flow through the material

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池,ガスセンサ
ー用の多孔質支持体、あるいはバイオセンサー,バイオ
リアクターの酵素担体として好適に使用できる円筒状、
あるいは平板状ジルコニア多孔質体とその製造法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous support for a fuel cell or a gas sensor, or a cylindrical support which can be suitably used as an enzyme carrier for a biosensor or a bioreactor.
Alternatively, the present invention relates to a flat zirconia porous body and a method for producing the same.

【0002】[0002]

【従来の技術】従来、かかる用途に用いられる円筒状セ
ラミックス多孔質体として、例えば、特開昭63−10
9010号公報,特開平3−34259号公報等に記載
されているように、ジルコニア系のセラミックスが使用
されている。
2. Description of the Related Art Conventionally, as a cylindrical ceramic porous body used for such a purpose, for example, JP-A-63-10
As described in JP-A-9010 and JP-A-3-34259, zirconia-based ceramics are used.

【0003】[0003]

【発明が解決しようとする課題】従来より多孔質体の性
質を評価するのには気孔率で評価されてきた。しかし、
気体が実際にこの多孔質体を通り抜ける目安には、これ
だけでは不十分である。むしろ、気体が物質を通過する
際に用いられる通気率(cm3 ・cm/cm2 ・sec
・cmH2 O)を用いる方がより的確である。
Conventionally, the porosity has been used to evaluate the properties of a porous body. But,
This alone is not sufficient to provide an indication of the actual passage of gas through the porous body. Rather, the air permeability (cm 3 · cm / cm 2 · sec) used when a gas passes through a substance
・ CmH 2 O) is more accurate.

【0004】ところが、従来の発明は開気孔率を40%
程度に決めているだけで、この通気率についての考察が
なされておらず、「気体が物質を通過する」といった考
えがなされていない。
[0004] However, the conventional invention has an open porosity of 40%.
Just to the extent, no consideration is given to this permeability, and no idea is made that "gas passes through the substance."

【0005】また、多孔性が大きくなると、実際の強度
が不足しがちで、これに対処するために様々な高強度セ
ラミックスを用いて対応を図ることが考えられている。
SiCやSi3 4 などの非酸化物セラミックスは確か
に高強度にはなるが、作製法HIP等の特殊な条件でし
か用いられず、目的には合致しない。
[0005] When the porosity is increased, the actual strength tends to be insufficient. To cope with this, it has been considered to use various high-strength ceramics.
Non-oxide ceramics such as SiC and Si 3 N 4 certainly have high strength, but are used only under special conditions such as the manufacturing method HIP and do not meet the purpose.

【0006】そこで、成形や焼結が比較的容易な酸化物
セラミックス、例えばアルミナやシリカを用いれば、多
孔質支持体とすることができる。しかしながら、これら
セラミックスでも多孔性を大きくすると強度が著しく減
少してしまう。こういった経緯で多孔質体の原料として
は焼成が容易で、且つ多孔性を高めてもその強度が強く
維持できるものでなければならない。
Accordingly, a porous support can be obtained by using an oxide ceramic which is relatively easy to mold and sinter, such as alumina or silica. However, even with these ceramics, increasing the porosity significantly reduces the strength. Under these circumstances, the raw material of the porous body must be easy to bake, and must be able to maintain its strength even if the porosity is increased.

【0007】ところで、上記の従来のセラミックス多孔
質円筒体を燃料電池やセンサーの支持体として使用する
場合には、 イ.薄膜状の電極材料を担持するものであるので、十分
な強度を有すること ロ.通過する流体に対し、十分な空隙率が確保されてい
ること の要件を充足することが必要である。
Incidentally, when the above-mentioned conventional porous ceramic cylinder is used as a support for a fuel cell or a sensor, a. It has sufficient strength because it supports a thin-film electrode material. It is necessary to satisfy the requirement that sufficient porosity is ensured for the passing fluid.

【0008】ところが、従来、かかる発明では、十分な
強度と大きな通過率を持つような要求を満たすことはで
きなかった。
However, heretofore, such an invention has not been able to satisfy the requirement of having sufficient strength and a large transmittance.

【0009】更には従来法では十分な強度を保ちつつ通
気率を任意に変えることは全くできなかった。
Furthermore, the conventional method cannot arbitrarily change the air permeability while maintaining sufficient strength.

【0010】本発明の目的は薄肉で制御された、気体通
過性を有し、しかも耐熱衝撃性において優れ、とくに、
燃料電池,センサーおよびバイオリアクター等の担体用
に適したセラミックス多孔質体を得ることにある。
An object of the present invention is to have a thin and controlled gas permeability, and to be excellent in thermal shock resistance.
An object of the present invention is to obtain a porous ceramic body suitable for a carrier such as a fuel cell, a sensor and a bioreactor.

【0011】[0011]

【課題を解決するための手段】本発明の担体用ジルコニ
ア多孔質体は、ジルコニアの薄肉焼結体からなり、且
つ、10〜50×10-4cm3 ・cm/cm2 ・sec
・cmH2以上の通気率と、70MPa以上の強度を
有することを特徴とする。
Means for Solving the Problems Zirconi for a carrier of the present invention
The porous body is made of a thin sintered body of zirconia, and
One, 10~50 × 10 -4 cm 3 · cm / cm 2 · sec
-Air permeability of not less than cmH 2 O and strength of not less than 70 MPa
It is characterized by having.

【0012】この多孔質体は、粒子径がサブミクロンの
ジルコニア粉末を100容積部と300μm以下の水酸
基含有有機化合物の結合材微粉末5〜30容積部と、可
塑剤20〜55容積部とジルコニア粉末100重量部に
対し分散剤0.1〜2.0重量部とを混合して得られた
坏土を押出し成形後、成形助剤を分解除去したのち焼成
することによって得られる。
The porous body is composed of 100 parts by volume of zirconia powder having a submicron particle diameter, 5 to 30 parts by volume of a binder fine powder of an organic compound having a hydroxyl group of 300 μm or less, 20 to 55 parts by volume of a plasticizer, and zirconia. It is obtained by extruding and kneading a clay obtained by mixing 0.1 to 2.0 parts by weight of a dispersant with 100 parts by weight of a powder, decomposing and removing a forming aid, and then firing.

【0013】本発明のジルコニアとしては、体積変化を
伴う変態を防止する目的でカルシア、あるいはイットリ
ア、あるいはセリア等を3〜15モル%固溶させた安定
化ジルコニアを用いる。
As the zirconia of the present invention, stabilized zirconia in which 3-15 mol% of calcia, yttria, ceria, or the like is dissolved to prevent transformation accompanied by a volume change is used.

【0014】配合する結合剤微粉末としては、有機結合
剤、無機結合剤等が使用できるが、混合の際、ジルコニ
アと反応せずまた仮焼時には容易にグリーン体から分解
除去され、燃焼の炭素分や灰分の残留を防止するために
有機結合剤、なかでもメチルセルロースやヘミセルロー
スをはじめとする多糖類誘導体の使用が好ましい。
As the binder fine powder to be blended, an organic binder, an inorganic binder, and the like can be used. However, they do not react with zirconia during mixing, and are easily decomposed and removed from the green body during calcination, thereby reducing the combustion It is preferable to use an organic binder, in particular, a polysaccharide derivative such as methylcellulose or hemicellulose in order to prevent the residue of ash or ash.

【0015】この微粉末の配合はセラミック粉末同士の
結合を高め、押出し時の良好な強度や成形性を保つ上で
最も重要な要素であるが、少なすぎると成形が低く保形
性が保てない。また多すぎてもかえって押出し時に坏土
が硬くなって押出しが困難となるので、成形性と強度の
面からセラミック100容積部に対して5〜30容積
部、好ましくは15〜25容積部の範囲である。
The compounding of this fine powder is the most important factor in enhancing the bonding between ceramic powders and maintaining good strength and moldability at the time of extrusion. However, if the amount is too small, the molding is low and the shape retention can be maintained. Absent. Also, if the amount is too large, the kneaded clay becomes harder at the time of extrusion, which makes it difficult to extrude. It is.

【0016】可塑剤としては、有機性可塑剤と無機性可
塑剤等があるが、微粉末の場合と同じく、仮焼時の分解
除去の容易さの面より有機性可塑剤、なかでもグリセロ
ールやポリビニルアルコール等の水酸基含有有機化合物
の使用が最も好ましい。その配合量は押出し時のグリー
ン表面の平滑性と取扱作業性の面からセラミック100
容積部に対して20〜55容積部とくに30〜50容積
部が最適である。
As the plasticizer, there are an organic plasticizer and an inorganic plasticizer. However, as in the case of the fine powder, the organic plasticizer, especially glycerol or glycerol is preferred from the viewpoint of ease of decomposition and removal during calcination. Most preferably, a hydroxyl-containing organic compound such as polyvinyl alcohol is used. The compounding amount of the ceramic 100 is set in consideration of the smoothness of the green surface at the time of extrusion and the handling workability.
The optimal volume is 20 to 55 parts by volume, especially 30 to 50 parts by volume.

【0017】分散剤については、ジルコニアは水と混合
してスラリー状とするとこれを添加しなくても多少の分
散性を保持している。それで少量の分散剤の添加はかえ
って凝集性を高めしまい、良好な坏土とはならないの
で、その添加量はセラミック100重量部に対して0.
5〜2.0重量部が最適である。
As for the dispersing agent, when zirconia is mixed with water to form a slurry, zirconia retains some dispersibility even without adding it. Therefore, the addition of a small amount of the dispersant rather increases the cohesiveness and does not result in a good kneaded clay, so that the addition amount is 0.1 to 100 parts by weight of the ceramic.
5 to 2.0 parts by weight is optimal.

【0018】焼成温度は、燃料電池作成の際に一体焼結
を目指すため、1400℃,2〜4時間とする。
The firing temperature is set to 1400 ° C. for 2 to 4 hours in order to aim for integral sintering when producing the fuel cell.

【0019】[0019]

【作用】ジルコニアは、アルミナ,シリカ等のセラミッ
クスと比べ、800MPa以上の強度を有し、これを基
材として使用することによって支持体の強度を維持でき
る。焼成時の充填構造及び気体の通過による通気率を、
結合剤,可塑剤等の成形助剤の混和量によって任意に調
整できる。本発明の坏土は押出し成形に充分な流動性を
有し、成形後堅固なグリーン体となり、その後の加工が
容易となる。
Zirconia has a strength of 800 MPa or more as compared with ceramics such as alumina and silica, and the strength of the support can be maintained by using it as a base material. Filling structure during firing and the air permeability due to the passage of gas,
It can be arbitrarily adjusted depending on the mixing amount of a molding aid such as a binder and a plasticizer. The kneaded material of the present invention has sufficient fluidity for extrusion molding, becomes a solid green body after molding, and facilitates subsequent processing.

【0020】[0020]

【実施例】通気率の大きさを求める方法はいろいろ提案
されているが、「窯業工業ハンドブック」p.407〜
9に記載の通気率評価法によって求めることができる。
Various methods for obtaining the magnitude of the air permeability have been proposed, but are described in "Ceramic Industry Handbook", p. 407-
9 can be determined by the air permeability evaluation method.

【0021】本発明の多孔質体は曲げ強度と通気率が大
きく、かつ任意の値に制御できる性質を持つものであ
る。
The porous body of the present invention has high bending strength and high air permeability, and has properties that can be controlled to an arbitrary value.

【0022】表1に示す特性を有する混合物をそれぞれ
混合機で混合し、所定の水を加えて更に混練機で練り混
ぜて坏土を得た。この坏土を押出し機で押出し圧力3〜
30kgf/cm2 の条件で押出しを行い、グリーン体
として外形10〜20mm、内径が9〜15mmの円筒
状体または膜厚0.06〜5mmの平型を得た。これを
乾燥して脱脂炉にいれ仮焼することで成形助剤を分解除
去した。更に、仮焼体を雰囲気を調整した炉内で140
0℃に加熱し、得られた焼結体の評価を行った。
Each of the mixtures having the properties shown in Table 1 was mixed by a mixer, predetermined water was added, and the mixture was further kneaded by a kneader to obtain a clay. Extrusion pressure of this clay is 3 ~
Extrusion was performed under the conditions of 30 kgf / cm 2 to obtain a green body as a cylindrical body having an outer diameter of 10 to 20 mm and an inner diameter of 9 to 15 mm or a flat type having a thickness of 0.06 to 5 mm. This was dried, placed in a degreasing furnace, and calcined to decompose and remove the molding aid. Further, the calcined body was placed in a furnace with an adjusted atmosphere for 140 minutes.
The obtained sintered body was heated to 0 ° C. and evaluated.

【0023】なお、比較例1と2は従来より燃料電池支
持管として用いられてきた製品の特注値である。
The comparative examples 1 and 2 are custom-made values of products conventionally used as fuel cell support tubes.

【0024】曲げ強度はJIS R 1601 「ファ
インセラミックスの曲げ強度試験方法」に準じて行っ
た。その結果を表2に示す。ここで比較として従来品で
ある比較例1と比較例2を示した。従来品では曲げ強度
は小さく、その改良型では80MPaになる。同表を用
いて本発明の多孔質体を従来品と対比すると、曲げ強度
が同じでも気孔率が大きく、更に優れた強度で任意の通
気率を設定できるのが分かる。
The bending strength was measured in accordance with JIS R 1601 "Testing method for bending strength of fine ceramics". Table 2 shows the results. Here, Comparative Examples 1 and 2 which are conventional products are shown for comparison. The bending strength is low in the conventional product, and 80 MPa in the improved type. When the porous body of the present invention is compared with the conventional product using the same table, it can be seen that even if the bending strength is the same, the porosity is large, and an arbitrary permeability can be set with further excellent strength.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】この円筒状多孔質体は曲げ強さを保持(8
0MPa)した上で、通気率を飛躍的に増大させること
ができ、また、この多孔質体を燃料電池の支持体として
使用した結果、他の電極部材との熱膨張係数がほぼ等し
くなり、一体成形を可能にすることができた。
This cylindrical porous body maintains the bending strength (8
0 MPa), the air permeability can be dramatically increased, and as a result of using this porous body as a support for a fuel cell, the coefficient of thermal expansion with other electrode members becomes substantially equal, and Molding could be enabled.

【0028】[0028]

【発明の効果】本発明によって以下の効果を奏すること
ができる。
According to the present invention, the following effects can be obtained.

【0029】(1)適度の強度と通気性を有し、また任
意に通気率と気孔率を調整できる。
(1) It has appropriate strength and air permeability, and can adjust the air permeability and porosity arbitrarily.

【0030】(2)焼成温度は1400℃で、燃料電池
の支持管として用いた場合には、酸素極のセラミックス
部材の性能を減少させることなく焼結が可能である。更
に従来法では1600℃で焼成を行ってきたが、本発明
により1400℃と従来より200℃も温度が低く焼成
が可能となった。このことにより省エネ効果がある。
(2) The sintering temperature is 1400 ° C. When used as a support tube for a fuel cell, sintering is possible without reducing the performance of the ceramic member of the oxygen electrode. Further, in the conventional method, baking was performed at 1600 ° C., but according to the present invention, baking became possible at a temperature of 1400 ° C., which is 200 ° C. lower than that of the conventional method. This has an energy saving effect.

【0031】(3)セラミックスの材料としてジルコニ
アを用いており、燃料電池の支持管として用いた場合に
は、電解質,燃料極および酸素極と熱膨張係数がほぼ同
じで、とくに電解質は同じジルコニアを用いているので
熱膨張係数が全く同じとなり、一体成形法に用いること
ができる。
(3) When zirconia is used as a ceramic material and used as a support tube for a fuel cell, the electrolyte, the fuel electrode, and the oxygen electrode have substantially the same thermal expansion coefficients as those of the zirconia electrolyte. Since they are used, they have exactly the same coefficient of thermal expansion and can be used for an integral molding method.

【0032】(4)高強度ジルコニア粉末(120kg
f/mm2 )を用いているので、他の酸化物セラミック
ス、例えばアルミナやシリカ等と比べて粉体自体の強度
が大きい。よって使用時に圧力がかかり、且つ流体が担
体中を十分に流れるバイオセンサーおよびバイオリアク
ターの酵素支持体およびマトリックスに使用できる。
(5)本発明で押出したグリーン体は、大気中に押し出
されて直ちに水分が蒸発し始め、硬化が始まる。よっ
て、取扱いが簡便であり、以降の作業の能率が向上す
る。
(4) High strength zirconia powder (120 kg
f / mm 2 ), the powder itself has higher strength than other oxide ceramics such as alumina and silica. Therefore, it can be used as an enzyme support and a matrix for a biosensor and a bioreactor, which are under pressure during use and a fluid sufficiently flows through a carrier.
(5) The green body extruded in the present invention is immediately extruded into the atmosphere, and the moisture starts to evaporate immediately and the curing starts. Therefore, the handling is simple and the efficiency of the subsequent work is improved.

【0033】(6)溶媒として水を用いるので、有機溶
媒の際に必要な換気,引火等の作業上の問題点がほとん
どなく、大量生産ができ、以降の作業の能率が向上す
る。
(6) Since water is used as a solvent, there are almost no problems in work such as ventilation and ignition required for an organic solvent, mass production is possible, and efficiency of subsequent work is improved.

【0034】(7)無機質のセラミックスを使用してお
り、バイオセンサーやバイオリアクターの担体として使
用した際には、たとえ酸素が失活しても仮焼することで
有機物を除去し、担体の再生が可能で、有機物の担体と
は異なり、繰り返しの使用に耐え、リサイクルが可能と
なり、環境への配慮がなされている。
(7) When inorganic ceramics are used and used as a carrier for biosensors and bioreactors, even if oxygen is deactivated, organic substances are removed by calcination to regenerate the carrier. Unlike organic carriers, they can withstand repeated use, can be recycled, and are environmentally friendly.

【0035】(8)したがって、燃料電池,センサー,
バイオリアクターの支持体として好適に使用できる。
(8) Therefore, the fuel cell, the sensor,
It can be suitably used as a support for a bioreactor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森永 健次 福岡県春日市春日公園6−1 九州大学 総合理工学研究科内 (56)参考文献 特開 昭54−126631(JP,A) ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenji Morinaga 6-1 Kasuga Park, Kasuga City, Fukuoka Prefecture Kyushu University Graduate School of Science and Engineering (56) References JP-A-54-126631 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ジルコニアの薄肉焼結体からなり、且つ、
10〜50×10-4cm3・cm/cm2 ・sec・c
mH2以上の通気率と、70MPa以上の曲げ強度を
有する担体用ジルコニア多孔質体。
1. A zirconia thin sintered body, and
10 to 50 × 10 -4 cm 3 · cm / cm 2 · sec · c
mH 2 O or more air permeability and 70 MPa or more bending strength
Zirconia porous body for a carrier .
【請求項2】 粒子径がサブミクロンのジルコニア粉末
を100容積部と300μm以下の水酸基含有有機化合
物の結合材微粉末5〜30容積部と、可塑剤20〜55
容積部と、ジルコニア粉末100重量部に対し分散剤
0.1〜2.0重量部とを混合して得られた坏土を押出
し成形後、成形助剤を分解除去したのち、焼成するジル
コニア多孔質体の製造方法。
2. 100 parts by volume of zirconia powder having a submicron particle size, 5 to 30 parts by volume of a binder fine powder of an organic compound having a hydroxyl group of 300 μm or less, and 20 to 55 plasticizers.
After extruding and kneading the clay obtained by mixing 0.1 to 2.0 parts by weight of the dispersant with 100 parts by weight of zirconia powder, the auxiliaries are fired after the molding aid is decomposed and removed. Production method of the body.
【請求項3】 請求項2の記載において、ジルコニアが
カルシアあるいはイットリアあるいはセリア等を3〜1
5モル%固溶させ安定化したジルコニア多孔質体の製造
方法。
3. The method according to claim 2, wherein the zirconia is calcia, yttria, ceria, or the like.
A method for producing a zirconia porous body which is dissolved and stabilized in 5 mol%.
JP3288005A 1991-11-01 1991-11-01 Zirconia porous body and method for producing the same Expired - Lifetime JP2725732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3288005A JP2725732B2 (en) 1991-11-01 1991-11-01 Zirconia porous body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3288005A JP2725732B2 (en) 1991-11-01 1991-11-01 Zirconia porous body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05330938A JPH05330938A (en) 1993-12-14
JP2725732B2 true JP2725732B2 (en) 1998-03-11

Family

ID=17724578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3288005A Expired - Lifetime JP2725732B2 (en) 1991-11-01 1991-11-01 Zirconia porous body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2725732B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263600A (en) * 2004-03-22 2005-09-29 Yazaki Corp Method for producing zirconia hollow particle
CN115650724A (en) * 2022-11-14 2023-01-31 三祥新材股份有限公司 Honeycomb ceramic and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126631A (en) * 1978-03-27 1979-10-02 Aikoh Co Dipping nozzle for steel casting

Also Published As

Publication number Publication date
JPH05330938A (en) 1993-12-14

Similar Documents

Publication Publication Date Title
EP1728775B1 (en) Silicon nitride filter and method for its production
US20040092381A1 (en) Aluminum titanate-based ceramic article
EP1483221A1 (en) Strontium feldspar aluminum titanate for high temperature applications
JP4311609B2 (en) Method for producing porous ceramic body
US20090159853A1 (en) Colloidal templating process for manufacture of highly porous ceramics
JP2009512616A (en) Self-lubricating binder for ceramic extrusion.
Du et al. Optimisation parameters for the extrusion of thin YSZ tubes for SOFC electrolytes
JP5036008B2 (en) Cordierite formation
US20190177232A1 (en) Aluminum titanate compositions, aluminum titanate articles, and methods of making same
JP2006232590A (en) Method for manufacturing ceramic structure
EP2067756A2 (en) Silicon carbide based porous material and method for preparation thereof
US6838026B2 (en) Method for producing a silicon nitride filter
JPH02282442A (en) Aluminide structure
Yang et al. Synthesis and properties of porous single‐phase β′‐SiAlON ceramics
JP2725732B2 (en) Zirconia porous body and method for producing the same
JP5147503B2 (en) One-end-sealed zeolite membrane substrate tube
JPH10167854A (en) Production of high strength porous alpha-sic sintered compact
JP5341597B2 (en) Manufacturing method of silicon nitride filter and silicon nitride filter
Zhang et al. Processing multi-channel alumina membranes by tape casting latex-based suspensions
Mongkolkachit et al. Investigation of Extruded Porous Alumina for High Temperature Construction
JP4223933B2 (en) Method for producing porous silicon carbide
CN115959926B (en) Phase-inversion pore-forming agent and pore-forming method of fly ash ceramic flat membrane support
JP2001220260A (en) Alumina-based porous refractory sheet and method for producing the same
JP3015859B2 (en) Method for producing perovskite-type oxide thin film sheet by extrusion method
JP3312068B2 (en) Method for producing large magnesia molded body and sintered body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term