JPH10167854A - Production of high strength porous alpha-sic sintered compact - Google Patents

Production of high strength porous alpha-sic sintered compact

Info

Publication number
JPH10167854A
JPH10167854A JP8332167A JP33216796A JPH10167854A JP H10167854 A JPH10167854 A JP H10167854A JP 8332167 A JP8332167 A JP 8332167A JP 33216796 A JP33216796 A JP 33216796A JP H10167854 A JPH10167854 A JP H10167854A
Authority
JP
Japan
Prior art keywords
sic
content
weight
sintered body
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8332167A
Other languages
Japanese (ja)
Other versions
JP3983838B2 (en
Inventor
Takeshi Ninomiya
健 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP33216796A priority Critical patent/JP3983838B2/en
Publication of JPH10167854A publication Critical patent/JPH10167854A/en
Application granted granted Critical
Publication of JP3983838B2 publication Critical patent/JP3983838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high strength porous α-SiC sintered compact having a uniform pore diameter distribution by compacting a mixture of powdery SiC stock with an org. resin binder, heating the resultant compact in an oxygen- contg. atmosphere so as to attain a specified carbon content and carrying out firing. SOLUTION: A mixture of 100 pts.wt. powdery SiC stock having 0.5-5wt.% SiO2 content and 0.3-50μm average particle diameter and preferably having 60-100% α-SiC content with 1-10 pts.wt. org. resin binder is compacted. The resultant compact is dewaxed by heating in an atmosphere having 1-10% oxygen content so as to attain 0.5-5wt.% pyrolytic carbon content and it is fired in a nonoxidizing atmosphere at 1,500-2,500 deg.C to obtain the objective high strength porous α-SiC sintered compact.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、α−SiC焼結体の
製造方法に関し、特に、ハニカムフィルタ等を製造する
に適した濾過性能の良好な高強度多孔質α−SiC焼結体
の製造方法について提案する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an .alpha.-SiC sintered body, and more particularly, to a method for producing a high-strength porous .alpha.-SiC sintered body having good filtration performance suitable for producing a honeycomb filter or the like. Suggest a way.

【0002】[0002]

【従来の技術】最近、ディーゼルエンジンの内燃機関な
どから排出される排気ガス中に含まれるパティキュレー
ト (カーボンの粒子状物質) については、環境浄化を図
る観点から、ガスの大気放出の前に除去するのが普通で
ある。この除去のために用いられているのがセラミック
フィルタである。このセラミックフィルタに求められて
いる資質としては、耐熱性, 熱伝導性に優れることであ
り、こうした条件に適うものとして多孔質のSiC焼結体
の適用が検討されている。
2. Description of the Related Art Recently, particulates (particulate matter of carbon) contained in exhaust gas discharged from an internal combustion engine of a diesel engine or the like are removed before releasing the gas to the atmosphere from the viewpoint of environmental purification. It is usual to do. A ceramic filter is used for this removal. The qualities required of the ceramic filter are excellent in heat resistance and thermal conductivity, and application of a porous SiC sintered body is being studied as meeting such conditions.

【0003】従来、多孔質SiC焼結体は、β−SiC粉末
に有機樹脂バインダーおよび可塑剤等を配合した原料組
成物を成形し、その成形体を焼成することによりβ−Si
C粉末粒子を粒成長させて板状結晶を生成させたのち、
焼結することによって製造していた。このような板状結
晶組織を有するβ−SiC焼結体は、気孔率が大きく、排
ガスフィルターとして使用した場合の圧力損失 (または
排気抵抗) が低いという特徴がある。
Conventionally, a porous SiC sintered body is obtained by molding a raw material composition in which an organic resin binder, a plasticizer, and the like are mixed with β-SiC powder, and firing the molded body to form a β-SiC powder.
After growing C powder particles to form plate crystals,
It was manufactured by sintering. The β-SiC sintered body having such a plate-like crystal structure is characterized by high porosity and low pressure loss (or exhaust resistance) when used as an exhaust gas filter.

【0004】しかしながら、このβ−SiC焼結体は、焼
結時に粒の異常成長が起こりやすく、そのために均一で
かつ所定の気孔径を有する焼結体とするためには、極め
て狭い温度範囲内に制御することが必要である。さらに
この方法で得られたβ−SiC焼結体は、主として板状結
晶で構成されるため、機械的強度が比較的低いという問
題があった。
However, in the β-SiC sintered body, abnormal growth of grains is apt to occur during sintering. Therefore, in order to obtain a sintered body having a uniform and predetermined pore diameter, an extremely narrow temperature range is required. Needs to be controlled. Further, the β-SiC sintered body obtained by this method has a problem that the mechanical strength is relatively low because it is mainly composed of plate crystals.

【0005】また、特開平4−187578号公報に
は、セラミックフィルタに用いることのできる多孔質Si
C焼結体の製造方法として、β−SiC粉末にαーSiC粉
末を配合したSiC原料粉末を成形し、その成形体を焼成
して多孔質SiC焼結体とする方法において、上記SiC原
料粉末が、平均粒径 0.1〜1.0 μmのβ−SiC粉末 100
重量部に対し、平均粒径が 0.3〜50μmのα−SiC粉末
を5〜50重量部配合する多孔質SiC焼結体の製造方法
が開示されている。しかしながら、β−SiC粉末を多量
に使用する上記の方法で製造された多孔質SiC焼結体
は、β−SiC粉末が高価であることから多孔質SiC焼結
体はそれほど安価にはならず、また、β−SiC粉末は、
焼結時に板状の結晶粒を生成するため比較的気孔径が大
きくなり易く、通気抵抗の比較的小さいフィルタを製造
することができるが、気孔径分布が不均一になり易いと
いう問題があった。
Japanese Patent Laid-Open No. Hei 4-187578 discloses a porous Si filter which can be used for a ceramic filter.
As a method for producing a C sintered body, the method comprises molding a SiC raw material powder obtained by blending an α-SiC powder with a β-SiC powder, and firing the formed body to form a porous SiC sintered body. Is a β-SiC powder having an average particle size of 0.1 to 1.0 μm.
There is disclosed a method for producing a porous SiC sintered body in which 5 to 50 parts by weight of α-SiC powder having an average particle diameter of 0.3 to 50 μm is blended with respect to parts by weight. However, the porous SiC sintered body manufactured by the above method using a large amount of β-SiC powder is not so inexpensive because the β-SiC powder is expensive. Also, β-SiC powder is
Since sintering produces plate-like crystal grains, the pore size is relatively large, and a filter having relatively small airflow resistance can be manufactured. However, there is a problem that the pore size distribution tends to be non-uniform. .

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来のハニ
カムフィルタ用多孔質β−SiC焼結体が抱えている上述
した問題を解決するために開発されたものであって、そ
の目的とするところは、通気抵抗が小さくかつ均一な気
孔径分布を有するハニカムフィルタ用多孔質α−SiC焼
結体を提供することにある。また、本発明の他の目的
は、有機樹脂バインダーを添加して高強度のα−SiC焼
結体を安価に製造することにある。
SUMMARY OF THE INVENTION The present invention has been developed to solve the above-mentioned problems of the conventional porous β-SiC sintered body for a honeycomb filter. However, an object of the present invention is to provide a porous α-SiC sintered body for a honeycomb filter having a small airflow resistance and a uniform pore size distribution. Another object of the present invention is to produce an α-SiC sintered body having high strength at low cost by adding an organic resin binder.

【0007】[0007]

【課題を解決するための手段】上述した課題について検
討した結果、その解決のためには、SiO2含有率が 0.1〜
5重量%で平均粒径が 0.3〜50μmのSiC原料粉末に有
機樹脂バインダーを添加混合して成形し、その成形体を
酸素含有率が1〜10%の雰囲気中において該成形体中の
熱分解炭素含有率が 0.5〜5重量%となるように加熱し
た後、該成形体を1500〜2500℃の非酸化性雰囲気中で焼
成することが高強度多孔質α−SiC焼結体の製造に有利
であるとの結論に達した。なお、前記SiC原料粉末とし
ては、α−SiCの含有率が60〜100 %のものを用いるこ
とが好ましい。
As a result of studying the above-mentioned problems, it has been found that the content of SiO 2 is 0.1 to
An organic resin binder is added to and mixed with a 5% by weight SiC raw material powder having an average particle size of 0.3 to 50 μm, and the molded product is thermally decomposed in an atmosphere having an oxygen content of 1 to 10%. After heating to a carbon content of 0.5 to 5% by weight, firing the molded body in a non-oxidizing atmosphere at 1500 to 2500 ° C. is advantageous for producing a high-strength porous α-SiC sintered body. Was reached. The SiC raw material powder preferably has a content of α-SiC of 60 to 100%.

【0008】[0008]

【発明の実施の形態】本発明において、成形体中にSiO2
と有機樹脂バインダーからの適量の熱分解炭素とを存在
させるようにした理由は、成形体中にSiO2とCとが適量
存在すると、その後の焼結過程で発生するSiOガスが焼
結に関与する際に、SiC粒子を粗大化させることなく比
較的容易に相互に結合させることができるようになるか
らである。これは、SiC原料粉末としてα−SiC粉末を
多量に使うことと相俟って本発明の効果をより一層顕著
なものにするのに役立っている。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, SiO 2
The reason that so as to present the appropriate amount of pyrolytic carbon from the organic resin binder, when the SiO 2 and C present an appropriate amount in the green body, SiO gas generated in the subsequent sintering process is involved in sintering This is because SiC particles can be relatively easily bonded to each other without coarsening. This, together with the use of a large amount of α-SiC powder as the SiC raw material powder, has helped to make the effects of the present invention more remarkable.

【0009】一般に、SiO2とCとからSiCが生成する反
応は、下記式; SiO2+C→SiO+CO SiO+2C→SiC+CO に従って、まずSiOが生成し、次いでこのSiOとCとが
反応してSiCを生成するものと考えられている。ここ
で、そのSiO2とCとの配合が不適当だと、SiOガスのう
ちSiC化されないものが多くなり、反応域中のSiOガス
量が増加し、SiO2, Si, SiC, Cが混合した粘着性の半
溶融物を析出して原料の凝着を招く。しかし、この配合
が適正だと高強度多孔質SiCの生成を容易に起こさせる
ことができる。
In general, the reaction for forming SiC from SiO 2 and C is as follows: SiO 2 + C → SiO + CO SiO + 2C → SiC + CO First, SiO is formed, and then the SiO and C react to form SiC. It is considered to be. Here, if the mixing ratio of SiO 2 and C is inappropriate, many of the SiO gases that cannot be converted to SiC increase, the amount of SiO gas in the reaction zone increases, and SiO 2 , Si, SiC, and C are mixed. The adhered sticky semi-molten substance is precipitated to cause adhesion of the raw materials. However, if this composition is proper, the formation of high-strength porous SiC can be easily caused.

【0010】上記の反応を適正に保つための前記SiC原
料粉末中には、0.1 〜5 重量%のSiO2を含有させること
が適当である。この理由は、SiO2含有率が0.1 重量%よ
り小さいと、焼成過程で発生するSiOガスが少なくな
り、SiC粒子を粒成長させることなく相互に結合させる
ことが困難になるからである。一方、5重量%より大き
いと、焼成過程で発生するCOガスとSiOガスが多くな
りすぎ、上述したように焼結反応を阻害するからであ
る。なお、好ましいSiO2含有率は 0.3〜2.0 重量%であ
る。より好適には 1.0〜2.0 重量%がよい。
It is appropriate that the SiC raw material powder contains 0.1 to 5% by weight of SiO 2 in order to maintain the above reaction properly. The reason for this is that if the SiO 2 content is less than 0.1% by weight, the amount of SiO gas generated during the sintering process will be small, and it will be difficult to bond the SiC particles to each other without causing grain growth. On the other hand, if it is more than 5% by weight, the amount of CO gas and SiO gas generated during the firing process becomes too large, which hinders the sintering reaction as described above. The preferred SiO 2 content is 0.3 to 2.0% by weight. More preferably, the content is 1.0 to 2.0% by weight.

【0011】前記SiC原料粉末は、平均粒径が0.3 〜50
μmの大きさであることが必要である。この理由は、平
均粒径が0.3 〜50μmのSiC原料粉末を使用することに
よって、通気抵抗が小さく、かつ、均一な気孔径分布を
有するハニカムフィルタ等に適した高強度多孔質α−Si
C焼結体を安価に提供することができるからである。
The SiC raw material powder has an average particle size of 0.3 to 50.
It is necessary to have a size of μm. The reason for this is that the use of SiC raw material powder having an average particle size of 0.3 to 50 μm makes it possible to obtain a high-strength porous α-Si film having a small airflow resistance and suitable for a honeycomb filter having a uniform pore size distribution.
This is because a C sintered body can be provided at low cost.

【0012】原料粉末である前記SiC原料粉末として
は、α−SiC含有率が60〜100 %のものを用いることが
好ましい。その理由は、α−SiC含有率が60%より低い
と、β−SiC等の焼結時に異常粒成長しやすい成分の影
響で、成形体の焼結時に板状の結晶粒が生成し易くな
り、気孔径分布が不均一になり易いからである。
As the SiC raw material powder, it is preferable to use one having an α-SiC content of 60 to 100%. The reason is that if the α-SiC content is lower than 60%, plate-like crystal grains are likely to be generated at the time of sintering of the molded body due to the influence of components such as β-SiC which tend to grow abnormal grains during sintering. This is because the pore size distribution tends to be non-uniform.

【0013】本発明において、SiC原料粉末には、有機
質樹脂からなる結合剤, 即ち、有機樹脂バインダーを添
加混合して成形し、その後、酸素含有率が1〜10%の雰
囲気中で熱分解炭素含有率が0.5 〜5重量%となるまで
有機質樹脂を熱分解させることが必要である。かかる有
機樹脂バインダーは、熱分解温度以上に加熱された場合
にCを析出する有機質化合物であって、その生成C量
は、SiCに含有されるSiO2を除去するために用いられる
量とする。従って、この有機樹脂バインダーは、少なく
ともSiO2含有率に見合う量、即ちSiO2をSiC化すること
のできる量とし、できればSiC粒子間に均一に介在する
に充分な量を添加する。
In the present invention, a binder made of an organic resin, that is, an organic resin binder is added to the SiC raw material powder, mixed and molded, and then the pyrolytic carbon is mixed in an atmosphere having an oxygen content of 1 to 10%. It is necessary to thermally decompose the organic resin until the content becomes 0.5 to 5% by weight. Such an organic resin binder is an organic compound that precipitates C when heated to a temperature equal to or higher than the thermal decomposition temperature, and the amount of generated C is an amount used for removing SiO 2 contained in SiC. Therefore, the organic resin binder is at least an amount commensurate with the SiO 2 content, i.e. the SiO 2 and the amount that can be SiC of, adding an amount sufficient to uniformly interposed between SiC particles, if possible.

【0014】つまり、本発明は、前記有機樹脂バインダ
ーを、SiC原料粉末ならびに反応域酸素含有量によって
必要とされる量よりもやや過剰に添加し、積極的にSiC
焼結体内に遊離炭素の形で残留させることで、高強度で
均一気孔径を有する多孔質α−SiC焼結体を生成させよ
うとするものである。
That is, according to the present invention, the organic resin binder is added slightly in excess of the amount required according to the SiC raw material powder and the oxygen content in the reaction zone, and the SiC binder is aggressively added.
By leaving it in the form of free carbon in the sintered body, a porous α-SiC sintered body having a high strength and a uniform pore diameter is to be produced.

【0015】本発明において、雰囲気中の酸素含有率を
1〜10%に制御する理由は、雰囲気中の酸素含有率が1
%より低いと反応性の高い熱分解炭素を得ることが困難
になるからであり、一方10%より高いと有機樹脂バイン
ダーが燃焼して反応性の高い熱分解炭素を得ることがで
きないからである。
In the present invention, the reason that the oxygen content in the atmosphere is controlled to 1 to 10% is that the oxygen content in the atmosphere is 1%.
If the amount is less than 10%, it becomes difficult to obtain highly reactive pyrolytic carbon, while if it is more than 10%, the organic resin binder burns and it is not possible to obtain highly reactive pyrolytic carbon. .

【0016】また、成形体中の熱分解炭素含有率を 0.5
〜5重量%にする理由は、この熱分解炭素の含有率が
0.5重量%より少ないと、SiC粒子を粗大化させること
なく相互に結合させることが困難になるからであり、一
方5重量%より多いとSiC粒子間に存在する熱分解炭素
がSiC粒子の相互の結合を阻害するからである。
Further, the pyrolytic carbon content in the compact is 0.5
The reason for setting the content to 5% by weight is that the content of the pyrolytic carbon is
If the amount is less than 0.5% by weight, it is difficult to bond the SiC particles to each other without coarsening. On the other hand, if the amount is more than 5% by weight, the pyrolytic carbon existing between the SiC particles may cause mutual decomposition of the SiC particles. This is because binding is inhibited.

【0017】なお、本発明において用いる前記有機樹脂
バインダーとしては、メチルセルロース、カルボキシメ
チルセルロース、ヒドロキシエチルセルロース、ポリエ
チレングリコール、フェノール樹脂、エポキシ樹脂等が
あげられる。この成形用バインダーの配合割合は一般
に、SiC原料粉末 100重量部に対し、1 〜10重量部の範
囲が好適である。この配合割合が1 重量部未満では、必
要な熱分解炭素の生成量が得られないからであり、一方
10重量部を超えると、バインダーを除去する際に成形体
にクラックが発生し易くなる。
The organic resin binder used in the present invention includes methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, epoxy resin and the like. In general, the compounding ratio of the molding binder is preferably in the range of 1 to 10 parts by weight based on 100 parts by weight of the SiC raw material powder. If the blending ratio is less than 1 part by weight, the required amount of generated pyrolytic carbon cannot be obtained.
If the amount exceeds 10 parts by weight, cracks are likely to occur in the molded article when the binder is removed.

【0018】前記原料粉末には必要に応じて分散溶媒を
配合する。例えば、ベンゼン等の有機溶剤、メタノール
等のアルコール、水等が使用することができ、その配合
量は原料スラリーの粘度に応じて調整される。
A dispersion solvent is added to the raw material powder as required. For example, organic solvents such as benzene, alcohols such as methanol, water, and the like can be used, and the compounding amount is adjusted according to the viscosity of the raw material slurry.

【0019】本発明において、焼結時の成形体の焼成雰
囲気を非酸化性雰囲気とする理由は、SiCの酸化による
必要以上のSiO2の生成を防ぐためであり、その温度は15
00〜2500℃の範囲内とする。焼成雰囲気の温度が1500℃
未満では、SiC粒子の焼結が進行しないからであり、一
方2500℃を超えるとSiCが昇華するためである。好まし
くは1800〜2300℃の範囲とする。本発明によれば、壁厚
が 0.2〜0.5 mmで、軸方向に 100〜250 個/平方インチ
の割合で多数の孔が形成され、100 mm以上の長さを有す
るハニカム形状のフィルターを有利に製造することがで
きる。
In the present invention, the reason why the firing atmosphere of the compact during sintering is a non-oxidizing atmosphere is to prevent the generation of unnecessarily SiO 2 due to the oxidation of SiC.
The temperature is in the range of 00 to 2500 ° C. Temperature of firing atmosphere is 1500 ℃
If it is less than the above, the sintering of the SiC particles does not proceed, while if it exceeds 2500 ° C., the SiC will sublime. Preferably it is in the range of 1800 to 2300 ° C. According to the present invention, a honeycomb-shaped filter having a wall thickness of 0.2 to 0.5 mm, a large number of holes formed at a rate of 100 to 250 holes / square inch in the axial direction, and a length of 100 mm or more is advantageously used. Can be manufactured.

【0020】[0020]

【実施例】以下に、本発明を内燃機関の排気ガス浄化装
置に使用するフィルターの形状に具体化した実施例を比
較例と対比させて説明する。なお、このフィルターは33
×33mm、長さが 150mmの角柱形状でその軸方向に多数の
孔が形成されたハニカム状であり、各孔を形成する隔壁
の厚さは、0.35mm、孔数は 170個/平方インチである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in the shape of a filter used in an exhaust gas purifying apparatus for an internal combustion engine will be described below in comparison with a comparative example. This filter is 33
It is a rectangular prism with a length of 33 mm and a length of 150 mm, and has a honeycomb shape with many holes formed in the axial direction. The thickness of the partition wall that forms each hole is 0.35 mm, and the number of holes is 170 / square inch. is there.

【0021】(実施例1)平均粒径が12.4μmのα−SiC
原料粉末70重量部に対し、平均粒径が約 0.5μmのβ−
SiC粉末を30重量部配合し、さらに有機樹脂バインダー
としてメチルセルロース9重量部、分散剤 6.5重量部、
および水21.5重量部を配合して均一に混合し、原料組成
物を調製した。そして、この原料組成物を押し出し成形
機に充填し、押し出し速度40cm/min.にて上記形状のハ
ニカム成形体を成形し、酸素濃度5%、昇温速度15℃/
min.、400 ℃×60min.の条件で脱脂処理した。このとき
の熱分解炭素含有率は1.20重量%であった。脱脂が完了
した成形体を焼成炉内に移すと共に、1気圧のアルゴン
ガス雰囲気下、昇温速度5℃/min. (≦1500℃) 、2℃
/min. (≦2200℃) にて加熱を開始し、所定の温度まで
それぞれ昇温し、1500℃×1分、2200℃×4分焼成を施
して、ハニカム状の多孔質SiC焼結体を作製した。これ
らのSiC焼結体の一部を切り出し、3点曲げ強度、平均
気孔径、気孔率を試験した。その結果を表1に示す。な
お、前記ハニカム状フィルターの3点曲げ強度は、下部
スパン間隔 135mm、ヘッドスピード5mm/min.の条件
で、下記計算式を用いて算出した。 K=(P×L)/(4×Z) 上記式において、Kは3点曲げ強度、Pは荷重、Lは下
部スパン間隔、Zは断面二次モーメントであり、断面二
次モーメントの値は2500を用いた。
Example 1 α-SiC having an average particle size of 12.4 μm
For 70 parts by weight of the raw material powder, β-
30 parts by weight of SiC powder were mixed, 9 parts by weight of methylcellulose as an organic resin binder, 6.5 parts by weight of a dispersant,
And 21.5 parts by weight of water were mixed and uniformly mixed to prepare a raw material composition. Then, this raw material composition was filled into an extrusion molding machine, and a honeycomb molded body having the above shape was molded at an extrusion speed of 40 cm / min., An oxygen concentration of 5%, and a temperature rising rate of 15 ° C. /
Degreasing was performed under the conditions of min., 400 ° C. × 60 min. At this time, the pyrolytic carbon content was 1.20% by weight. The degreased green body is transferred into a firing furnace, and the temperature is increased at a rate of 5 ° C./min. (≦ 1500 ° C.) at 1 atm in an argon gas atmosphere.
/ Min. (≦ 2200 ° C), heating to predetermined temperatures, firing at 1500 ° C x 1 minute and 2200 ° C x 4 minutes to obtain a honeycomb-shaped porous SiC sintered body. Produced. A part of these SiC sintered bodies was cut out, and three-point bending strength, average pore diameter, and porosity were tested. Table 1 shows the results. The three-point bending strength of the honeycomb filter was calculated using the following equation under the conditions of a lower span interval of 135 mm and a head speed of 5 mm / min. K = (P × L) / (4 × Z) In the above equation, K is the three-point bending strength, P is the load, L is the lower span interval, Z is the second moment of area, and the value of the second moment of area is 2500 was used.

【0022】[0022]

【表1】 [Table 1]

【0023】(実施例2)前記実施例1におけるのと同じ
原料粉末を使用し、脱脂条件を変えて前記実施例と同様
にしてハニカム状の多孔質SiC焼結体を作製した。これ
らの多孔質焼結体の特性を表1に示す。
Example 2 A honeycomb-shaped porous SiC sintered body was produced in the same manner as in Example 1 except that the same raw material powder as in Example 1 was used and degreasing conditions were changed. Table 1 shows the characteristics of these porous sintered bodies.

【0024】(実施例3)前記実施例における原料粉末の
配合に代え、出発原料として平均粒径が約 3.6μmのα
−SiC粉末90重量部に対し、平均粒径が約0.72μmのβ
−SiC粉末を10重量部配合したものを使用し、脱脂条件
を変えて前記実施例と同様にしてハニカム状の多孔質Si
C焼結体を作製した。これらの多孔質焼結体における特
性を前記実施例と同様に測定を行なった。その結果を表
2に示す。
(Example 3) In place of the mixing of the raw material powder in the above-mentioned example, α as an starting material having an average particle size of about 3.6 μm was used.
-Β of an average particle size of about 0.72 μm with respect to 90 parts by weight of SiC powder.
Using a mixture of 10 parts by weight of SiC powder, changing the degreasing conditions, and forming a honeycomb-like porous Si
A C sintered body was produced. The characteristics of these porous sintered bodies were measured in the same manner as in the above examples. Table 2 shows the results.

【0025】[0025]

【表2】 [Table 2]

【0026】(実施例4〜6)前記実施例における原料粉
末の配合に代え、出発材料として平均粒径が約4.77μm
のα−SiC原料粉末90重量部に対し、平均粒径が約0.73
μmのβ−SiC原料粉末を10重量部配合したものを使用
し、脱脂条件を変えて前記実施例と同様にしてハニカム
状の多孔質SiC焼結体を作製した。これらの焼結体にお
ける多孔質体の特性を前記実施例と同様に測定を行なっ
た。その結果を表3に示す。
(Examples 4 to 6) Instead of the compounding of the raw material powder in the above example, the starting material had an average particle size of about 4.77 μm.
90 parts by weight of α-SiC raw material powder having an average particle size of about 0.73
A honeycomb-shaped porous SiC sintered body was produced in the same manner as in the above-mentioned example, using a mixture of 10 parts by weight of a β-SiC raw material powder of μm and changing the degreasing conditions. The characteristics of the porous bodies in these sintered bodies were measured in the same manner as in the above-mentioned examples. Table 3 shows the results.

【0027】[0027]

【表3】 [Table 3]

【0028】(比較例)前記実施例における原料配合で脱
脂条件を変え、前記実施例と同様にしてハニカム状の多
孔質SiC焼結体を作製した。これらの焼結体における平
均気孔径を前記実施例と同様に測定を行なった。その結
果を表1〜表3にあわせて示す。
(Comparative Example) A honeycomb-shaped porous SiC sintered body was produced in the same manner as in the above example, except that the degreasing conditions were changed by mixing the raw materials in the above example. The average pore diameter of these sintered bodies was measured in the same manner as in the above example. The results are shown in Tables 1 to 3.

【0029】これらの結果から、脱脂条件または配合す
るα−SiC粉末, β−SiC粉末の量もしくは粒径を適宜
設定することにより、高強度で多孔質なα−SiC焼結体
を容易かつ確実に製造できることがわかる。
From these results, it is possible to easily and reliably produce a high-strength, porous α-SiC sintered body by appropriately setting the degreasing conditions or the amounts or particle diameters of the α-SiC powder and β-SiC powder to be mixed. It can be seen that it can be manufactured.

【0030】[0030]

【発明の効果】以上詳述したように本発明によれば、高
強度多孔質α−SiC焼結体を容易かつ確実に製造するこ
とができると共に、気孔の大きさが比較的均一で、機械
的強度に優れた焼結体を安価に製造することができる。
As described above in detail, according to the present invention, a high-strength porous α-SiC sintered body can be easily and reliably produced, and the pore size is relatively uniform. A sintered body having excellent mechanical strength can be manufactured at low cost.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 SiO2含有率が 0.1〜5重量%で平均粒径
が 0.3〜50μmのSiC原料粉末と有機樹脂バインダーと
を混合して成形し、その成形体を酸素含有率が1〜10%
の雰囲気中において該成形体中の熱分解炭素の含有率が
0.5〜5重量%となるように加熱した後、該成形体を15
00〜2500℃の非酸化性雰囲気中で焼成することを特徴と
する高強度多孔質α−SiC焼結体の製造方法。
1. An SiC raw material powder having an SiO 2 content of 0.1 to 5% by weight and an average particle diameter of 0.3 to 50 μm is mixed with an organic resin binder and molded, and the molded product is mixed with an oxygen content of 1 to 10%. %
In the atmosphere of the above, the content of pyrolytic carbon in the molded body is
After heating to 0.5 to 5% by weight, the molded body is
A method for producing a high-strength porous α-SiC sintered body, characterized by firing in a non-oxidizing atmosphere at 00 to 2500 ° C.
【請求項2】 前記SiC原料粉末として、α−SiCの含
有率が60〜100 %の粉末を用いることを特徴とする請求
項1に記載の製造方法。
2. The method according to claim 1, wherein a powder having a content of α-SiC of 60 to 100% is used as the SiC raw material powder.
JP33216796A 1996-12-12 1996-12-12 Method for producing high-strength porous α-SiC sintered body Expired - Lifetime JP3983838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33216796A JP3983838B2 (en) 1996-12-12 1996-12-12 Method for producing high-strength porous α-SiC sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33216796A JP3983838B2 (en) 1996-12-12 1996-12-12 Method for producing high-strength porous α-SiC sintered body

Publications (2)

Publication Number Publication Date
JPH10167854A true JPH10167854A (en) 1998-06-23
JP3983838B2 JP3983838B2 (en) 2007-09-26

Family

ID=18251911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33216796A Expired - Lifetime JP3983838B2 (en) 1996-12-12 1996-12-12 Method for producing high-strength porous α-SiC sintered body

Country Status (1)

Country Link
JP (1) JP3983838B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064084A (en) * 1999-07-21 2001-03-13 Inst Fr Petrole Honeycomb monolithic structure of fine pore ceramic material and its use as particle filter
JP2001524451A (en) * 1997-12-02 2001-12-04 コーニング インコーポレイテッド Method for firing ceramic honeycomb body
JP2006001799A (en) * 2004-06-18 2006-01-05 National Institute For Materials Science Method for manufacturing silicon carbide porous body
WO2006007950A1 (en) * 2004-07-21 2006-01-26 Fachhochschule Koblenz Batch for producing a fireproof ceramic moulded body, method for the production of the same and use thereof as a diesel particulate filter
WO2008032390A1 (en) * 2006-09-14 2008-03-20 Ibiden Co., Ltd. Process for producing honeycomb structure
JP2009505933A (en) * 2005-08-23 2009-02-12 ダウ グローバル テクノロジーズ インコーポレイティド An improved method for removing binders from ceramic honeycombs.
JP2009112880A (en) * 2006-09-14 2009-05-28 Ibiden Co Ltd Manufacturing method of honeycomb structure
EP2105424A1 (en) * 2008-03-27 2009-09-30 Ibiden Co., Ltd. Method for manufacturing honeycomb structured body
CN102924084A (en) * 2012-11-22 2013-02-13 中原工学院 Method for preparing silicon carbide ceramic product by adopting pre-oxidizing process
WO2016052469A1 (en) * 2014-09-29 2016-04-07 イビデン株式会社 Honeycomb filter and method for manufacturing same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771590B2 (en) * 1997-12-02 2011-09-14 コーニング インコーポレイテッド Method for firing ceramic honeycomb body
JP2001524451A (en) * 1997-12-02 2001-12-04 コーニング インコーポレイテッド Method for firing ceramic honeycomb body
JP2001064084A (en) * 1999-07-21 2001-03-13 Inst Fr Petrole Honeycomb monolithic structure of fine pore ceramic material and its use as particle filter
JP2006001799A (en) * 2004-06-18 2006-01-05 National Institute For Materials Science Method for manufacturing silicon carbide porous body
WO2006007950A1 (en) * 2004-07-21 2006-01-26 Fachhochschule Koblenz Batch for producing a fireproof ceramic moulded body, method for the production of the same and use thereof as a diesel particulate filter
JP2009505933A (en) * 2005-08-23 2009-02-12 ダウ グローバル テクノロジーズ インコーポレイティド An improved method for removing binders from ceramic honeycombs.
EP1902766A1 (en) 2006-09-14 2008-03-26 Ibiden Co., Ltd. Method for manufacturing honeycomb structured body
JP2009112880A (en) * 2006-09-14 2009-05-28 Ibiden Co Ltd Manufacturing method of honeycomb structure
WO2008032390A1 (en) * 2006-09-14 2008-03-20 Ibiden Co., Ltd. Process for producing honeycomb structure
EP2105424A1 (en) * 2008-03-27 2009-09-30 Ibiden Co., Ltd. Method for manufacturing honeycomb structured body
CN102924084A (en) * 2012-11-22 2013-02-13 中原工学院 Method for preparing silicon carbide ceramic product by adopting pre-oxidizing process
WO2016052469A1 (en) * 2014-09-29 2016-04-07 イビデン株式会社 Honeycomb filter and method for manufacturing same
JP2016067995A (en) * 2014-09-29 2016-05-09 イビデン株式会社 Honeycomb filter and manufacturing method for the same

Also Published As

Publication number Publication date
JP3983838B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
EP2105424B1 (en) Method for manufacturing a honeycomb structured body
JPH07187845A (en) Ceramic porous body and its production
JP2003154224A (en) Method for manufacturing silicon nitride-coupled silicon carbide honeycomb filter
JP2000510807A (en) Stabilization of sintered foam and production of open-cell sintered foam
JPH10167854A (en) Production of high strength porous alpha-sic sintered compact
JPH10174885A (en) Cordierite honeycomb structural body and its production
US4943401A (en) Process for making silicon nitride articles
JPH02282442A (en) Aluminide structure
EP1197253B1 (en) Method for producing a silicon nitride filter
US7670979B2 (en) Porous silicon carbide
JPH07138083A (en) Production of porous aluminum titanate sintered compact
JPH0651596B2 (en) Method for manufacturing cordierite honeycomb structure
JPH04187578A (en) Production of sintered compact of porous silicon carbide
JP2000016872A (en) Porous silicon carbide sintered body and its production
JP4574044B2 (en) Porous silicon nitride and method for producing the same
JPH09202671A (en) Production of silicon carbide-based honeycomb filter
JP2002226271A (en) Method for manufacturing porous silicon carbide compact
JPS6212663A (en) Method of sintering b4c base fine body
JP3856939B2 (en) Engine parts and manufacturing method thereof
RU2816616C1 (en) Method of producing hot-pressed silicon carbide ceramics
JP5120793B2 (en) Method for producing porous silicon carbide
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JP2000185979A (en) Production of porous molded article of silicon carbide
JPH05213665A (en) Cordierite-based composite material
JPS63242963A (en) Manufacture of non-oxide base ceramic burnt body from organic metal high molecules

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term