JP2723150B2 - Surface treatment method for steel members - Google Patents

Surface treatment method for steel members

Info

Publication number
JP2723150B2
JP2723150B2 JP6229187A JP6229187A JP2723150B2 JP 2723150 B2 JP2723150 B2 JP 2723150B2 JP 6229187 A JP6229187 A JP 6229187A JP 6229187 A JP6229187 A JP 6229187A JP 2723150 B2 JP2723150 B2 JP 2723150B2
Authority
JP
Japan
Prior art keywords
shot
shot peening
residual stress
stage
compressive residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6229187A
Other languages
Japanese (ja)
Other versions
JPS63227791A (en
Inventor
能久 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP6229187A priority Critical patent/JP2723150B2/en
Publication of JPS63227791A publication Critical patent/JPS63227791A/en
Application granted granted Critical
Publication of JP2723150B2 publication Critical patent/JP2723150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は歯車等の鋼部材の疲労強度を向上させるため
に実施する鋼部材の表面処理方法に関するものである。 (従来の技術) 従来より、この種の表面処理方法の一つとして、浸炭
焼入れした鋼部材にショットピーニングを施す方法が知
られている。このショットピーニングは、原則的にショ
ット粒子の粒径を大きくすることが有効であるが、反
面、粒径を大きくすると鋼部材の表面粗さが粗くなるた
め疲労強度の向上を図れないというマイナス面を含んで
いる。そこで、このマイナス面を解消するため、特開昭
60-184627号公報に開示されているように2段ショット
ピーニングによる処理方法が提案されている。この2段
ショットピーニングは、鋼部材の表面に、まず、粒径が
1mm以上の粗いショット粒子により第1ショットピーニ
ングを施し、圧縮残留応力を作用させて疲労強度を向上
させ、次に、粒径が0.3mm以下の細かいショット粒子に
より第2ショットピーニングを施し、鋼部材表面の荒れ
を改善しようとするものである。 (発明が解決しようとする課題) ところで、本発明者の研究によれば次のようなことが
判明している。すなわち、2段ショットピーニングによ
る全体の圧縮残留応力分布は、各段単独のショットピー
ニングによる圧縮残留応力分布を重ね合わせた形状とな
るが、各段のショット粒子の粒径比を適当に選択すれ
ば、重ね合わせた形状がゆるやかで、かつ連続的なもの
となり、2段ショットピーニングによる疲労強度向上を
最も効果的にするということである。このことは後述す
る実施例において数値的に証明されている。このような
見地から上記従来の2段ショットピーニングを見ると、
第1段におけるショット粒子径が1mm以上になっている
ので、第1段の圧縮残留応力のピーク値が鋼部材の内部
に深く分布しすぎる。さらに、第1段と第2段とにおけ
るショット粒子の粒径比が3.3以上とかなり大きい値に
なっているので、第1段による内部の圧縮残留応力分布
と第2段による表面層のより高い圧縮残留応力分布との
接続が階段的となり、連続性に欠けるものとなってい
る。それ故、上記従来の2段ショットピーニングには、
疲労強度を更に向上させうる余地が残されているという
問題がある。 本発明は、このような問題を解決し、表面層に高いピ
ーク値を有し、かつ内部深くまで連続的につながった圧
縮残留応力分布を得ることを目的とする。 (課題を解決するための手段) 前記課題を解決するため、本発明の解決手段は、鋼部
材の表面に浸炭焼入れまたは浸炭窒化焼入れを、表面異
常層の深さが鋼部材の表面から20μm以下となるように
施した後、前記鋼部材の表面に、粒径が1mm以下の粗い
ショット粒子により第1ショットピーニングを施し、次
に粒径が0.3mm以下でかつ前記第1ショットピーニング
のショット粒子の粒径の1/3.5〜1/2の細かいショット粒
子により第2ショットピーニングを施すものとする。 (作用) 上記本発明の構成においては、第1段におけるショッ
ト粒子径を1mm以下としているので、第1段の圧縮残留
応力のピーク値が内部深くに分布しすぎることはなく、
表面から20μm以下の表面異常層に設定できる。さら
に、第2段におけるショット粒子径を0.3mm以下でかつ
第1段と第2段とにおけるショット粒子の粒径比を2〜
3.5に設定しているので、第1段による内部の圧縮残留
応力分布と第2段による表面層のより高い圧縮残留応力
分布とはゆるやかに、かつ連続的に接続され、鋼部材の
疲労強度が著しく向上するのである。 ちなみに、上記粒径比を2以下にすると、2段全体の
圧縮残留応力分布の厚さが減少して、通常の1段ショッ
トピーニングの場合の厚さに接近し、ショットピーニン
グを2段にした効果が薄れる。逆に、粒径比を3.5以上
にすると、2段全体の圧縮残留応力分布が階段的となつ
て連続性を欠くようになる。いずれの場合も疲労強度向
上の効果が不十分となるのである。 (実施例) 以下、本発明の実施例を図面に基づいて説明する。 第1図は本発明の表面処理方法を含む鋼部材の標準的
製造工程を示し、9工程から構成されている。1は材料
工程で、浸炭焼入れまたは浸炭窒化焼入れに適した合金
鋼等の材料を準備する。2は切断加工で、準備した材料
を後の加工に適した大きさに切断する。3は熱間鍛造工
程で、材料を熱間鍛造して歯車ブランク等の粗形材を作
製する。4は焼準工程で、鍛造後の粗大化した金属結晶
粒を整一にする。なお、場合によっては熱間鍛造工程3
および焼準工程4を省略することがある。5は切削加工
工程で、粗形材に施削、歯切り等の切削加工を施し、製
品の形状寸法に加工した鋼部材を得る。6は本発明に係
る浸炭・窒化工程で、前記鋼部材の表面硬化を必要とす
る個所に浸炭焼入れまたは浸炭窒化焼入れを施す。浸炭
焼入れには真空浸炭焼入れ、ガス浸炭焼入れ等がある
が、ガス浸炭焼入れには、マンガンやクロームの合金元
素の内部酸化により生成される軟質の表面異常層の先端
が実質的な疲労破壊の起点になり、表面硬化の効果を阻
害するという問題がある。この破壊起点は表面から20〜
50μの深さに存在するが、これを20μ以下に浅くできれ
ば、上記問題は後述する本発明の2段ショットピーニン
グにより解消できることが本発明者の研究において判明
している。この破壊起点を浅くする方法の一つに浸炭窒
化焼入れがあり、このマンガンやクロームの内部酸化に
より低下した表面層の焼入れ性を窒素添加により補うも
のである。その他の方法として、高モリブデン鋼または
高ニッケル鋼を使用して、モリブデンやニッケルがマン
ガンやクロームよりも内部酸化しにくいことを利用して
表面層の焼入れ性低下を抑制する方法、浸炭時間を短縮
して浸炭深さを浅くする方法、焼入れ冷却能を上げる方
法等がある。7は焼戻し工程で、焼入れによる脆性およ
び歪を除く。8および9は本発明に係る2段ショットピ
ーニング工程で、焼入れ表面に順次施す。そのうちの第
1ショットピーニング工程8では、粒径D1が1mm以下の
粗いショット粒子を投射し、第2ショットピーニング工
程9では、粒径D2が0.3mm以下でかつ前記粒径D1の1/3.5
〜1/2の細かいショット粒子を投射する。各粒径D1,D2を
このように限定したのは、次に述べる本発明者の研究結
果によるものである。表面異常層のない浸炭焼入れ鋼に
おいては、実質的な疲労起点となるのは極表面層であっ
て、そこにピーク値を持つような圧縮残留応力分布をシ
ョットピーニングにより形成すれば、疲労クラックの生
成が抑止され、高い疲労強度が得られる。しかし、この
圧縮残留応力分布の厚さが薄いと、疲労クラックが生成
されていない状態でも、繰返し高負荷を受けた後に圧縮
残留応力が減衰し易く、圧縮残留応力が減衰すればやが
て疲労クラックが生成されて疲労破壊に至る。したがっ
て、より高い疲労強度を得るには、表面層に高いピーク
値を持ち、これを内側からバックアップするような内部
まで連続的につながった深い圧縮残留応力分布が必要で
ある。第2図は、ショット粒子の粒径D=0.2,0.6,1mm
の場合のショットピーニングにより得られる圧縮残留応
力の表面から距離(横軸)と大きさ(縦軸)を示す。第
2図から、粒径Dが大きいほど深い分布が得られるが、
ピーク値が内部へ移動して表面値が低下するとともに、
ピーク値そのものも小さく、また逆に粒径Dが小さいほ
ど表面寄りに高いピーク値が得られるが、その分布層は
浅くなる。すなわち、1段ショットピーニングでは、い
ずれの場合も満足できる圧縮残留応力分布を得られない
ことが分かる。そこで、本発明者は2段ショットピーニ
ングに着目し、第1表に示す組合せで2段ショットピー
ニングを行なった。その結果を第3図に示すが、第2図
との比較から次のような新しい知見が得られた。 注.ここでAの条件は、φ0.2でのショットピーニング
を時間をおいて2回くり返したものである。 (1) 同じ粒径のショット粒子でショットピーニング
を2回繰り返しても、得られる圧縮残留応力分布は1回
の場合とほとんど変わらない(曲線A参照)。 (2) 粒径の異なるショットピーニングを組み合わせ
て行なうと、各粒径の1段ショットピーニングをした場
合に得られる圧縮残留応力分布を重ね合わせたような圧
縮残留応力分布が得られる(曲線B,C参照)。 (3) 曲線Bでは表面から内部へ連続的な圧縮残留応
力分布となっているが、曲線Cでは階段的で連続性を欠
く分布となっている。分布が連続的となるか否かはショ
ット粒子の粒径比D1/D2に関係があり、粒径比D1/D2は3
程度が好適である。 そこで、本発明者は、上記知見に基づき、第4図に示
すように、粒径比D1/D2(横軸)と、第2ショットピー
ニングのみの場合に対する2段ショットピーニングの疲
労寿命向上比(縦軸)との関係を精査し、粒径比D1/D2
の最適範囲は2〜3.5であることを見出した。粒径比D1/
D2が2より小さいと、圧縮残留応力分布の厚さが十分で
ないため、粒径Dが0.2mm以下の1段ショットピーニン
グの場合に比べて差が少なく、また3.5より大きいと、
圧力残留応力分布が階段的となるため、表面層のピーク
応力のバックアップ効果が損われ、いずれの場合も疲労
強度向上効果が不十分となるのである。 前述したように、本発明に係る粒径D1,D2の限定値
は、上記研究結果により決定されたものであるが、これ
は前述のガス浸炭焼入れの場合にも適用可能である。す
なわち、ガス浸炭焼入れにおいて通常見られる破壊起点
の深さを表面下20μ以下にすることができれば、通常の
粗いショット粒子で得られる圧縮残留応力分布よりも、
表面寄りにピーク値を持つ圧縮残留応力分布の方が効果
があり(第2図参照)、しかも、2段ショットピーニン
グを行なって、合成された圧縮残留応力分布が表面層か
ら深部へ連続的につながったもの(第3図の曲線B参
照)が好ましいという本発明の技術的思想は、表面異常
層を有しない真空浸炭焼入れの場合と同様に適用可能で
ある。したがって、ガス浸炭焼入れの場合も、適切な粒
径比D1/D2は2〜3.5である。ただし、粒径D2は、第2表
に示すように、真空浸炭焼入れの場合よりも若干大きめ
が良い。粒径D1,D2の設定は、まず粒径D2を表面異常層
の深さが浅いほど小径に設定し、次に粒径比D1/D2=2
〜3.5となるように粒径D1を設定するのである。 なお、ショット粒子の硬さは、HRC50〜58が適当であ
る。その理由は、HRC50以下では形成される圧縮残留応
力値が低すぎ、HRC58以上ではショット粒子が割れ易
く、経済的でないからである。 次に、本発明者が種々のショットピーニング条件下に
実施した疲労試験結果について説明する。 第1実施例 試験は第5図に示す回転曲げ疲労試験片について行な
った。試験片は、材料がSCM420で、第6図に示すような
真空浸炭焼入れ、焼戻しの熱処理が施されている。試験
結果は第3表に示されている。第2実施例 試験は第7図に示す回転曲げ疲労試験片について行な
った。試験片は、材料がSCr420で、第8図に示すような
イオン浸炭焼入れ、焼戻しの熱処理が施されている。試
験結果は第4表に示されている。 第3実施例 試験は第1実施例と同じ回転曲げ疲労試験片(第5図
参照)について行なった。ただし、材料はSCr420で、熱
処理は第9図に示すような浸炭窒化焼入れ、焼戻しが施
されており、表面異常層の深さは5μであった。試験結
果は第5表に示されている。 第4実施例 試験は第1実施例と同じ回転曲げ疲労試験片(第5図
参照)について行なった。ただし、材料は第6表に示す
SCM420モデファイド高モリブデン鋼で、熱処理は第10図
に示すような浸炭焼入れ、焼戻しが施されており、表面
異常層の深さは10μであった。試験結果は第7表に示さ
れている。 上記試験結果を示す第3表、第4表、第5表および第
7表から次のようなことが分る。 (1) 粒径比D1/D2が2〜3.5の場合(NO.3,4,5)は、
1段ショットピーニングの場合(NO.1)、粒径比D1/D2
が2より小さい場合(NO.2)および3.5より大きい場合
(NO.6)に比較して破損寿命が著しく向上している。 (2) 浸炭窒化焼入れ(第3実施例)や浸炭焼入れに
より表面異常層が生成されても、その深さが20μ以下の
場合は、本発明の2段ショットピーニングにより破損寿
命を著しく向上させることができる(第5表および第7
表のNO.3,4,5参照)。 (発明の効果) 本発明は、以上述べたように、表面異常層の深さを20
μm以下にした上で、第1ショットピーニングのショッ
ト粒子径を1mm以下にするとともに、第2ショットピー
ニングのショット粒子径を0.3mm以下でかつ第1ショッ
トピーニングのショット粒子径の1/3.5〜1/2とする構成
にしたので、圧縮残留応力のピーク位置を表面異常層に
設定できるとともに、2段ショットピーニングによる合
成された圧縮残留応力分布の変化がゆるやかでかつ連続
的となる。したがって、浸炭焼入れまたは浸炭窒化焼入
れを施した鋼部材の疲労強度を著しく向上させるという
利点を有する。
Description: TECHNICAL FIELD The present invention relates to a method for treating the surface of a steel member, such as a gear, to improve the fatigue strength of the member. (Prior Art) Conventionally, as one of such surface treatment methods, a method of performing shot peening on a carburized and quenched steel member is known. In this shot peening, it is effective in principle to increase the particle size of the shot particles, but on the other hand, if the particle size is increased, the surface roughness of the steel member becomes coarse, so the fatigue strength cannot be improved. Contains. Therefore, in order to eliminate this disadvantage,
As disclosed in Japanese Patent Laid-Open No. 60-184627, a processing method using two-stage shot peening has been proposed. In this two-stage shot peening, first, the particle size is
The first shot peening is performed with coarse shot particles of 1 mm or more, the compressive residual stress is applied to improve the fatigue strength, and then the second shot peening is performed with fine shot particles having a particle size of 0.3 mm or less. It is intended to improve the surface roughness. (Problems to be solved by the invention) By the research of the present inventors, the following has been found. That is, the overall compressive residual stress distribution by the two-stage shot peening has a shape obtained by superimposing the compressive residual stress distribution by the individual shot peening on each stage, but if the particle size ratio of the shot particles in each stage is appropriately selected. That is, the superimposed shape is gentle and continuous, and the improvement of fatigue strength by two-step shot peening is most effective. This has been proved numerically in the examples described later. Looking at the above-mentioned conventional two-stage shot peening from such a viewpoint,
Since the shot particle diameter in the first stage is 1 mm or more, the peak value of the compressive residual stress in the first stage is too deeply distributed inside the steel member. Furthermore, since the particle size ratio of the shot particles in the first stage and the second stage is a considerably large value of 3.3 or more, the distribution of the internal compressive residual stress by the first stage and the higher surface layer by the second stage are higher. The connection with the compressive residual stress distribution is stepwise, and lacks continuity. Therefore, in the conventional two-stage shot peening,
There is a problem that there is room for further improving the fatigue strength. An object of the present invention is to solve such a problem and to obtain a compressive residual stress distribution having a high peak value in a surface layer and continuously connected deep inside. (Means for Solving the Problems) In order to solve the above-mentioned problems, a solution of the present invention is to perform carburizing and quenching and quenching and quenching on the surface of a steel member, wherein the depth of the abnormal surface layer is 20 μm or less from the surface of the steel member After that, the surface of the steel member is subjected to first shot peening with coarse shot particles having a particle diameter of 1 mm or less, and then shot particles having a particle diameter of 0.3 mm or less and the first shot peening. The second shot peening is to be performed using fine shot particles having a diameter of 1 / 3.5 to 1/2 of the particle diameter. (Operation) In the configuration of the present invention, since the shot particle diameter in the first stage is 1 mm or less, the peak value of the compressive residual stress in the first stage is not distributed too deeply inside.
It can be set to a surface abnormal layer of 20 μm or less from the surface. Further, the shot particle diameter in the second stage is 0.3 mm or less, and the particle size ratio of the shot particles in the first stage and the second stage is 2 to 2.
Since it is set to 3.5, the internal compressive residual stress distribution by the first stage and the higher compressive residual stress distribution of the surface layer by the second stage are connected gradually and continuously, and the fatigue strength of the steel member is reduced. It is significantly improved. By the way, when the particle size ratio is set to 2 or less, the thickness of the compressive residual stress distribution in the entire two stages is reduced, approaching the thickness in the case of ordinary one-stage shot peening, and the shot peening is made two stages. The effect diminishes. Conversely, when the particle size ratio is set to 3.5 or more, the distribution of compressive residual stress in the entire two stages becomes stepwise and lacks continuity. In each case, the effect of improving the fatigue strength is insufficient. (Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 shows a standard manufacturing process of a steel member including the surface treatment method of the present invention, which comprises nine steps. Reference numeral 1 denotes a material process for preparing a material such as an alloy steel suitable for carburizing and quenching and nitrocarburizing. 2 is a cutting process for cutting the prepared material into a size suitable for subsequent processing. Reference numeral 3 denotes a hot forging step in which a material is hot forged to produce a coarse material such as a gear blank. Reference numeral 4 denotes a normalizing step for uniforming the coarsened metal crystal grains after forging. In some cases, hot forging step 3
In addition, the normalizing step 4 may be omitted. Reference numeral 5 denotes a cutting step in which a rough shaped material is subjected to cutting such as cutting and gear cutting to obtain a steel member processed into the shape and dimensions of a product. Reference numeral 6 denotes a carburizing / nitriding step according to the present invention, in which a portion of the steel member requiring surface hardening is subjected to carburizing and quenching or nitrocarburizing. There are vacuum carburizing and gas carburizing quenching in carburizing and quenching.In gas carburizing and quenching, the tip of the soft surface abnormal layer generated by internal oxidation of manganese and chromium alloy elements is the starting point of substantial fatigue fracture. And there is a problem that the effect of surface hardening is hindered. This fracture origin is 20 ~ from the surface
Although present at a depth of 50 μm, it has been found by the present inventor's research that if the depth can be reduced to 20 μm or less, the above problem can be solved by two-stage shot peening of the present invention described later. One of the methods for reducing the fracture starting point is carbonitriding and quenching, and the hardenability of the surface layer, which has been reduced by the internal oxidation of manganese or chromium, is compensated by adding nitrogen. Another method is to use high-molybdenum steel or high-nickel steel to reduce the hardenability of the surface layer by making use of the fact that molybdenum and nickel are less oxidized than manganese and chrome, and to shorten the carburizing time. There is a method of reducing the depth of carburization to increase the quenching cooling capacity. Reference numeral 7 denotes a tempering step for removing brittleness and distortion due to quenching. 8 and 9 are two-stage shot peening steps according to the present invention, which are sequentially applied to the quenched surface. In the first shot peening step 8, coarse shot particles having a particle diameter D1 of 1 mm or less are projected, and in the second shot peening step 9, the particle diameter D2 is 0.3 mm or less and 1 / 3.5 of the particle diameter D1.
Project fine shot particles of ~ 1/2. The reason for limiting the particle diameters D1 and D2 in this manner is based on the following research results of the present inventors. In carburized and quenched steel without an abnormal surface layer, the starting point of fatigue is the extreme surface layer, and if a compressive residual stress distribution having a peak value is formed by shot peening, fatigue cracking can occur. Generation is suppressed, and high fatigue strength is obtained. However, when the thickness of the compressive residual stress distribution is thin, even if fatigue cracks are not generated, the compressive residual stress is liable to be attenuated after repeatedly receiving a high load. Generated, leading to fatigue failure. Therefore, in order to obtain higher fatigue strength, it is necessary to have a deep compressive residual stress distribution which has a high peak value in the surface layer and is continuously connected from the inside to the inside to back it up. FIG. 2 shows the particle diameter of shot particles D = 0.2, 0.6, 1 mm
2 shows the distance (horizontal axis) and the magnitude (vertical axis) of the compressive residual stress obtained by shot peening from the surface. From FIG. 2, a deeper distribution is obtained as the particle diameter D is larger,
As the peak value moves inside and the surface value decreases,
The peak value itself is also small, and conversely, the smaller the particle size D, the higher the peak value is obtained near the surface, but the distribution layer becomes shallower. That is, it can be seen that the single-stage shot peening cannot obtain a satisfactory compressive residual stress distribution in any case. Therefore, the present inventor focused on two-stage shot peening, and performed two-stage shot peening with the combinations shown in Table 1. The results are shown in FIG. 3. From the comparison with FIG. 2, the following new findings were obtained. note. Here, the condition of A is that shot peening at φ0.2 is repeated twice with an interval. (1) Even if shot peening is repeated twice with shot particles having the same particle size, the obtained compressive residual stress distribution is almost the same as in the case of one shot (see curve A). (2) When shot peening with different particle diameters is performed in combination, a compressive residual stress distribution obtained by superimposing the compressive residual stress distribution obtained when one-step shot peening of each particle diameter is obtained (curve B, C). (3) The curve B has a continuous compressive residual stress distribution from the surface to the inside, whereas the curve C has a stepwise distribution that lacks continuity. Whether or not the distribution is continuous depends on the particle diameter ratio D1 / D2 of the shot particles, and the particle diameter ratio D1 / D2 is 3
The degree is preferred. Then, based on the above findings, the present inventor, as shown in FIG. 4, determined the particle diameter ratio D1 / D2 (horizontal axis) and the fatigue life improvement ratio of the two-stage shot peening with respect to the case of only the second shot peening ( The vertical axis) and the particle size ratio D1 / D2
Was found to be 2 to 3.5. Particle size ratio D1 /
When D2 is smaller than 2, the thickness of the compressive residual stress distribution is not sufficient, so that the difference is smaller than in the case of single-step shot peening in which the particle diameter D is 0.2 mm or less.
Since the pressure residual stress distribution becomes stepwise, the backup effect of the peak stress of the surface layer is impaired, and in any case, the effect of improving the fatigue strength becomes insufficient. As described above, the limited values of the particle diameters D1 and D2 according to the present invention are determined based on the above research results, but can be applied to the above-described case of gas carburizing and quenching. In other words, if the depth of the fracture origin normally seen in gas carburizing and quenching can be made 20μ or less below the surface, than the compressive residual stress distribution obtained with ordinary coarse shot particles,
The compressive residual stress distribution having a peak value near the surface is more effective (see FIG. 2), and the combined compressive residual stress distribution is continuously formed from the surface layer to the deep portion by performing two-step shot peening. The technical idea of the present invention that a continuous one (see the curve B in FIG. 3) is preferable can be applied similarly to the case of vacuum carburizing and quenching without an abnormal surface layer. Therefore, also in the case of gas carburizing and quenching, the appropriate particle size ratio D1 / D2 is 2 to 3.5. However, as shown in Table 2, the particle size D2 is preferably slightly larger than in the case of vacuum carburizing and quenching. The particle diameters D1 and D2 are set by first setting the particle diameter D2 to be smaller as the depth of the abnormal surface layer is smaller, and then setting the particle diameter ratio D1 / D2 = 2.
The particle size D1 is set so as to be 3.5. The hardness of the shot particles, H R C50~58 are suitable. The reason is that the compressive residual stress value which is formed in the H R C50 or less is too low, easily crack shot particles are H R C58 or more, the non-economical. Next, the results of a fatigue test performed by the present inventors under various shot peening conditions will be described. First Example The test was performed on a rotating bending fatigue test piece shown in FIG. The test piece was made of SCM420, and was subjected to vacuum carburizing, quenching and tempering heat treatments as shown in FIG. The test results are shown in Table 3. Second Example The test was performed on a rotating bending fatigue test piece shown in FIG. The test piece was made of SCr420, and was subjected to a heat treatment of ion carburizing and quenching and tempering as shown in FIG. The test results are shown in Table 4. Third Example The test was performed on the same rotating bending fatigue test piece as the first example (see FIG. 5). However, the material was SCr420, and the heat treatment was carbonitriding quenching and tempering as shown in FIG. 9, and the depth of the abnormal surface layer was 5 μm. The test results are shown in Table 5. Fourth Example The test was performed on the same rotary bending fatigue test piece as the first example (see FIG. 5). However, the materials are shown in Table 6.
The SCM420 modified high molybdenum steel was heat-treated by carburizing and tempering as shown in FIG. 10, and the depth of the abnormal surface layer was 10 μm. The test results are shown in Table 7. The following can be seen from Tables 3, 4, 5 and 7 showing the test results. (1) When the particle size ratio D1 / D2 is 2 to 3.5 (NO.3,4,5),
In the case of one-step shot peening (NO.1), particle size ratio D1 / D2
Is smaller than 2 (NO.2) and greater than 3.5 (NO.6). (2) Even if an abnormal surface layer is formed by carbonitriding and quenching (third embodiment) or carburizing and quenching, if the depth is 20 μ or less, the damage life can be significantly improved by the two-stage shot peening of the present invention. (Tables 5 and 7
No.3,4,5 in the table). (Effect of the Invention) As described above, the present invention reduces the depth of the surface abnormal layer by 20%.
μm or less, the shot particle diameter of the first shot peening is reduced to 1 mm or less, the shot particle diameter of the second shot peening is reduced to 0.3 mm or less, and 1 / 3.5 to 1 of the shot particle diameter of the first shot peening. Since the configuration is set to / 2, the peak position of the compressive residual stress can be set in the abnormal surface layer, and the distribution of the compressive residual stress synthesized by the two-step shot peening is gradual and continuous. Therefore, there is an advantage that the fatigue strength of a steel member subjected to carburizing and quenching or carbonitriding and quenching is significantly improved.

【図面の簡単な説明】 第1図は本発明の標準的製造工程を示す工程図、第2図
はショット粒子径の異なる1段ショットピーニングによ
り得られる圧縮残留応力分布を示すグラフ、第3図はシ
ョット粒子の粒径比の異なる2段ショットピーニングに
より得られる合成圧縮残留応力分布を示すグラフ、第4
図は2段ショットピーニングのショット粒子の粒径比と
疲労寿命向上比との関係を示すグラフ、第5図は本発明
の第1実施例、第3実施例および第4実施例の疲労試験
片の正面図、第6図は本発明の第1実施例における熱処
理を示す工程図、第7図は本発明の第2実施例の疲労試
験片の正面図、第8図は本発明の第2実施例における熱
処理を示す工程図、第9図は本発明の第3実施例におけ
る熱処理を示す工程図、第10図は本発明の第4実施例に
おける熱処理を示す工程図である。 6……浸炭・窒化工程、8……第1ショットピーニング
工程、9……第2ショットピーニング工程、D1,D2……
粒径。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process chart showing a standard manufacturing process of the present invention, FIG. 2 is a graph showing a compressive residual stress distribution obtained by one-step shot peening with different shot particle diameters, FIG. Is a graph showing a composite compressive residual stress distribution obtained by two-stage shot peening with different particle size ratios of shot particles.
FIG. 5 is a graph showing the relationship between the particle size ratio of shot particles in two-stage shot peening and the fatigue life improvement ratio. FIG. 5 is a fatigue test piece according to the first, third and fourth embodiments of the present invention. FIG. 6 is a process diagram showing a heat treatment in the first embodiment of the present invention, FIG. 7 is a front view of a fatigue test piece of the second embodiment of the present invention, and FIG. FIG. 9 is a process chart showing a heat treatment in the third embodiment of the present invention, and FIG. 10 is a process chart showing a heat treatment in the fourth embodiment of the present invention. 6 ... Carburizing / nitriding step, 8 ... First shot peening step, 9 ... Second shot peening step, D1, D2 ...
Particle size.

Claims (1)

(57)【特許請求の範囲】 1.鋼部材の表面に浸炭焼入れまたは浸炭窒化焼入れ
を、表面異常層の深さが鋼部材の表面から20μm以下と
なるように施した後、 前記鋼部材の表面に、粒径が1mm以下の粗いショット粒
子により第1ショットピーニングを施し、次に粒径が0.
3mm以下でかつ前記第1ショットピーニングのショット
粒子の粒径の1/3.5〜1/2の細かいショット粒子により第
2ショットピーニングを施すことを特徴とする鋼部材の
表面処理方法。
(57) [Claims] After carburizing or carbonitriding and quenching is performed on the surface of the steel member so that the depth of the abnormal surface layer becomes 20 μm or less from the surface of the steel member, a rough shot having a grain size of 1 mm or less is formed on the surface of the steel member. The first shot peening is performed with the particles, and then the particle size is reduced to 0.
A surface treatment method for a steel member, wherein the second shot peening is performed with fine shot particles of 3 mm or less and 1 / 3.5 to 1/2 of the particle diameter of the shot particles of the first shot peening.
JP6229187A 1987-03-16 1987-03-16 Surface treatment method for steel members Expired - Fee Related JP2723150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6229187A JP2723150B2 (en) 1987-03-16 1987-03-16 Surface treatment method for steel members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6229187A JP2723150B2 (en) 1987-03-16 1987-03-16 Surface treatment method for steel members

Publications (2)

Publication Number Publication Date
JPS63227791A JPS63227791A (en) 1988-09-22
JP2723150B2 true JP2723150B2 (en) 1998-03-09

Family

ID=13195867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6229187A Expired - Fee Related JP2723150B2 (en) 1987-03-16 1987-03-16 Surface treatment method for steel members

Country Status (1)

Country Link
JP (1) JP2723150B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869794A (en) * 2010-08-05 2013-01-09 新东工业株式会社 A method for shot peening a gas carburised steel

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138415A (en) * 1988-11-15 1990-05-28 Mazda Motor Corp Production of ferrous sliding member
JPH02156020A (en) * 1988-12-07 1990-06-15 Mazda Motor Corp Production of carburization-hardened steel member
JPH0735217A (en) * 1993-07-23 1995-02-07 Nippon Seiko Kk Rolling slide part
CN102459678B (en) * 2009-05-27 2013-09-25 住友金属工业株式会社 Carburized component and manufacturing method therefor
CN115110052B (en) * 2022-07-05 2023-06-20 广州大学 Dielectric barrier cold plasma bearing strengthening device and method
CN116463483A (en) * 2023-03-29 2023-07-21 宁波北仑博优模具技术有限公司 Shot peening strengthening method for die casting die surface

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218422A (en) * 1984-04-13 1985-11-01 Komatsu Ltd Improvement of fatigue strength of structural parts for power transmission
JPS61124521A (en) * 1984-11-22 1986-06-12 Komatsu Ltd Thermo-mechanical processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869794A (en) * 2010-08-05 2013-01-09 新东工业株式会社 A method for shot peening a gas carburised steel

Also Published As

Publication number Publication date
JPS63227791A (en) 1988-09-22

Similar Documents

Publication Publication Date Title
US6059898A (en) Induction hardening of heat treated gear teeth
JP2723150B2 (en) Surface treatment method for steel members
JP2002129295A (en) Sintered sprocket
JP2001065576A (en) Bearing part material
JP3395252B2 (en) Manufacturing method of steel with excellent fatigue strength
JP2000204464A (en) Surface treated gear, its production and producing device therefor
JP2839481B2 (en) Heat-treated steel part and method of manufacturing the same
US5683521A (en) Method for manufacturing spring having high nitrided properties
JPH01264727A (en) Manufacture of high strength gear
JP4832790B2 (en) Steel member surface treatment method and steel member
JPS62253723A (en) Production of gear
JP2830064B2 (en) Manufacturing method of high-strength gear with excellent tooth root strength
JPH07109005B2 (en) Method for manufacturing heat-treated steel parts
JPH05140726A (en) Manufacture of driving system machine parts having high fatigue strength
JPH0754050A (en) High strength gear excellent in root of tooth bending fatigue strength and tooth surface pitching resistance and manufacture therefor
JP2636661B2 (en) High-strength steel part with excellent fatigue strength and method of manufacturing the same
JPH06100942A (en) Production of piston pin
JP3460891B2 (en) Method of manufacturing rolling element for toroidal type continuously variable transmission
JPS62253722A (en) Production of gear
JP3498767B2 (en) Manufacturing method of rolling element for toroidal type continuously variable transmission
JP2602022B2 (en) Steel gear and manufacturing method thereof
JPS62185826A (en) Production of high-strength gear
KR100217261B1 (en) The spring with excellent nitrization property and the method thereof
JP2878331B2 (en) Manufacturing method of nitrided steel member
JPH02301513A (en) Production of parts for machine structural use

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees