JP2718287B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2718287B2
JP2718287B2 JP3120937A JP12093791A JP2718287B2 JP 2718287 B2 JP2718287 B2 JP 2718287B2 JP 3120937 A JP3120937 A JP 3120937A JP 12093791 A JP12093791 A JP 12093791A JP 2718287 B2 JP2718287 B2 JP 2718287B2
Authority
JP
Japan
Prior art keywords
valve
connection pipe
indoor
flow control
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3120937A
Other languages
Japanese (ja)
Other versions
JPH04347467A (en
Inventor
節 中村
秀一 谷
徳明 林田
智彦 河西
茂生 高田
純一 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3120937A priority Critical patent/JP2718287B2/en
Publication of JPH04347467A publication Critical patent/JPH04347467A/en
Application granted granted Critical
Publication of JP2718287B2 publication Critical patent/JP2718287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、熱源機1台に対して
複数台の室内機を接続する多室型ヒートポンプ式空気調
和装置で、各室内機毎に冷暖房を選択的に、かつ一方の
室内機では冷房、他方の室内機では暖房を同時に行うこ
とができる空気調和装置の、とくに冷媒流量制御装置と
開閉弁の制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room heat pump type air conditioner in which a plurality of indoor units are connected to one heat source unit. The present invention relates to an air conditioner capable of simultaneously performing cooling in an indoor unit and heating in the other indoor unit, and particularly to control of a refrigerant flow control device and an on-off valve.

【0002】[0002]

【従来の技術】以下、この発明の空気調和装置の従来技
術について図面に基づき説明する。図8は従来技術を示
す空気調和装置の冷媒系を中心とする全体構成図であ
る。また、図9乃至図11は図8に示す空気調和装置にお
ける冷暖房運転時の動作状態を示したものであり、図9
は冷房または暖房のみの運転動作状態図、図10および図
11は冷暖房同時運転の動作を示すもので、図10は暖房主
体(暖房運転容量が冷房運転容量より大きい場合)を、
図11は冷房主体(冷房運転容量が暖房運転容量より大き
い場合)を示す運転動作状態図である。なお、この説明
では、熱源機1台に室内機3台を接続した場合について
説明するが、2台以上の室内機を接続した場合も同様で
ある。
2. Description of the Related Art The prior art of an air conditioner according to the present invention will be described below with reference to the drawings. FIG. 8 is an overall configuration diagram mainly showing a refrigerant system of an air conditioner showing a conventional technique. 9 to 11 show operating states of the air-conditioning apparatus shown in FIG. 8 during a cooling / heating operation.
Is the operation state diagram of only cooling or heating, FIG. 10 and FIG.
11 shows the operation of simultaneous cooling and heating operation, FIG. 10 shows the main heating (when the heating operation capacity is larger than the cooling operation capacity),
FIG. 11 is an operation state diagram showing the cooling main body (when the cooling operation capacity is larger than the heating operation capacity). Note that, in this description, a case where three indoor units are connected to one heat source unit will be described, but the same applies to a case where two or more indoor units are connected.

【0003】図8において、Aは熱源機、B,C,Dは
後述するように互いに並列接続された室内機でそれぞれ
同じ構成となっている。Eは後述するように、第1の分
岐部、第2の流量制御装置、第2の分岐部、気液分離装
置、熱交換部、第3の流量制御装置、第4の流量制御装
置を内蔵した中継機である。また、1は圧縮機、2は熱
源機の冷媒流通方向を切り換える4方弁、3は熱源機側
熱交換器、4はアキュムレータで、上記4方弁2を介し
て圧縮器1と接続されている。また、5は3台の室内機
B,C,Dに設けられた室内側熱交換器、6は熱源機A
の4方弁2と中継機Eを接続する太い第1の接続配管、
6b,6c,6dはそれぞれ室内機B,C,Dの室内側熱交換
器5と中継器Eを接続し、第1の接続配管6に対応する
室内機側の第1の接続配管、7は熱源機Aの熱源機側熱
交換器3と中継機Eを接続する上記第1の接続配管より
細い第2の接続配管である。また、7b,7c,7dはそれぞ
れ室内機B,C,Dの室内側熱交換器5と中継機Eを第
1の流量制御装置9を介して接続し、第2の接続配管7
に対応する室内機側の第2の接続配管である。21は室内
機側の第1の接続配管6b,6c,6dと、第1の接続配管6
を連接させる第1の開閉弁、22は室内機側の第1の接続
配管6b,6c,6dと、第2の接続配管7を連接させる第2
の開閉弁である。
In FIG. 8, A is a heat source unit, and B, C and D are indoor units connected in parallel to each other as described later, and have the same configuration. E incorporates a first branch, a second flow controller, a second branch, a gas-liquid separator, a heat exchanger, a third flow controller, and a fourth flow controller as described later. It is a repeater. 1 is a compressor, 2 is a four-way valve for switching the refrigerant flow direction of the heat source unit, 3 is a heat source side heat exchanger, and 4 is an accumulator, which is connected to the compressor 1 via the four-way valve 2. I have. 5 is an indoor heat exchanger provided in three indoor units B, C and D, and 6 is a heat source unit A.
A thick first connection pipe for connecting the four-way valve 2 and the repeater E,
6b, 6c, 6d connect the indoor side heat exchangers 5 of the indoor units B, C, D and the relay E, respectively, and the first connection pipe on the indoor unit side corresponding to the first connection pipe 6, and 7 It is a second connection pipe that is thinner than the first connection pipe that connects the heat source unit side heat exchanger 3 of the heat source unit A and the relay unit E. 7b, 7c and 7d connect the indoor heat exchangers 5 of the indoor units B, C and D and the relay unit E via the first flow control device 9, respectively.
Is a second connection pipe on the indoor unit side corresponding to FIG. Reference numeral 21 denotes a first connection pipe 6b, 6c, 6d on the indoor unit side and a first connection pipe 6
And a second on-off valve 22 for connecting the first connection pipes 6b, 6c, 6d on the indoor unit side and the second connection pipe 7 to each other.
It is an on-off valve.

【0004】9は室内側熱交換器5に近接して接続され
室内側熱交換器5の出口側の冷房時はスーパーヒート
量、暖房時はサブクール量により制御される第1の流量
制御装置で、室内機側の第2の接続配管7b,7c,7dに接
続される。10は室内機側の第1の接続配管6b,6c,6d
と、第1の接続配管6または、第2の接続配管7に切換
え可能に接続する第1の開閉弁21と第2の開閉弁22を備
えた第1の分岐部である。11は室内機側の第2の接続配
管7b,7c,7dと、第2の接続配管7よりなる第2の分岐
部である。12は第2の接続配管7の途中に設けられた気
液分離装置で、その気層部は、第1の分岐部10の第2の
開閉弁22に接続され、その液層部は第2の分岐部11に接
続され、第2の接続配管7を第1の分岐部10側と第2の
分岐部11側とに分岐する配管分岐部を構成している。13
は気液分離装置12と第2の分岐部11との間に接続する開
閉自在な第2の流量制御装置(ここでは電気式膨張弁)
である。
Reference numeral 9 denotes a first flow rate control device which is connected in proximity to the indoor heat exchanger 5 and which is controlled by a superheat amount during cooling and a subcool amount during heating at the outlet side of the indoor heat exchanger 5. Are connected to the second connection pipes 7b, 7c, 7d on the indoor unit side. 10 is the first connection pipe 6b, 6c, 6d on the indoor unit side
And a first branch portion provided with a first on-off valve 21 and a second on-off valve 22 that are switchably connected to the first connection pipe 6 or the second connection pipe 7. Reference numeral 11 denotes a second branch portion including the second connection pipes 7b, 7c, and 7d on the indoor unit side and the second connection pipe 7. Reference numeral 12 denotes a gas-liquid separation device provided in the middle of the second connection pipe 7. The gas layer portion is connected to the second on-off valve 22 of the first branch portion 10, and the liquid layer portion is connected to the second opening / closing valve 22. The second connection pipe 7 is connected to the first branch 10 side and the second connection
It constitutes a pipe branching section that branches to the branching section 11 side . 13
Is an openable and closable second flow control device (here, an electric expansion valve) connected between the gas-liquid separation device 12 and the second branch portion 11
It is.

【0005】14は第2の分岐部11と上記第1の接続配管
6とを結ぶバイパス配管、15はバイパス配管14の途中に
設けられた第3の流量制御装置(ここでは電気式膨張
弁)、16aはバイパス配管14の途中に設けられた第3の
流量制御装置15の下流に設けられ、第2の分岐部11にお
ける各室内機側の第2の接続配管7b,7c,7dの会合部と
の間でそれぞれ熱交換を行う第2の熱交換部である。16
b,16c,16dはそれぞれバイパス配管14の途中に設け
られた第3の流量制御装置15の下流に設けられ、第2の
分岐部11における各室内機側の第2の接続配管7b,7c,
7dとの間でそれぞれ熱交換を行う第3の熱交換部であ
る。
[0005] Reference numeral 14 denotes a bypass pipe connecting the second branch portion 11 and the first connection pipe 6, and reference numeral 15 denotes a third flow control device (here, an electric expansion valve) provided in the middle of the bypass pipe 14. , 16a are provided downstream of a third flow control device 15 provided in the middle of the bypass pipe 14, and are associated with the second connection pipes 7b, 7c, 7d on the indoor unit side in the second branch section 11. And a second heat exchange section for performing heat exchange between the first heat exchanger and the second heat exchanger. 16
b, 16c, 16d are provided downstream of the third flow control device 15 provided in the middle of the bypass pipe 14, respectively, and the second connection pipes 7b, 7c,
This is a third heat exchanging section for exchanging heat with 7d.

【0006】19はバイパス配管14の上記第3の流量制御
装置15の下流および第2の熱交換部16aの下流に設けら
れ、気液分離装置12と第2の流量制御装置13とを接続す
る配管との間で熱交換を行う第1の熱交換部、17は第2
の分岐部11と上記第1の接続配管6との間に接続する開
閉自在な第4の流量制御装置(ここでは電気式膨張弁)
である。一方、32は上記熱源機側熱交換器3と上記第2
の接続配管7との間に設けられた第3の逆止弁であり、
上記熱源機側熱交換器3から上記第2の接続配管7への
み冷媒流通を許容する。33は上記熱源機Aの4方弁2と
上記第1の接続配管6との間に設けられた第4の逆止弁
であり、上記第1の接続配管6から上記4方弁2へのみ
冷媒流通を許容する。
Reference numeral 19 is provided on the bypass pipe 14 downstream of the third flow control device 15 and downstream of the second heat exchange section 16a, and connects the gas-liquid separation device 12 to the second flow control device 13. The first heat exchange section that exchanges heat with the piping, 17 is the second heat exchange section
Openable and closable fourth flow control device (here, an electric expansion valve) connected between the branch portion 11 and the first connection pipe 6.
It is. On the other hand, 32 is the heat source unit side heat exchanger 3 and the second
A third check valve provided between the connection pipe 7 and
The refrigerant is allowed to flow only from the heat source unit side heat exchanger 3 to the second connection pipe 7. Reference numeral 33 denotes a fourth check valve provided between the four-way valve 2 of the heat source unit A and the first connection pipe 6, and only a fourth check valve is provided from the first connection pipe 6 to the four-way valve 2. Allow refrigerant flow.

【0007】34は上記熱源機Aの4方弁2と上記第2の
接続配管7との間に設けられた第5の逆止弁であり、上
記4方弁2から上記第2の接続配管7へのみ冷媒流通を
許容する。35は上記熱源機側熱交換器3と上記第1の接
続配管6との間に設けられた第6の逆止弁であり、上記
第1の接続配管6から上記熱源器側熱交換器3へのみ冷
媒流通を許容する。上記第3,第4,第5,第6の逆止
弁32,33,34,35で流路切換弁装置40を構成する。50は
第1の接続配管6に設けられた第1のサービスポート、
51は第2の接続配管に設けられた第2のサービスポート
である。25は上記第1の分岐部10と第2の流量制御装置
13の間に設けられた第1の圧力検出手段、26は上記第2
の流量制御装置13と第4の流量制御装置17との間に設け
られた第2の圧力検出手段である。
Reference numeral 34 denotes a fifth check valve provided between the four-way valve 2 of the heat source unit A and the second connection pipe 7, and a fifth check valve 34 extends from the four-way valve 2 to the second connection pipe. Only the refrigerant flow to 7 is allowed. Reference numeral 35 denotes a sixth check valve provided between the heat source unit side heat exchanger 3 and the first connection pipe 6. The sixth check valve 35 is connected to the heat source unit side heat exchanger 3 from the first connection pipe 6. Only the refrigerant flow is allowed. The third, fourth, fifth, and sixth check valves 32, 33, 34, and 35 constitute a flow path switching valve device 40. 50 is a first service port provided in the first connection pipe 6,
Reference numeral 51 denotes a second service port provided in the second connection pipe. 25 is the first branch 10 and the second flow control device
The first pressure detecting means provided between 13 and 26 corresponds to the second pressure detecting means.
This is a second pressure detecting means provided between the flow control device 13 and the fourth flow control device 17.

【0008】次に動作について説明する。まず、図9を
用いて冷房運転のみの場合について説明する。同図に実
線矢印で示すように圧縮機1より吐出された高温高圧冷
媒ガスは4方弁2を通り、熱源機側熱交換器3で室外空
気と熱交換して凝縮液化された後、第3の逆止弁32、第
2の接続配管7、気液分離装置12、第2の流量制御装置
13の順に通り、さらに第2の分岐部11、室内機側の第2
の接続配管7b,7c,7dを通り、各室内機B,C,Dに流
入する。各室内機B,C,Dに流入した冷媒は、各室内
側熱交換器5の出口のスーパーヒート量により制御され
る第1の流量制御装置9により低圧まで減圧されて室内
側熱交換器5で室内空気と熱交換して蒸発しガス化され
室内を冷房する。
Next, the operation will be described. First, the case of only the cooling operation will be described with reference to FIG. As shown by the solid arrows in FIG. 2, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way valve 2 and exchanges heat with outdoor air in the heat source unit side heat exchanger 3 to be condensed and liquefied. 3 check valve 32, second connection pipe 7, gas-liquid separator 12, second flow controller
13 and the second branch portion 11 and the second unit on the indoor unit side.
And flows into the indoor units B, C and D through the connection pipes 7b, 7c and 7d. The refrigerant flowing into each of the indoor units B, C, and D is decompressed to a low pressure by the first flow control device 9 controlled by the amount of superheat at the outlet of each of the indoor heat exchangers 5, and the indoor heat exchanger 5 The heat exchanges with the indoor air to evaporate and gasify and cool the room.

【0009】このガス状態となった冷媒は、室内機側の
第1の接続配管6b,6c,6d、第1の開閉弁21、第1の接
続配管6、第4の逆止弁33、熱源機の4方弁2、アキュ
ムレータ4を経て圧縮機1に吸入される循環サイクルを
構成し、冷房運転を行う。この時、第1の開閉弁21は開
路、第2の開閉弁22は閉路されている。又、冷媒はこの
時、第1の接続配管6が低圧、第2の接続配管7が高圧
のため必然的に第3の逆止弁32、第4の逆止弁33へ流通
する。
The gaseous refrigerant is supplied to the first connection pipes 6b, 6c, 6d on the indoor unit side, the first on-off valve 21, the first connection pipe 6, the fourth check valve 33, the heat source A circulation cycle is drawn into the compressor 1 through the four-way valve 2 and the accumulator 4 of the compressor, and performs a cooling operation. At this time, the first on-off valve 21 is open, and the second on-off valve 22 is closed. At this time, the refrigerant naturally flows to the third check valve 32 and the fourth check valve 33 because the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure.

【0010】また、このサイクルの時、第2の流量制御
装置13を通過した冷媒の一部がバイパス配管14へ入り第
3の流量制御装置15で低圧まで減圧されて第3の熱交換
部16b,16c,16dで第2の分岐部11の各室内機側の第
2の接続配管7b,7c,7dとの間で、また第2の熱交換部
16aで第2の分岐部11の各室内機側の第2の接続配管7
b,7c,7dの会合部との間で、さらに第1の熱交換部19
で第2の流量制御装置13に流入する冷媒との間で熱交換
を行い蒸発した冷媒は、第1の接続配管6、第4の逆止
弁33へ入り、熱源機の4方弁2、アキュムレータ4を経
て圧縮機1に吸入される。一方、第1,第2,第3の熱
交換部19,16a,16b,16c,16dで熱交換し冷却さ
れ、サブクールを充分につけられた上記第2の分岐部11
の冷媒は冷房しようとしている室内機B,C,Dへ流入
する。
At the time of this cycle, a part of the refrigerant that has passed through the second flow control device 13 enters the bypass pipe 14 and is reduced to a low pressure by the third flow control device 15 so that the third heat exchange portion 16b , 16c, 16d between the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch section 11, and a second heat exchange section.
At 16a, the second connection pipe 7 on each indoor unit side of the second branch portion 11
b, 7c, 7d, the first heat exchange section 19
Then, the refrigerant that has exchanged heat with the refrigerant flowing into the second flow control device 13 and evaporates enters the first connection pipe 6 and the fourth check valve 33, and the four-way valve 2 of the heat source device, It is sucked into the compressor 1 via the accumulator 4. On the other hand, the second branch portion 11 which has been cooled by exchanging heat in the first, second, and third heat exchange portions 19, 16a, 16b, 16c, and 16d and has a sufficient subcool is provided.
Flows into the indoor units B, C, and D to be cooled.

【0011】次に、図9を用いて暖房運転のみの場合に
ついて説明する。すなわち、同図に点線矢印で示すよう
に、圧縮機1より吐出された高温高圧冷媒ガスは、4方
弁2を通り、第5の逆止弁34、第2の接続配管7、気液
分離装置12を通り、第2の開閉弁22、室内機側の第1の
接続配管6b,6c,6dの順に通り、各室内機B,C,Dに
流入し、室内空気と熱交換して凝縮液化し、室内を暖房
する。
Next, the case of only the heating operation will be described with reference to FIG. That is, as shown by a dotted arrow in the figure, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way valve 2, the fifth check valve 34, the second connection pipe 7, the gas-liquid separation After passing through the device 12, the second on-off valve 22, and the first connection pipes 6b, 6c, 6d on the indoor unit side, flow into the indoor units B, C, D, exchange heat with indoor air and condense. It liquefies and heats the room.

【0012】この液状態となった冷媒は、各室内側熱交
換器5の出口のサブクール量により制御されてほぼ全開
状態の第1の流量制御装置9を通り、室内機側の第2の
接続配管7b,7c,7dから第2の分岐部11に流入して合流
し、さらに第4の流量制御装置17を通る。ここで、第1
の流量制御装置9または第4の流量制御装置17のどちら
か一方で低圧の気液二相状態まで減圧される。低圧まで
減圧された冷媒は、第1の接続配管6を経て熱源機Aの
第6の逆止弁35、熱源機側熱交換器3に流入し、ここで
室外空気と熱交換して蒸発しガス状態となった冷媒は熱
源機の4方弁2、アキュムレータ4を経て圧縮機1に吸
入される循環サイクルを構成し、暖房運転を行う。この
時、第2の開閉弁22は開路、第1の開閉弁21は閉路され
ている。また、冷媒はこの時、第1の接続配管6が低
圧、第2の接続配管7が高圧のため必然的に第5の逆止
弁34、第6の逆止弁35へ流通する。
The refrigerant in the liquid state is controlled by the subcooling amount at the outlet of each indoor side heat exchanger 5, passes through the first flow control device 9 which is almost fully opened, and the second connection on the indoor unit side. The gas flows into the second branch portion 11 from the pipes 7b, 7c, 7d, merges, and further passes through the fourth flow control device 17. Here, the first
The pressure is reduced to the low-pressure gas-liquid two-phase state by either the flow control device 9 or the fourth flow control device 17. The refrigerant decompressed to a low pressure flows into the sixth check valve 35 of the heat source unit A and the heat source unit side heat exchanger 3 via the first connection pipe 6, where it exchanges heat with outdoor air and evaporates. The refrigerant in the gaseous state forms a circulation cycle that is drawn into the compressor 1 via the four-way valve 2 and the accumulator 4 of the heat source unit, and performs a heating operation. At this time, the second on-off valve 22 is open and the first on-off valve 21 is closed. At this time, the refrigerant naturally flows to the fifth check valve 34 and the sixth check valve 35 because the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure.

【0013】次に冷暖房同時運転における暖房主体の場
合について図10を用いて説明する。同図に点線矢印で示
すように圧縮機1より吐出された高温高圧冷媒ガスは、
4方弁2を経て第5の逆止弁34、第2の接続配管7を通
して中継機Eへ送られ、気液分離装置12を通り、第2の
開閉弁22、室内機側の第1の接続配管6b,6cの順に通
り、暖房しようとする各室内機B,Cに流入し、室内側
熱交換器5で室内空気と熱交換して凝縮液化され室内を
暖房する。
Next, a description will be given of a case where heating and cooling are mainly performed in the simultaneous cooling and heating operation with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 as shown by a dotted arrow in FIG.
It is sent to the repeater E through the four-way valve 2 through the fifth check valve 34 and the second connection pipe 7, passes through the gas-liquid separation device 12, the second on-off valve 22, and the first on the indoor unit side. The air flows into the indoor units B and C to be heated in the order of the connection pipes 6b and 6c, and exchanges heat with the indoor air in the indoor heat exchanger 5 to be condensed and liquefied to heat the room.

【0014】この凝縮液化した冷媒は、各室内側熱交換
器B,Cの出口のサブクール量により制御され、ほぼ全
開状態の第1の流量制御装置9を通り少し減圧されて第
2の分岐部11に流入する。この冷媒の一部は、室内機側
の第2の接続配管7dを通り、冷房しようとする室内機D
に入り、室内側熱交換器Dの出口のスーパーヒート量に
より制御される第1の流量制御装置9に入り、減圧され
た後に、室内側熱交換器5に入って熱交換して蒸発しガ
ス状態となって室内を冷房し、第1の接続配管6dを経て
第1の開閉弁21を介して第1の接続配管6に流入する。
The condensed and liquefied refrigerant is controlled by the amount of subcooling at the outlet of each of the indoor heat exchangers B and C, passes through the first flow control device 9 which is almost fully open, and is slightly depressurized to the second branch. Flow into 11. A part of the refrigerant passes through the second connection pipe 7d on the indoor unit side, and is cooled by the indoor unit D to be cooled.
And enters the first flow control device 9 controlled by the amount of superheat at the outlet of the indoor heat exchanger D, and after being decompressed, enters the indoor heat exchanger 5 and exchanges heat to evaporate the gas. In this state, the room is cooled, and flows into the first connection pipe 6 via the first connection pipe 6d via the first on-off valve 21.

【0015】一方、他の冷媒は第1の圧力検出手段25の
検出圧力、第2の圧力検出手段26の検出圧力の圧力差が
所定範囲となるように制御される第4の流量制御装置17
を通って、冷房しようとする室内機Dを通った冷媒と合
流して太い第1の接続配管6を経て、熱源機Aの第6の
逆止弁35、熱源機側熱交換器3に流入し、ここで室外空
気と熱交換して蒸発しガス状態となる。
On the other hand, the other refrigerant is controlled by a fourth flow control device 17 which is controlled so that the pressure difference between the detected pressure of the first pressure detecting means 25 and the detected pressure of the second pressure detecting means 26 falls within a predetermined range.
And flows into the sixth check valve 35 of the heat source unit A and the heat source unit side heat exchanger 3 through the thick first connection pipe 6 through the thick first connection pipe 6 through the indoor unit D to be cooled. Then, it exchanges heat with the outdoor air and evaporates to a gas state.

【0016】この冷媒は、熱源機の4方弁2、アキュム
レータ4を経て圧縮機1に吸入される循環サイクルを構
成し、暖房主体運転を行う。この時、冷房する室内機D
の室内側熱交換器5の蒸発圧力と熱源側熱交換器3の圧
力差が、太い第1の接続配管6に切り換えるために小さ
くなる。また、この時、室内機B,Cに対応した第2の
開閉弁22は開路、第1の開閉弁21は閉路されている。更
に、室内機Dに対応した第1の開閉弁21は開路、第2の
開閉弁22は閉路されている。また、冷媒はこの時、第1
の接続配管6が低圧、第2の接続配管7が高圧のため必
然的に第5の逆止弁34、第6の逆止弁35へ流通する。
This refrigerant forms a circulation cycle which is drawn into the compressor 1 through the four-way valve 2 and the accumulator 4 of the heat source unit, and performs a heating-main operation. At this time, the indoor unit D to be cooled
The difference between the evaporation pressure of the indoor heat exchanger 5 and the pressure of the heat source side heat exchanger 3 becomes smaller because the first connection pipe 6 is switched to the thicker one. At this time, the second on-off valves 22 corresponding to the indoor units B and C are open, and the first on-off valves 21 are closed. Further, the first on-off valve 21 corresponding to the indoor unit D is open, and the second on-off valve 22 is closed. At this time, the refrigerant
The connection pipe 6 of low pressure and the second connection pipe 7 of high pressure inevitably flow to the fifth check valve 34 and the sixth check valve 35 because of high pressure.

【0017】このサイクルの時、一部の液冷媒は第2の
分岐部11の室内機側の第2の接続配管7b,7cの合流部か
らバイパス配管14へ入り、第3の流量制御装置15で低圧
まで減圧されて第3の熱交換部16b,16c,16dで第2
の分岐部11の各室内機側の第2の接続配管7b,7c,7dと
の間で、また第2の熱交換部16aで第2の分岐部11の室
内機側の第2の接続配管7b,7cの合流部との間で熱交換
を行い、蒸発した冷媒は、第1の接続配管6、第6の逆
止弁35へ入り、熱源機の4方弁2、アキュムレータ4を
経て、圧縮機1に吸入される。一方、第2、第3の熱交
換部16a,16b,16c,16dで熱交換し、冷却され、サ
ブクールを充分につけられた上記第2の分岐部11の冷媒
は冷房しようとしている室内機Dへ流入する。
In this cycle, a part of the liquid refrigerant enters the bypass pipe 14 from the junction of the second connection pipes 7b and 7c on the indoor unit side of the second branch section 11, and enters the third flow control device 15 The pressure is reduced to a low pressure in the third heat exchange sections 16b, 16c and 16d.
And the second connection pipe 7b, 7c, 7d on the indoor unit side of the branch unit 11 and the second connection pipe on the indoor unit side of the second branch unit 11 in the second heat exchange unit 16a. Heat exchange is performed between the junctions 7b and 7c, and the evaporated refrigerant enters the first connection pipe 6, the sixth check valve 35, passes through the four-way valve 2 and the accumulator 4 of the heat source unit, It is sucked into the compressor 1. On the other hand, the refrigerant in the second branch portion 11, which has been subjected to heat exchange in the second and third heat exchange portions 16a, 16b, 16c, and 16d, cooled and sufficiently cooled, is supplied to the indoor unit D to be cooled. Inflow.

【0018】次に、冷暖房同時運転における冷房主体の
場合について図11を用いて説明する。同図に実線矢印で
示すように、圧縮機1より吐出された冷媒ガスは、4方
弁2を経て熱源機側熱交換器3に流入し、ここで室外空
気と熱交換して、気液二相の高温高圧状態となる。その
後、この二相の高温高圧状態の冷媒は第3の逆止弁32、
第2の接続配管7を経て、中継機Eの気液分離装置12へ
送られる。ここで、ガス状冷媒と液状冷媒に分離され、
分離されたガス状冷媒は第2の開閉弁22、室内機側の第
1の接続配管6dの順に通り、暖房しようとする室内機D
に流入し、室内側熱交換器5で室内空気と熱交換して凝
縮液化し、室内を暖房する。さらに、室内側熱交換器5
の出口のサブクール量により制御され、ほぼ全開状態の
第1の流量制御装置9を通り、少し減圧されて第2の分
岐部11に流入する。
Next, a description will be given of a case where cooling is mainly performed in simultaneous cooling and heating operation with reference to FIG. As shown by solid arrows in FIG. 1, the refrigerant gas discharged from the compressor 1 flows into the heat source unit side heat exchanger 3 through the four-way valve 2 and exchanges heat with the outdoor air to form a gas-liquid mixture. A two-phase high-temperature high-pressure state results. Thereafter, the two-phase high-temperature and high-pressure refrigerant is supplied to the third check valve 32,
After passing through the second connection pipe 7, it is sent to the gas-liquid separation device 12 of the repeater E. Here, it is separated into gaseous refrigerant and liquid refrigerant,
The separated gaseous refrigerant passes through the second on-off valve 22, the first connection pipe 6d on the indoor unit side in this order, and the indoor unit D to be heated is heated.
And heat exchanges with the indoor air in the indoor heat exchanger 5 to condense and liquefy and heat the room. Further, the indoor heat exchanger 5
Through the first flow control device 9 which is almost fully opened, the pressure is slightly reduced, and flows into the second branch portion 11.

【0019】一方、残りの液状冷媒は第1の圧力検出手
段25の検出圧力、第2の圧力検出手段26の検出圧力によ
って制御される第2の流量制御装置13を通って、第2の
分岐部11に流入し、暖房しようとする室内機Dを通った
冷媒と合流し、室内機側の第2の接続配管7b,7cの順に
通り、各室内機3,Cに流入する。各室内機B,Cに流
入した冷媒は、室内側熱交換器B,Cの出口のスーパー
ヒート量により制御される第1の流量制御装置9によ
り、低圧まで減圧されて、室内空気と熱交換して蒸発
し、ガス化され、室内を冷房する。さらに、このガス状
態となった冷媒は室内機側の第1の接続配管6b,6c、第
1の開閉弁21を通り、第1の接続配管6、第4の逆止弁
33、熱源機の4方弁2、アキュムレータ4を経て圧縮機
1に吸入される循環サイクルを構成し、冷房主体運転を
行う。
On the other hand, the remaining liquid refrigerant passes through the second flow control device 13 controlled by the detected pressure of the first pressure detecting means 25 and the detected pressure of the second pressure detecting means 26, and passes through the second branch. The refrigerant flows into the unit 11, merges with the refrigerant that has passed through the indoor unit D to be heated, and flows into the indoor units 3 and C in the order of the second connection pipes 7b and 7c on the indoor unit side. The refrigerant flowing into each of the indoor units B and C is decompressed to a low pressure by the first flow control device 9 controlled by the superheat amount at the outlet of the indoor heat exchangers B and C, and exchanges heat with the indoor air. It evaporates, gasifies, and cools the room. Further, the gaseous refrigerant passes through the first connection pipes 6b and 6c and the first opening / closing valve 21 on the indoor unit side, passes through the first connection pipe 6, the fourth check valve, and the like.
33. A circulation cycle is drawn through the compressor 1 through the four-way valve 2 and the accumulator 4 of the heat source unit, and the cooling-main operation is performed.

【0020】また、室内機B,Cに対応する第1の開閉
弁21は開路、第2の開閉弁22は閉路されている。更に、
室内機Dに対応する第2の開閉弁22は開路、第1の開閉
弁21は閉路されている。冷媒はこの時、第1の接続配管
6が低圧、第2の接続配管7が高圧のため必然的に第3
の逆止弁32、第4の逆止弁33へ流通する。このサイクル
の時、一部の液冷媒は第2の分岐部11の各室内機側の第
2の接続配管7b,7c,7dの会合部からバイパス配管14へ
入り、第3の流量制御装置15で低圧まで減圧されて、第
3の熱交換部16b,16c,16dで第2の分岐部11の各室
内機側の第2の接続配管7b,7c,7dとの間で、また第2
の熱交換部16aで第2の分岐部11の各室内機側の第2の
接続配管7b,7c,7dの会合部との間で、さらに第1の熱
交換部19で第2の流量制御装置13に流入する冷媒との間
で熱交換を行い、蒸発した冷媒は第1の接続配管6、第
4の逆止弁33へ入り熱源機の4方弁2、アキュムレータ
4を経て圧縮機1に吸入される。一方、第1,第2,第
3の熱交換部19,16a,16b,16c,16dで熱交換し冷
却されサブクールを充分につけられた上記第2の分岐部
11の冷媒は冷房しようとしている室内機B,Cへ流入す
る。
The first on-off valves 21 corresponding to the indoor units B and C are open, and the second on-off valves 22 are closed. Furthermore,
The second on-off valve 22 corresponding to the indoor unit D is open, and the first on-off valve 21 is closed. At this time, since the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure,
Flow through the check valve 32 and the fourth check valve 33. During this cycle, a part of the liquid refrigerant enters the bypass pipe 14 from the junction of the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch section 11, and enters the third flow control device 15 The pressure is reduced to a low pressure in the second heat exchangers 16b, 16c, and 16d, and between the second connection pipes 7b, 7c, and 7d on the indoor unit side of the second branch 11 and in the second
Between the second heat exchanger 16a and the associated portion of the second connection pipes 7b, 7c and 7d on the indoor unit side of the second branch 11 and the second flow control by the first heat exchanger 19. The refrigerant exchanges heat with the refrigerant flowing into the device 13, and the evaporated refrigerant enters the first connection pipe 6, the fourth check valve 33, the four-way valve 2 of the heat source unit, the accumulator 4, and the compressor 1 Inhaled. On the other hand, the second branching section, which is cooled by being exchanged heat in the first, second and third heat exchanging sections 19, 16a, 16b, 16c and 16d and sufficiently provided with a subcool.
The refrigerant 11 flows into the indoor units B and C to be cooled.

【0021】[0021]

【発明が解決しようとする課題】従来の多室型ヒートポ
ンプ式空気調和装置は以上のように構成されているた
め、暖房運転を行っている室内機を、冷房運転に切換え
ると、上記室内機に対応した第2の開閉弁が閉路すると
同時に第1の開閉弁が開路し、室内機側の第1の接続配
管及び室内側熱交換器内の高温高圧冷媒が低圧回路に流
れ込む。従って、上述の様な運転切換の際には、高温高
圧冷媒が急激に減圧、膨張し、音が発生するという問題
があった。なお、近似技術として特開平2-118372号公報
がある。
Since the conventional multi-room heat pump type air conditioner is configured as described above, when the indoor unit performing the heating operation is switched to the cooling operation, the indoor unit changes to the indoor unit. At the same time when the corresponding second on-off valve is closed, the first on-off valve is opened, and the high-temperature and high-pressure refrigerant in the indoor unit-side first connection pipe and the indoor-side heat exchanger flows into the low-pressure circuit. Therefore, when the operation is switched as described above, there is a problem that the high-temperature and high-pressure refrigerant rapidly decompresses and expands, and generates noise. Japanese Patent Application Laid-Open No. 2-118372 discloses an approximation technique.

【0022】この発明は、上記のような問題点を解決す
るためになされたもので、熱源機1台に対して複数台の
室内機を接続し、各室内機毎に冷暖房を選択的に、かつ
一方の室内機では冷房、他方の室内機では暖房が同時に
行なうことができる空気調和装置において暖房運転を行
っている室内機を冷房運転に変える時に発生する冷媒音
の発生を抑制し、静寂性に優れた空気調和装置を得るこ
とを目的とする。
The present invention has been made in order to solve the above-mentioned problems. A plurality of indoor units are connected to one heat source unit, and cooling and heating are selectively performed for each indoor unit. In one air conditioner, cooling can be performed simultaneously, and in the other indoor unit, heating can be performed at the same time. It is an object to obtain an air conditioner excellent in quality.

【0023】[0023]

【課題を解決するための手段】この発明に係る空気調和
装置は、圧縮機、切換弁及び熱源機側熱交換器等よりな
る1台の熱源機と、それぞれ室内側熱交換器を有する複
数台の室内機とを、第1、第2の接続配管を介して接続
し、上記複数台の室内機の室内側熱交換器の一方を上記
第1の接続配管または第2の接続配管に切換え可能に接
続してなる第1の分岐部と、上記複数台の室内側熱交換
器の他方をそれぞれ第1の流量制御装置を介して上記第
2の接続配管に接続してなる第2の分岐部と、上記第2
の接続配管から分岐して上記第1の分岐部に到る配管を
分岐する配管分岐部と、この配管分岐部と上記第2の分
岐部とを接続する管路途中に設けられ、冷媒流量を制御
する第2の流量制御装置と、上記第2の分岐部と上記第
1の接続配管とを連通させる第4の流量制御装置と、上
記熱源機の第1及び第2の接続配管間に設けられ、流れ
る冷媒の方向を切換えることにより運転時は常に、上記
熱源機と上記室内機間に介在する上記第1の接続配管を
低圧に、上記第2の接続配管を高圧にする接続配管切換
装置とを備えたものにおいて、上記第1の分岐部を、一
端が上記室内側熱交換器の一方に他端が上記第1の接続
配管に接続する冷房切換用開閉弁である第1の開閉弁
と、一端が上記室内側熱交換器の一方に他端が上記配管
分岐部を介して上記第2の接続配管に接続する暖房切換
用開閉弁である第2の開閉弁と、上記第1の開閉弁をバ
イパスする、第1の開閉弁の流量容量より小容量の第3
の開閉弁とにより構成し、上記室内機が、暖房運転から
冷房運転に変わる時、上記第1の流量制御装置の開度を
暖房運転時の開度より大きく設定した所定開度で、又上
記第2の開閉弁を開路状態で第1の所定時間保持した
後、上記第2の開閉弁を閉路し、上記第1の流量制御装
置を閉止するとともに、上記第3の開閉弁を開路し、上
記第3の開閉弁の開路時間が第2の所定時間経過後、上
記第1の開閉弁を開路するとともに上記第1の流量制御
装置の流量制御を開始するようにしたものである。
An air conditioner according to the present invention comprises a compressor, a switching valve, a heat source-side heat exchanger, and the like.
One heat source unit and multiple indoor heat exchangers
Connects to several indoor units via first and second connection pipes
And one of the indoor heat exchangers of the plurality of indoor units is
Switchable connection to the first connection pipe or the second connection pipe
A first branch portion connected to the plurality of indoor heat exchange units
The other of the devices is connected to the first
A second branch portion connected to the second connection pipe;
From the connection pipe to reach the first branch
A pipe branch that branches, and the pipe branch and the second section
Provided in the middle of the pipeline connecting the fork and controlling the refrigerant flow rate
A second flow control device, the second branch, and the second
A fourth flow control device that communicates with the first connection pipe;
The heat source device is provided between the first and second connection pipes and has a flow
When operating by switching the direction of the refrigerant
The first connection pipe interposed between the heat source unit and the indoor unit
Connection piping switching to make the second connection piping high pressure to low pressure
And a device, wherein the first branch portion is
One end of the indoor heat exchanger is connected to the other end of the first heat exchanger.
First on-off valve, which is an on-off valve for cooling switching connected to piping
One end of the indoor heat exchanger and the other end of the pipe
Heating switching connected to the second connection pipe via a branch
A second on-off valve, which is an on-off valve for
The third valve with a smaller capacity than the flow capacity of the first on-off valve
The indoor unit is configured to operate from the heating operation.
When changing to the cooling operation, the opening of the first flow control device
At a predetermined opening that is larger than the opening during heating operation,
The second on-off valve is kept open for a first predetermined time.
Thereafter, the second on-off valve is closed, and the first flow control device is closed.
And the third on-off valve is opened.
After the opening time of the third on-off valve has passed the second predetermined time,
The first on-off valve is opened and the first flow rate control is performed.
The flow control of the apparatus is started .

【0024】[0024]

【作用】この発明における空気調和装置は、室内機が暖
房運転から冷房運転に変わる時、第1の流量制御装置の
開度を暖房運転時の開度より大きく設定した所定開度、
第2の開閉弁を開路の状態で第1の所定時間保持した
後、第2の開閉弁を閉路し、更に第1の流量制御装置を
閉止するとともに第3の開閉弁を開路し、この第3の開
閉弁の開路時間が第2の所定時間経過後第1の開閉弁を
開路するとともに、第1の流量制御装置の制御を行うよ
うにしたので、暖房から冷房運転への切換え時に発生し
ていた冷媒音の発生を抑制できる。
According to the air conditioner of the present invention, when the indoor unit changes from the heating operation to the cooling operation, the opening of the first flow control device is set to be larger than the opening during the heating operation ;
After holding the second on-off valve in the open state for the first predetermined time, the second on-off valve is closed, the first flow control device is closed, and the third on-off valve is opened. Since the first opening / closing valve is opened after the second predetermined time has elapsed since the opening time of the third opening / closing valve has passed, and the control of the first flow control device is performed, this occurs when switching from heating to cooling operation. It is possible to suppress the generation of the refrigerant noise.

【0025】[0025]

【実施例】実施例1.以下、この発明の空気調和装置の
実施例について図面に基づき説明する。図1は、この発
明の実施例による空気調和装置の冷媒系を中心とする全
体構成図である。また、図2乃至図4は図1に示す空気
調和装置における冷暖房運転時の動作状態を示したもの
であり、図2は冷房または暖房のみの運転動作状態図、
図3および図4は冷暖房同時運転の動作を示すもので、
図3は暖房主体(暖房運転容量が冷房運転容量より大き
い場合)を、図4は冷房主体(冷房運転容量が暖房運転
容量より大きい場合)を示す運転動作状態図である。な
お、この実施例では、熱源機1台に室内機3台を接続し
た場合について説明するが、2台以上の室内機を接続し
た場合も同様である。
[Embodiment 1] Hereinafter, embodiments of the air conditioner of the present invention will be described with reference to the drawings. FIG. 1 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to an embodiment of the present invention. FIGS. 2 to 4 show an operation state of the air-conditioning apparatus shown in FIG. 1 during a cooling and heating operation. FIG. 2 is an operation state diagram of only the cooling or heating operation.
3 and 4 show the operation of the simultaneous cooling and heating operation.
FIG. 3 is an operation state diagram showing a heating main body (when the heating operation capacity is larger than the cooling operation capacity), and FIG. 4 is an operation state diagram showing a cooling main body (when the cooling operation capacity is larger than the heating operation capacity). In this embodiment, a case where three indoor units are connected to one heat source unit will be described, but the same applies to a case where two or more indoor units are connected.

【0026】図1において、Aは熱源機、B,C,Dは
後述するように互いに並列接続された室内機でそれぞれ
同じ構成となっている。Eは後述するように、第1の分
岐部、第2の流量制御装置、第2の分岐部、気液分離装
置、熱交換部、第3の流量制御装置、第4の流量制御装
置を内蔵した中継機である。また、1は圧縮機、2は熱
源機の冷媒流通方向を切り換える4方弁、3は熱源機側
熱交換器、4はアキュムレータで、上記4方弁2を介し
て圧縮機1と接続されている。また、5は3台の室内機
B,C,Dに設けられた室内側熱交換器、6は熱源機A
の4方弁2と中継機Eを接続する太い第1の接続配管、
6b,6c,6dはそれぞれ室内機B,C,Dの室内側熱交換
器5と中継機Eを接続し、第1の接続配管6に対応する
室内機側の第1の接続配管、7は熱源機Aの熱源機側熱
交換器3と中継機Eを接続する上記第1の接続配管より
細い第2の接続配管である。また、7b,7c,7dはそれぞ
れ室内機B,C,Dの室内側熱交換器5と中継機Eを第
1の流量制御装置9を介して接続し、第2の接続配管7
に対応する室内機側の第2の接続配管である。
In FIG. 1, A is a heat source unit, and B, C, and D are indoor units connected in parallel to each other as described later, and have the same configuration. E incorporates a first branch, a second flow controller, a second branch, a gas-liquid separator, a heat exchanger, a third flow controller, and a fourth flow controller as described later. It is a repeater. 1 is a compressor, 2 is a four-way valve for switching the refrigerant flow direction of the heat source unit, 3 is a heat source side heat exchanger, and 4 is an accumulator, which is connected to the compressor 1 via the four-way valve 2. I have. 5 is an indoor heat exchanger provided in three indoor units B, C and D, and 6 is a heat source unit A.
A thick first connection pipe for connecting the four-way valve 2 and the repeater E,
6b, 6c, and 6d connect the indoor-side heat exchangers 5 of the indoor units B, C, and D to the repeater E, respectively. First connection pipes on the indoor unit side corresponding to the first connection pipes 6; It is a second connection pipe that is thinner than the first connection pipe that connects the heat source unit side heat exchanger 3 of the heat source unit A and the relay unit E. 7b, 7c and 7d connect the indoor heat exchangers 5 of the indoor units B, C and D and the relay unit E via the first flow control device 9, respectively.
Is a second connection pipe on the indoor unit side corresponding to FIG.

【0027】21は室内機側の第1の接続配管6b,6c,6d
と、第1の接続配管6を連接させる第1の開閉弁、22は
室内機側の第1の接続配管6b,6c,6dと、第2の接続配
管7を連接させる第2の開閉弁、23は第1の開閉弁21の
出入口をバイパスする第3の開閉弁であり、第1の開閉
弁21より流量容量の小さいものである。20は第1の開閉
弁21の出入口をバイパスする毛細管である。24は、第1
の開閉弁21、第3の開閉弁23、及び毛細管20よりなる開
閉弁セットである。9は室内側熱交換器5に近接して接
続され冷房時は室内側熱交換器5の出口側のスーパーヒ
ート量、暖房時はサブクール量により制御される第1の
流量制御装置で、室内機側の第2の接続配管7b,7c,7d
に接続される。10は室内機側の第1の接続配管6b,6c,
6dと、第1の接続配管6または、第2の接続配管7に切
換え可能に第1の分岐部で、第1の開閉弁21と第2の開
閉弁22、更に第1の開閉弁21の出入口をバイパスする第
3の開閉弁23及び毛細管20を備えたものである。11は室
内機側の第2の接続配管7b,7c,7dと、第2の接続配管
7よりなる第2の分岐部である。12は第2の接続配管7
の途中に設けられた気液分離装置で、その気層部は、第
1の分岐部の第2の開閉弁22に接続され、その液層部は
第2の分岐部11に接続され、第2の接続配管7を第1の
分岐部10側と第2の分岐部11側とに分岐する配管分岐部
を構成している。13は気液分離装置12と第2の分岐部11
との間に接続する開閉自在な第2の流量制御装置(ここ
では電気式膨張弁)である。
Reference numeral 21 denotes a first connection pipe 6b, 6c, 6d on the indoor unit side.
A first on-off valve for connecting the first connection pipe 6, a second on-off valve 22 for connecting the first connection pipes 6b, 6c, 6d on the indoor unit side and the second connection pipe 7, Reference numeral 23 denotes a third on-off valve that bypasses the entrance of the first on-off valve 21 and has a smaller flow capacity than the first on-off valve 21. Reference numeral 20 denotes a capillary tube which bypasses the entrance of the first on-off valve 21. 24 is the first
, A third on-off valve 23, and a capillary tube 20. Reference numeral 9 denotes a first flow control device which is connected close to the indoor heat exchanger 5 and is controlled by the amount of superheat at the outlet side of the indoor heat exchanger 5 during cooling and by the subcool amount during heating. Side second connection pipe 7b, 7c, 7d
Connected to. 10 is the first connection pipe 6b, 6c,
6d and the first connection pipe 6 or the second connection pipe 7 at the first branch so as to be switchable, the first on-off valve 21, the second on-off valve 22, and the first on-off valve 21 It has a third on-off valve 23 and a capillary tube 20 that bypass the doorway. Reference numeral 11 denotes a second branch portion including the second connection pipes 7b, 7c, and 7d on the indoor unit side and the second connection pipe 7. 12 is the second connection pipe 7
In gas-liquid separator provided in the middle of, the air layer portion is connected to a second on-off valve 22 of the first branch portion, the liquid layer portion is connected to the second branch portion 11, the 2 connecting pipe 7
A pipe branching section that branches into the branching section 10 side and the second branching section 11 side
Is composed . 13 is a gas-liquid separator 12 and a second branch 11
And a second flow control device (here, an electric expansion valve) that can be freely opened and closed connected between the first and second flow controllers.

【0028】14は第2の分岐部11と上記第1の接続配管
6とを結ぶバイパス配管、15はバイパス配管14の途中に
設けられた第3の流量制御装置(ここでは電気式膨張
弁)、16aはバイパス配管14の途中に設けられた第3の
流量制御装置15の下流に設けられ、第2の分岐部11にお
ける各室内機側の第2の接続配管7b,7c,7dの会合部と
の間でそれぞれ熱交換を行う第2の熱交換部である。16
b,16c,16dはそれぞれバイパス配管14の途中に設け
られた第3の流量制御装置15の下流に設けられ、第2の
分岐部11における各室内機側の第2の接続配管7b,7c,
7dとの間でそれぞれ熱交換を行う第3の熱交換器であ
る。
Reference numeral 14 denotes a bypass pipe connecting the second branch portion 11 and the first connection pipe 6, and reference numeral 15 denotes a third flow control device (here, an electric expansion valve) provided in the middle of the bypass pipe 14. , 16a are provided downstream of a third flow control device 15 provided in the middle of the bypass pipe 14, and are associated with the second connection pipes 7b, 7c, 7d on the indoor unit side in the second branch section 11. And a second heat exchange section for performing heat exchange between the first heat exchanger and the second heat exchanger. 16
b, 16c, 16d are provided downstream of the third flow control device 15 provided in the middle of the bypass pipe 14, respectively, and the second connection pipes 7b, 7c,
This is a third heat exchanger that exchanges heat with each of 7d and 7d.

【0029】19はバイパス配管14の上記第3の流量制御
装置15の下流および第2の熱交換部16aの下流に設けら
れ、気液分離装置12と第2の流量制御装置13とを接続す
る配管との間で熱交換を行う第1の熱交換部、17は第2
の分岐部11と上記第1の接続配管6との間に接続する開
閉自在な第4の流量制御装置(ここでは電気式膨張弁)
である。一方、32は上記熱源機側熱交換器3と上記第2
の接続配管7との間に設けられた第3の逆止弁であり、
上記熱源機側熱交換器3から上記第2の接続配管7への
み冷媒流通を許容する。33は上記熱源機Aの4方弁2と
上記第1の接続配管6との間に設けられた第4の逆止弁
であり、上記第1の接続配管6から上記4方弁2へのみ
冷媒流通を許容する。
Reference numeral 19 is provided downstream of the third flow control device 15 in the bypass pipe 14 and downstream of the second heat exchange section 16a, and connects the gas-liquid separation device 12 and the second flow control device 13. The first heat exchange section that exchanges heat with the piping, 17 is the second heat exchange section
Openable and closable fourth flow control device (here, an electric expansion valve) connected between the branch portion 11 and the first connection pipe 6.
It is. On the other hand, 32 is the heat source unit side heat exchanger 3 and the second
A third check valve provided between the connection pipe 7 and
The refrigerant is allowed to flow only from the heat source unit side heat exchanger 3 to the second connection pipe 7. Reference numeral 33 denotes a fourth check valve provided between the four-way valve 2 of the heat source unit A and the first connection pipe 6, and only a fourth check valve is provided from the first connection pipe 6 to the four-way valve 2. Allow refrigerant flow.

【0030】34 は上記熱源機Aの4方弁2と上記第2
の接続配管7との間に設けられた第5の逆止弁であり、
上記4方弁2から上記第2の接続配管7へのみ冷媒流通
を許容する。35は上記熱源機側熱交換器3と上記第1の
接続配管6との間に設けられた第6の逆止弁であり、上
記第1の接続配管6から上記熱源機側熱交換器3へのみ
冷媒流通を許容する。上記第3, 第4, 第5, 第6の逆
止弁32, 33, 34,35で流通切換弁装置40を構成する。50
は第1の接続配管6に設けられた第1のサービスポー
ト、51は第2の接続配管に設けられた第2のサービスポ
ートである。25は上記第1の分岐部10と第2の流量制御
装置13の間に設けられた第1の圧力検出手段、26は上記
第2の流量制御装置13と第4の流量制御装置17との間に
設けられた第2の圧力検出手段である。
Reference numeral 34 denotes the four-way valve 2 of the heat source unit A and the second
A fifth check valve provided between the connection pipe 7 and
Refrigerant flow is allowed only from the four-way valve 2 to the second connection pipe 7. Reference numeral 35 denotes a sixth check valve provided between the heat source unit-side heat exchanger 3 and the first connection pipe 6, and a sixth check valve 35 from the first connection pipe 6 to the heat source unit-side heat exchanger 3. Only the refrigerant flow is allowed. The third, fourth, fifth, and sixth check valves 32, 33, 34, and 35 constitute a flow switching valve device 40. 50
Is a first service port provided on the first connection pipe 6, and 51 is a second service port provided on the second connection pipe. 25 is a first pressure detecting means provided between the first branch portion 10 and the second flow control device 13, and 26 is a connection between the second flow control device 13 and the fourth flow control device 17. This is a second pressure detecting means provided therebetween.

【0031】次に動作について説明する。まず、図2を
用いて冷房運転のみの場合について説明する。同図に実
線矢印で示すように圧縮機1より吐出された高温高圧冷
媒ガスは4方弁2を通り、熱源機側熱交換器3で室外空
気と熱交換して凝縮液化された後、第3の逆止弁32、第
2の接続配管7、気液分離装置12、第2の流量制御装置
13の順に通り、さらに第2の分岐部11、室内機側の第2
の接続配管7b,7c,7dを通り、各室内機B,C,Dに流
入する。各室内機B,C,Dに流入した冷媒は、各室内
側熱交換器5の出口のスーパーヒート量により制御され
る第1の流量制御装置9により低圧まで減圧されて室内
側熱交換器5で室内空気と熱交換して蒸発しガス化され
室内を冷房する。
Next, the operation will be described. First, the case of only the cooling operation will be described with reference to FIG. As shown by the solid arrows in FIG. 2, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way valve 2 and exchanges heat with outdoor air in the heat source unit side heat exchanger 3 to be condensed and liquefied. 3 check valve 32, second connection pipe 7, gas-liquid separator 12, second flow controller
13 and the second branch portion 11 and the second unit on the indoor unit side.
And flows into the indoor units B, C and D through the connection pipes 7b, 7c and 7d. The refrigerant flowing into each of the indoor units B, C, and D is decompressed to a low pressure by the first flow control device 9 controlled by the amount of superheat at the outlet of each of the indoor heat exchangers 5, and the indoor heat exchanger 5 The heat exchanges with the indoor air to evaporate and gasify and cool the room.

【0032】このガス状態となった冷媒は、室内機側の
第1の接続配管6b,6c,6d、第1の開閉弁21、第3の開
閉弁23、第1の接続配管6、第4の逆止弁33、熱源機の
4方弁2、アキュムレータ4を経て圧縮機1に吸入され
る循環サイクルを構成し、冷房運転を行う。この時、第
1の開閉弁21、第3の開閉弁23は開路、第2の開閉弁22
は閉路されている。又、冷媒はこの時、第1の接続配管
6が低圧、第2の接続配管7が高圧のため必然的に第3
の逆止弁32、第4の逆止弁33へ流通する。
The refrigerant in the gaseous state is supplied to the first connection pipes 6b, 6c, 6d on the indoor unit side, the first on-off valve 21, the third on-off valve 23, the first connection pipe 6, and the fourth connection pipe. Of the compressor 1 through the check valve 33, the four-way valve 2 of the heat source unit, and the accumulator 4 to perform the cooling operation. At this time, the first on-off valve 21 and the third on-off valve 23 are open, and the second on-off valve 22
Is closed. Also, at this time, since the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure,
Flow through the check valve 32 and the fourth check valve 33.

【0033】また、このサイクルの時、第2の流量制御
装置13を通過した冷媒の一部がバイパス配管14へ入り第
3の流量制御装置15で低圧まで減圧されて第3の熱交換
部16b,16c,16dで第2の分岐部11の各室内機側の第
2の接続配管7b,7c,7dとの間で、また第2の熱交換部
16aで第2の分岐部11の各室内機側の第2の接続配管7
b,7c,7dの会合部との間で、さらに第1の熱交換部19
で第2の流量制御装置13に流入する冷媒との間で熱交換
を行い蒸発した冷媒は、第1の接続配管6,第4の逆止
弁33へ入り、熱源機の4方弁2、アキュムレータ4を経
て圧縮機1に吸入される。一方、第1,第2,第3の熱
交換部19,16a,16b,16c,16dで熱交換し冷却さ
れ、サブクールを充分につけられた上記第2の分岐部11
の冷媒は冷房しようとしている室内機B,C,Dへ流入
する。
At the time of this cycle, a part of the refrigerant that has passed through the second flow control device 13 enters the bypass pipe 14 and is reduced to a low pressure by the third flow control device 15 so that the third heat exchange portion 16b , 16c, 16d between the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch section 11, and a second heat exchange section.
At 16a, the second connection pipe 7 on each indoor unit side of the second branch portion 11
b, 7c, 7d, the first heat exchange section 19
The refrigerant evaporated by performing heat exchange with the refrigerant flowing into the second flow control device 13 enters the first connection pipe 6, the fourth check valve 33, and the four-way valve 2 of the heat source device, It is sucked into the compressor 1 via the accumulator 4. On the other hand, the second branch portion 11 which has been cooled by exchanging heat in the first, second, and third heat exchange portions 19, 16a, 16b, 16c, and 16d and has a sufficient subcool is provided.
Flows into the indoor units B, C, and D to be cooled.

【0034】次に、図2を用いて暖房運転のみの場合に
ついて説明する。すなわち、同図に点線矢印で示すよう
に、圧縮機1より吐出された高温高圧冷媒ガスは、4方
弁2を通り、第5の逆止弁34、第1の接続配管7、気液
分離装置12を通り、第2の開閉弁22、室内機側の第1の
接続配管6b,6c,6dの順に通り、各室内機B,C,Dに
流入し、室内空気と熱交換して凝縮液化し、室内を暖房
する。
Next, the case of only the heating operation will be described with reference to FIG. That is, as shown by a dotted arrow in the figure, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way valve 2, passes through the fifth check valve 34, the first connection pipe 7, the gas-liquid separation After passing through the device 12, the second on-off valve 22, and the first connection pipes 6b, 6c, 6d on the indoor unit side, flow into the indoor units B, C, D, exchange heat with indoor air and condense. It liquefies and heats the room.

【0035】この液状態となった冷媒は、各室内側熱交
換器5の出口のサブクール量により制御されてほぼ全開
状態の第1の流量制御装置9を通り、室内機側の第2の
接続配管7b,7c,7dから第2の分岐部11に流入して合流
し、さらに第4の流量制御装置17を通る。ここで、第1
の流量制御装置9または第4の流量制御装置17のどちら
か一方で低圧の気液二相状態まで減圧される。低圧まで
減圧された冷媒は、第1の接続配管6を経て熱源機Aの
第6の逆止弁35、熱源機側熱交換器3に流入し、ここで
室外空気と熱交換して蒸発しガス状態となった冷媒は熱
源機の4方弁2、アキュムレータ4を経て圧縮機1に吸
入される循環サイクルを構成し、暖房運転を行う。この
時、第2の開閉弁22は開路、第1の開閉弁21、第3の開
閉弁23は閉路されている。また、冷媒はこの時、第1の
接続配管6が低圧、第2の接続配管7が高圧のため必然
的に第5の逆止弁34、第6の逆止弁35へ流通する。
The refrigerant in the liquid state is controlled by the subcooling amount at the outlet of each indoor heat exchanger 5, passes through the first flow control device 9 which is almost fully opened, and the second connection on the indoor unit side. The gas flows into the second branch portion 11 from the pipes 7b, 7c, 7d, merges, and further passes through the fourth flow control device 17. Here, the first
The pressure is reduced to the low-pressure gas-liquid two-phase state by either the flow control device 9 or the fourth flow control device 17. The refrigerant decompressed to a low pressure flows into the sixth check valve 35 of the heat source unit A and the heat source unit side heat exchanger 3 via the first connection pipe 6, where it exchanges heat with outdoor air and evaporates. The refrigerant in the gaseous state forms a circulation cycle that is drawn into the compressor 1 via the four-way valve 2 and the accumulator 4 of the heat source unit, and performs a heating operation. At this time, the second on-off valve 22 is open, and the first on-off valve 21 and the third on-off valve 23 are closed. At this time, the refrigerant naturally flows to the fifth check valve 34 and the sixth check valve 35 because the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure.

【0036】次に冷暖房同時運転における暖房主体の場
合について図3を用いて説明する。同図に点線矢印で示
すように圧縮機1より吐出された高温高圧冷媒ガスは、
4方弁2を経て第5の逆止弁34、第2の接続配管7を通
して中継機Eへ送られ、気液分離装置12を通り、第2の
開閉弁22、室内機側の第1の接続配管6b,6cの順に通
り、暖房しようとする各室内機B,Cに流入し、室内側
熱交換器5で室内空気と熱交換して凝縮液化され室内を
暖房する。
Next, the case of mainly heating in the simultaneous cooling and heating operation will be described with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 as shown by a dotted arrow in FIG.
It is sent to the repeater E through the four-way valve 2 through the fifth check valve 34 and the second connection pipe 7, passes through the gas-liquid separation device 12, the second on-off valve 22, and the first on the indoor unit side. The air flows into the indoor units B and C to be heated in the order of the connection pipes 6b and 6c, and exchanges heat with the indoor air in the indoor heat exchanger 5 to be condensed and liquefied to heat the room.

【0037】この凝縮液化した冷媒は、各室内側熱交換
器B,Cの出口のサブクール量により制御され、ほぼ全
開状態の第1の流量制御装置9を通り少し減圧されて第
2の分岐部11に流入する。この冷媒の一部は、室内機側
の第2の接続配管7dを通り、冷房しようとする室内機D
に入り、室内側熱交換器Dの出口のスーパーヒート量に
より制御される第1の流量制御装置9に入り、減圧され
た後に、室内側熱交換器5に入って熱交換して蒸発しガ
ス状態となって室内を冷房し、第1の接続配管6dを経て
第1の開閉弁21、第3の開閉弁23を介して第1の接続配
管6に流入する。
The condensed and liquefied refrigerant is controlled by the amount of subcooling at the outlet of each of the indoor heat exchangers B and C, passes through the first flow control device 9 which is almost fully opened, and is slightly reduced in pressure to the second branch. Flow into 11. A part of the refrigerant passes through the second connection pipe 7d on the indoor unit side, and is cooled by the indoor unit D to be cooled.
And enters the first flow control device 9 controlled by the amount of superheat at the outlet of the indoor heat exchanger D, and after being decompressed, enters the indoor heat exchanger 5 and exchanges heat to evaporate the gas. In this state, the room is cooled, and flows into the first connection pipe 6 via the first connection pipe 6d via the first on-off valve 21 and the third on-off valve 23 via the first connection pipe 6d.

【0038】一方、他の冷媒は第1の圧力検出手段25の
検出圧力、第2の圧力検出手段26の検出圧力の圧力差が
所定範囲となるように制御される第4の流量制御装置17
を通って、冷房しようとする室内機Dを通った冷媒と合
流して太い第1の接続配管6を経て、熱源機Aの第6の
逆止弁35、熱源機側熱交換器3に流入し、ここで室外空
気と熱交換して蒸発しガス状態となる。
On the other hand, the other refrigerant is controlled by a fourth flow control device 17 which is controlled such that the pressure difference between the detected pressure of the first pressure detecting means 25 and the detected pressure of the second pressure detecting means 26 falls within a predetermined range.
And flows into the sixth check valve 35 of the heat source unit A and the heat source unit side heat exchanger 3 through the thick first connection pipe 6 through the thick first connection pipe 6 through the indoor unit D to be cooled. Then, it exchanges heat with the outdoor air and evaporates to a gas state.

【0039】この冷媒は、熱源機の4方弁2、アキュム
レータ4を経て圧縮機1に吸入される循環サイクルを構
成し、暖房主体運転を行う。この時、冷房する室内機D
の室内側熱交換器5の蒸発圧力と熱源側熱交換器3の圧
力差が、太い第1の接続配管6に切り換えるために小さ
くなる。また、この時、室内機B,Cに対応した第2の
開閉弁22は開路、第1の開閉弁21、第3の開閉弁23は閉
路されている。更に、室内機Dに対応した第1の開閉弁
21、第3の開閉弁23は開路、第2の開閉弁22は閉路され
ている。また、冷媒はこの時、第1の接続配管6が低
圧、第2の接続配管7が高圧のため必然的に第5の逆止
弁34、第6の逆止弁35へ流通する。
This refrigerant forms a circulation cycle which is drawn into the compressor 1 through the four-way valve 2 and the accumulator 4 of the heat source unit, and performs a heating-main operation. At this time, the indoor unit D to be cooled
The difference between the evaporation pressure of the indoor heat exchanger 5 and the pressure of the heat source side heat exchanger 3 becomes smaller because the first connection pipe 6 is switched to the thicker one. At this time, the second on-off valve 22 corresponding to the indoor units B and C is open, and the first on-off valve 21 and the third on-off valve 23 are closed. Furthermore, a first on-off valve corresponding to the indoor unit D
21, the third on-off valve 23 is open, and the second on-off valve 22 is closed. At this time, the refrigerant naturally flows to the fifth check valve 34 and the sixth check valve 35 because the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure.

【0040】このサイクルの時、一部の液冷媒は第2の
分岐部11の各室内機側の第2の接続配管7b,7cの合流部
からバイパス配管14へ入り、第3の流量制御装置15で低
圧まで減圧されて第3の熱交換部16b,16c,16dで第
2の武器部11の各室内機側の第2の接続配管7b,7c,7d
との間で、また第2の熱交換部16aで第2の分岐部11の
室内機側の第2の接続配管7b,7cの合流部との間で、熱
交換を行い、蒸発した冷媒は、第1の接続配管6、第6
の逆止弁35へ入り、熱源機の4方弁2、アキュムレータ
4を経て、圧縮機1に吸入される。一方、第2、第3の
熱交換部16a,16b,16c,16dで熱交換し、冷却さ
れ、サブクールを充分につけられた上記第2の分岐部11
の冷媒は冷房しようとしている室内機Dへ流入する。
During this cycle, a part of the liquid refrigerant enters the bypass pipe 14 from the junction of the second connection pipes 7b and 7c on the indoor unit side of the second branch section 11, and enters the third flow control device. The pressure is reduced to a low pressure at 15 and the second connection pipes 7b, 7c, 7d on the indoor unit side of the second weapon section 11 at the third heat exchange sections 16b, 16c, 16d.
And the second heat exchange section 16a performs heat exchange with the junction of the second connection pipes 7b and 7c on the indoor unit side of the second branch section 11 with the second heat exchange section 16a. , The first connection pipe 6, the sixth
, And is sucked into the compressor 1 through the four-way valve 2 and the accumulator 4 of the heat source unit. On the other hand, the second branch portion 11 which has exchanged heat in the second and third heat exchange portions 16a, 16b, 16c and 16d, has been cooled, and has a sufficient subcool is provided.
Flows into the indoor unit D to be cooled.

【0041】次に、冷暖房同時運転における冷房主体の
場合につい図4を用いて説明する。同図に実線矢印で示
すように、圧縮機1より吐出された冷媒ガスは、4方弁
2を経て熱源機側熱交換器3に流入し、ここで室外空気
と熱交換して、気液二相の高温高圧状態となる。その
後、この二相の高温高圧状態の冷媒は第3の逆止弁32、
第2の接続配管7を経て、中継機Eの気液分離装置12へ
送られる。ここで、ガス状冷媒と液状冷媒に分離され、
分離されたガス状冷媒は第2の開閉弁22、室内機側の第
1の接続配管6dの順に通り、暖房しようとする室内機D
に流入し、室内側熱交換器5で室内空気と熱交換して凝
縮液化し、室内を暖房する。さらに、室内側熱交換器5
の出口のサブクール量により制御され、ほぼ全開状態の
第1の流量制御装置9を通り、少し減圧されて第2の分
岐部11に流入する。
Next, a description will be given of a case where cooling is mainly performed in simultaneous cooling and heating operation with reference to FIG. As shown by solid arrows in FIG. 1, the refrigerant gas discharged from the compressor 1 flows into the heat source unit side heat exchanger 3 through the four-way valve 2 and exchanges heat with the outdoor air to form a gas-liquid mixture. A two-phase high-temperature high-pressure state results. Thereafter, the two-phase high-temperature and high-pressure refrigerant is supplied to the third check valve 32,
After passing through the second connection pipe 7, it is sent to the gas-liquid separation device 12 of the repeater E. Here, it is separated into gaseous refrigerant and liquid refrigerant,
The separated gaseous refrigerant passes through the second on-off valve 22, the first connection pipe 6d on the indoor unit side in this order, and the indoor unit D to be heated is heated.
And heat exchanges with the indoor air in the indoor heat exchanger 5 to condense and liquefy and heat the room. Further, the indoor heat exchanger 5
Through the first flow control device 9 which is almost fully opened, the pressure is slightly reduced, and flows into the second branch portion 11.

【0042】一方、残りの液状冷媒は第1の圧力検出手
段25の検出圧力、第2の圧力検出手段26の検出圧力によ
って制御される第2の流量制御装置13を通って、第2の
分岐部11に流入し、暖房しようとする室内機Dを通った
冷媒と合流し、室内機側の第2の接続配管7b,7cの順に
通り、各室内機B,Cに流入する。各室内機B,Cに流
入した冷媒は、室内側熱交換器B,Cの出口のスーパー
ヒート量により制御される第1の流量制御装置9によ
り、低圧まで減圧されて、室内空気と熱交換して蒸発
し、ガス化され、室内を冷房する。さらに、このガス状
態となった冷媒は室内機側の第1の接続配管6b,6c、第
1の開閉弁21、第3の開閉弁23を通り、第1の接続配管
6、第4の逆止弁33、熱源機の4方弁2、アキュムレー
タ4を経て圧縮機1に吸入される循環サイクルを構成
し、冷房主体運転を行う。
On the other hand, the remaining liquid refrigerant passes through the second flow control device 13 controlled by the detected pressure of the first pressure detecting means 25 and the detected pressure of the second pressure detecting means 26, and passes through the second branch. The refrigerant flows into the unit 11, merges with the refrigerant that has passed through the indoor unit D to be heated, and flows into the indoor units B and C in the order of the second connection pipes 7b and 7c on the indoor unit side. The refrigerant flowing into each of the indoor units B and C is decompressed to a low pressure by the first flow control device 9 controlled by the superheat amount at the outlet of the indoor heat exchangers B and C, and exchanges heat with the indoor air. It evaporates, gasifies, and cools the room. Further, the refrigerant in this gas state passes through the first connection pipes 6b and 6c, the first on-off valve 21, and the third on-off valve 23 on the indoor unit side, and passes through the first connection pipe 6 and the fourth reverse pipe. A circulation cycle is drawn into the compressor 1 through the stop valve 33, the four-way valve 2 of the heat source unit, and the accumulator 4, and the cooling-main operation is performed.

【0043】また、室内機B,Cに対応する第1の開閉
弁21、第3の開閉弁23は開路、第2の開閉弁22は閉路さ
れている。更に、室内機Dに対応する第2の開閉弁22は
開路、第1の開閉弁21、第3の開閉弁23は閉路されてい
る。冷媒はこの時、第1の接続配管6が低圧、第2の接
続配管7が高圧のため必然的に第3の逆止弁32、第4の
逆止弁33へ流通する。このサイクルの時、一部の液冷媒
は第2の分岐部11の各室内機側の第2の接続配管7b,7
c,7dの会合部からバイパス配管14へ入り、第3の流量
制御装置15で低圧まで減圧されて、第3の熱交換部16
b,16c,16dで第2の分岐部11の各室内機側の第2の
接続配管7b,7c,7dとの間で、また第2の熱交換部16a
で第2の分岐部11の各室内機側の第2の接続配管7b,7
c,7dの会合部との間で、さらに第1の熱交換部19で第
2の流量制御装置13に流入する冷媒との間で熱交換を行
い、蒸発した冷媒は第1の接続配管6、第4の逆止弁33
へ入り熱源機の4方弁2、アキュムレータ4を経て圧縮
機1に吸入される。一方、第1,第2,第3の熱交換部
19, 16a,16b,16c,16dで熱交換し冷却されサブク
ールを充分につけられた上記第2の分岐部11の冷媒は冷
房しようとしている室内機B,Cへ流入する。
The first on-off valve 21 and the third on-off valve 23 corresponding to the indoor units B and C are open, and the second on-off valve 22 is closed. Further, the second on-off valve 22 corresponding to the indoor unit D is open, and the first on-off valve 21 and the third on-off valve 23 are closed. At this time, the refrigerant necessarily flows to the third check valve 32 and the fourth check valve 33 because the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure. At the time of this cycle, a part of the liquid refrigerant is supplied to the second connection pipes 7b, 7b on the indoor unit side of the second branch portion 11.
c, 7d, enters the bypass pipe 14 and is decompressed to a low pressure by the third flow control device 15;
b, 16c, 16d between the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch section 11 and the second heat exchange section 16a.
The second connection pipes 7b and 7 on each indoor unit side of the second branch 11
Heat exchange between the refrigerant flowing into the second flow control device 13 in the first heat exchange unit 19 and the evaporating refrigerant is performed between the first and second connection pipes 6 and 7d. , Fourth check valve 33
The refrigerant is sucked into the compressor 1 through the four-way valve 2 and the accumulator 4 of the heat source unit. On the other hand, the first, second, and third heat exchange units
The refrigerant in the second branch portion 11, which has been cooled by heat exchange at 19, 16a, 16b, 16c, and 16d and sufficiently subcooled, flows into the indoor units B and C to be cooled.

【0044】次に、室内機が暖房運転から冷房運転に変
化する時の第1の開閉弁21、第2の開閉弁22、第3の開
閉弁23及び第1の流量制御装置9の制御について説明す
る。図5は、第1の開閉弁21、第2の開閉弁22、第3の
開閉弁23及び第1の流量制御装置9の制御機構を示し、
60は弁制御手段、61は第1の計時手段、62は第2の計時
手段、63は流量制御手段、64は第3の計時手段である。
図6は、弁制御手段60、第1の計時手段61、第2の計時
手段62、第3の計時手段、流量制御手段63の制御内容を
示すフローチャートである。図7は、第1の分岐部10と
接続配管6b,6c,6dの接続部分の本実施例における圧力
変化を示すグラフである。
Next, the control of the first opening / closing valve 21, the second opening / closing valve 22, the third opening / closing valve 23 and the first flow control device 9 when the indoor unit changes from the heating operation to the cooling operation. explain. FIG. 5 shows a control mechanism of the first on-off valve 21, the second on-off valve 22, the third on-off valve 23, and the first flow control device 9,
Reference numeral 60 denotes valve control means, 61 denotes first time measurement means, 62 denotes second time measurement means, 63 denotes flow rate control means, and 64 denotes third time measurement means.
FIG. 6 is a flowchart showing the control contents of the valve control means 60, the first time measurement means 61, the second time measurement means 62, the third time measurement means, and the flow rate control means 63. FIG. 7 is a graph showing a pressure change in the connection portion of the first branch portion 10 and the connection pipes 6b, 6c, 6d in this embodiment.

【0045】本実施例における暖房運転を行っている室
内機が、冷房運転に変化する場合、第1の流量制御装置
9の開度は暖房運転時の開度より大きく設定した所定開
度S(本実施例では全開)、第2の開閉弁22は開路状態
を第1の所定時間T1だけ保持し、その後、第2の開閉
弁22を閉路し、第1の流量制御装置9を閉止と同時に第
3の開閉弁23を開路する。更に上記開路状態を第2の所
定時間T2の間保持した後、第1の開閉弁21を開路し、
第1の流量制御装置9の流量制御を行う。以上の制御を
行うと、第1の分岐部10と接続配管6b,6c,6dの接続部
分の圧力は図7の様に緩やかな変化を示し、急激な圧力
変化に伴う冷媒音が発生しない。
When the indoor unit performing the heating operation in the present embodiment changes to the cooling operation, the opening degree of the first flow control device 9 is set to a predetermined opening degree S ( In this embodiment, the second on-off valve 22 holds the open state for the first predetermined time T1, then closes the second on-off valve 22, closes the first flow control device 9 at the same time as closing. The third on-off valve 23 is opened. Further, after maintaining the open state for the second predetermined time T2, the first on-off valve 21 is opened,
The flow control of the first flow control device 9 is performed. When the above control is performed, the pressure at the connection portion between the first branch portion 10 and the connection pipes 6b, 6c, 6d shows a gradual change as shown in FIG. 7, and no refrigerant noise is generated due to the rapid pressure change.

【0046】最後に、本実施例に基づく、第1の開閉弁
21、第2の開閉弁22、第3の開閉弁23の弁制御手段60、
及び第1の流量制御装置9の流量制御手段62の制御状態
を図6に示すフローチャートにより説明する。暖房運転
を行っている室内機が、冷房運転に変化する場合、ステ
ップ70で第1の流量制御装置9の開度を暖房運転時の開
度より大きく設定した所定開度S(本実施例では全開)
に固定する。又、ステップ71、72では各々第1の計時手
段61、第3の計時手段63の計時を開始し、ステップ73で
計時時間が第1の所定時間t1に達したか否かを判定す
る。上記計時時間が第1の所定時間t1に達した場合、ス
テップ74で第2の開閉弁22を閉路し、ステップ75で第1
の流量制御装置9を閉止し、更にステップ76で第3の開
閉弁23を開路する。次にステップ77, 78では各々第2の
計時手段62、第3の計時手段64の計時を開始し、ステッ
プ79で計時時間が第2の所定時間t2に達したか否かを判
定する。上記計時時間が第2の所定時間に達した場合、
ステップ80で第1の開閉弁を開路し、ステップ81で第1
の流量制御装置9は冷房負荷に対応した冷媒制御を開始
する。
Finally, a first on-off valve according to this embodiment
21, valve control means 60 for the second on-off valve 22, third on-off valve 23,
The control state of the flow control means 62 of the first flow control device 9 will be described with reference to the flowchart shown in FIG. When the indoor unit performing the heating operation changes to the cooling operation, in step 70, the opening degree of the first flow control device 9 is changed to the opening degree during the heating operation.
Opening degree S set to be larger than degree (fully opened in this embodiment)
Fixed to In steps 71 and 72, the first and third timers 61 and 63 start counting, and in step 73, it is determined whether or not the counted time has reached the first predetermined time t1. If the measured time has reached the first predetermined time t 1, the second on-off valve 22 is closed at step 74, the in step 75 1
Is closed, and in step 76, the third on-off valve 23 is opened. Next, in steps 77 and 78, the second time measuring means 62 and the third time measuring means 64 start measuring time, respectively, and in step 79, it is determined whether or not the time measured has reached the second predetermined time t2. When the time counted reaches the second predetermined time,
In step 80, the first on-off valve is opened, and in step 81, the first on-off valve is opened.
Starts the refrigerant control corresponding to the cooling load.

【0047】[0047]

【発明の効果】以上のように、この発明によれば、第1
の分岐部を、一端が室内側熱交換器の一方に他端が第1
の接続配管に接続する冷房切換用開閉弁である第1の開
閉弁と、一端が上記室内側熱交換器の一方に他端が配管
分岐部を介して第2の接続配管に接続する暖房切換用開
閉弁である第2の開閉弁と、上記第1の開閉弁をバイパ
スする、第1の開閉弁の流量容量より小容量の第3の開
閉弁とにより構成し、室内機が、暖房運転から冷房運転
に変わる時、第1の流量制御装置の開度を暖房運転時の
開度より大きく設定した所定開度で、又上記第2の開閉
弁を開路状態で第1の所定時間保持した後、上記第2の
開閉弁を閉路し、上記第1の流量制御装置を閉止すると
ともに、上記第3の開閉弁を開路し、上記第3の開閉弁
の開路時間が第2の所定時間経過後、上記第1の開閉弁
を開路するとともに上記第1の流量制御装置の流量制御
を開始するようにしたので、暖房運転時の室内機側の接
続配管内部の高圧冷媒を三段階に容量を変えて低圧側に
逃がし、急激な圧力変化による冷媒音を抑制できるとと
もに、切換えが迅速にできる冷暖同時運転が可能な空気
調和装置を得ることができる。
As described above, according to the present invention, the first
One end of one end of the indoor heat exchanger and the other end of the first
The first open / close valve for cooling switching connected to the connection pipe of
Close the valve and pipe one end to one end of the indoor heat exchanger
Opening for heating switching connected to the second connection pipe via the branch
A second on-off valve, which is a closed valve, and the first on-off valve are
The third opening having a smaller capacity than the flow capacity of the first on-off valve.
With the valve closed, the indoor unit switches from heating operation to cooling operation.
When changing to the opening of the first flow control device during heating operation
At the specified opening that is set to be larger than the opening,
After holding the valve in the open state for a first predetermined time, the second
When the on-off valve is closed and the first flow control device is closed,
In both cases, the third on-off valve is opened, and the third on-off valve is opened.
After the second predetermined time has elapsed, the first on-off valve
And the flow control of the first flow control device.
During the heating operation, the high-pressure refrigerant inside the connection pipe on the indoor unit side during the heating operation is changed in three stages to escape to the low-pressure side, so that the refrigerant noise due to a rapid pressure change can be suppressed and the switching can be performed quickly. It is possible to obtain an air conditioner capable of performing simultaneous cooling and heating operations.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1を示す空気調和装置の冷媒
系を中心とする全体構成図である。
FIG. 1 is an overall configuration diagram mainly showing a refrigerant system of an air conditioner showing a first embodiment of the present invention.

【図2】図1に示す空気調和装置の冷房または暖房のみ
の運転動作状態図である。
FIG. 2 is an operation state diagram of only the cooling or heating of the air conditioner shown in FIG.

【図3】図1に示す空気調和装置の暖房主体の運転動作
状態図である。
FIG. 3 is a diagram showing an operation state of the air-conditioning apparatus shown in FIG. 1 mainly for heating.

【図4】図1に示す空気調和装置の冷房主体の運転動作
状態図である。
FIG. 4 is an operation state diagram of the air conditioning apparatus shown in FIG. 1 mainly for cooling.

【図5】この発明における第1、第2、第3の開閉弁の
弁制御手段系及び第1の流量制御装置の流量制御手段系
の構成を示すブロック図である。
FIG. 5 is a block diagram showing a configuration of a valve control means system of first, second and third on-off valves and a flow control means system of the first flow control device in the present invention.

【図6】この発明の弁制御手段系及び流量制御手段系の
フローチャート図である。
FIG. 6 is a flowchart of a valve control means system and a flow rate control means system of the present invention.

【図7】この発明の実施例における中継機の第1分岐部
と接続配管接続部分の圧力変化を示すグラフである。
FIG. 7 is a graph showing a pressure change at a connection portion between a first branch portion and a connection pipe of the repeater according to the embodiment of the present invention.

【図8】従来の空気調和装置の冷媒系を中心とする全体
構成図である。
FIG. 8 is an overall configuration diagram mainly showing a refrigerant system of a conventional air conditioner.

【図9】図8に示す空気調和装置の冷房、または暖房の
みの運転動作状態図である。
9 is an operation state diagram of only cooling or heating of the air-conditioning apparatus shown in FIG.

【図10】図8に示す空気調和装置の暖房主体の運転動
作状態図である。
FIG. 10 is a diagram showing an operation state of the air conditioning apparatus shown in FIG. 8 mainly for heating.

【図11】図8に示す空気調和装置の冷房主体の運転動
作状態図である。
11 is an operation state diagram of the air conditioning apparatus shown in FIG. 8 mainly for cooling.

【符号の説明】[Explanation of symbols]

A 熱源機 B,C,D 室内機 E 中継機 1 圧縮機 2 4方切換弁 3 熱源機側熱交換器 4 アキュムレータ 5 室内側熱交換器 6 第1の接続配管 7 第2の接続配管 9 第1の流量制御装置 10 第1の分岐部 11 第2の分岐部 13 第2の流量制御装置 14 バイパス管 15 第3の流量制御装置 17 第4の流量制御装置 19 第1の熱交換部 20 毛細管 21 第1の開閉弁 22 第2の開閉弁 23 第3の開閉弁 40 流路切換弁装置 60 弁制御手段 61 第1の計時手段 62 第2の計時手段 63 流量制御手段 64 第3の計時手段 Reference Signs List A heat source unit B, C, D indoor unit E relay unit 1 compressor 2 4-way switching valve 3 heat source unit side heat exchanger 4 accumulator 5 indoor side heat exchanger 6 first connection pipe 7 second connection pipe 9 1 flow control device 10 1st branch part 11 2nd branch part 13 2nd flow control device 14 bypass pipe 15 3rd flow control device 17 4th flow control device 19 1st heat exchange part 20 capillary 21 First on-off valve 22 Second on-off valve 23 Third on-off valve 40 Flow path switching valve device 60 Valve control means 61 First timer means 62 Second timer means 63 Flow control means 64 Third timer means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河西 智彦 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (72)発明者 高田 茂生 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (72)発明者 亀山 純一 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (56)参考文献 特開 平2−93263(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tomohiko Kasai 6-5-666 Tehira, Wakayama City Mitsubishi Electric Corporation Wakayama Works (72) Inventor Shigeo Takada 6-5-666 Teira Wakayama City Mitsubishi Electric Inside Wakayama Works, Ltd. (72) Inventor Junichi Kameyama 6-66, Teira, Wakayama City Mitsubishi Electric Wakayama Works, Ltd. (56) References JP-A-2-93263 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機、切換弁及び熱源機側熱交換器等よ
りなる1台の熱源機と、それぞれ室内側熱交換器を有す
る複数台の室内機とを、第1、第2の接続配管を介して
接続し、上記複数台の室内機の室内側熱交換器の一方を
上記第1の接続配管または第2の接続配管に切換え可能
に接続してなる第1の分岐部と、上記複数台の室内側熱
交換器の他方をそれぞれ第1の流量制御装置を介して上
記第2の接続配管に接続してなる第2の分岐部と、上記
第2の接続配管から分岐して上記第1の分岐部に到る配
管を分岐する配管分岐部と、この配管分岐部と上記第2
の分岐部とを接続する管路途中に設けられ、冷媒流量を
制御する第2の流量制御装置と、上記第2の分岐部と上
記第1の接続配管とを連通させる第4の流量制御装置
と、上記熱源機の第1及び第2の接続配管間に設けら
れ、流れる冷媒の方向を切換えることにより運転時は常
に、上記熱源機と上記室内機間に介在する上記第1の接
続配管を低圧に、上記第2の接続配管を高圧にする接続
配管切換装置とを備えたものにおいて、上記第1の分岐
部を、一端が上記室内側熱交換器の一方に他端が上記第
1の接続配管に接続する冷房切換用開閉弁である第1の
開閉弁と、一端が上記内側熱交換器の一方に他端が上
記配管分岐部を介して上記第2の接続配管に接続する
房切換用開閉弁である第2の開閉弁と、上記第1の開閉
弁をバイパスする、第1の開閉弁の流量容量より小容量
の第3の開閉弁とにより構成し、上記室内機が、暖房運
転から冷房運転に変わる時、上記第1の流量制御装置の
開度を暖房運転時の開度より大きく設定した所定開度
で、又上記第2の開閉弁を開路状態で第1の所定時間保
持した後、上記第2の開閉弁を閉路し、上記第1の流量
制御装置を閉止するとともに、上記第3の開閉弁を開路
し、上記第3の開閉弁の開路時間が第2の所定時間経過
後、上記第1の開閉弁を開路するとともに上記第1の流
量制御装置の流量制御を開始することを特徴とする冷暖
同時運転可能な空気調和装置。
1. A compressor, a switching valve, a heat exchanger on a heat source side, and the like.
Has one heat source unit and each indoor heat exchanger
And a plurality of indoor units through the first and second connection pipes.
Connect one of the indoor heat exchangers of the indoor units
Switchable to the above first connection pipe or second connection pipe
And a first branch portion connected to the plurality of indoor heat sources
The other of the exchangers is each connected via a first flow control device.
A second branch connected to the second connection pipe;
The branching from the second connection pipe to the first branching section
A pipe branch for branching the pipe, and the pipe branch and the second
Is provided in the middle of the pipeline connecting the branch part of
A second flow control device for controlling, the second branch,
A fourth flow control device for communicating with the first connection pipe
Provided between the first and second connection pipes of the heat source device.
By switching the direction of the flowing refrigerant,
The first connection between the heat source unit and the indoor unit.
Connection for setting the connection pipe to low pressure and setting the second connection pipe to high pressure
A pipe switching device, wherein the first branch
Part, one end of which is one side of the indoor heat exchanger and the other end
A cooling switching-off valve connected to one connection pipe first on-off valve and one end on the other end to one of said interior side heat exchanger
Via the serial pipe branch portion bypassing the second on-off valve is a warm <br/> tuft switching-off valve that is connected to the second connection pipe, the upper Symbol first on-off valve, the first on-off constituted by a third on-off valve of a small capacity than the flow rate capacity of the valve, the indoor unit, when changing the cooling operation from the heating operation, than the opening degree at the time of opening the heating operation of the first flow control device At a predetermined large opening, and after holding the second on-off valve in the open state for a first predetermined time, close the second on-off valve and close the first flow control device, The third opening / closing valve is opened, and after the opening time of the third opening / closing valve has elapsed for a second predetermined time, the first opening / closing valve is opened and the flow control of the first flow control device is started. Cooling and heating
An air conditioner that can be operated simultaneously .
JP3120937A 1991-05-27 1991-05-27 Air conditioner Expired - Lifetime JP2718287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3120937A JP2718287B2 (en) 1991-05-27 1991-05-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3120937A JP2718287B2 (en) 1991-05-27 1991-05-27 Air conditioner

Publications (2)

Publication Number Publication Date
JPH04347467A JPH04347467A (en) 1992-12-02
JP2718287B2 true JP2718287B2 (en) 1998-02-25

Family

ID=14798661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3120937A Expired - Lifetime JP2718287B2 (en) 1991-05-27 1991-05-27 Air conditioner

Country Status (1)

Country Link
JP (1) JP2718287B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060029566A (en) * 2004-10-02 2006-04-06 삼성전자주식회사 Air condirioner and method of controlling the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698118B2 (en) * 1988-09-30 1998-01-19 三洋電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH04347467A (en) 1992-12-02

Similar Documents

Publication Publication Date Title
JP2875507B2 (en) Air conditioner
JP2944507B2 (en) Air conditioner
JP2718286B2 (en) Air conditioner
JP2598550B2 (en) Air conditioner
JP2718287B2 (en) Air conditioner
JP2616523B2 (en) Air conditioner
JP2727733B2 (en) Air conditioner
JP2718308B2 (en) Air conditioner
JP2601052B2 (en) Air conditioner
JP2765970B2 (en) Air conditioner
JPH05322348A (en) Air conditioner
JP3138491B2 (en) Air conditioner
JP2621687B2 (en) Air conditioner
JPH05172433A (en) Air conditioning apparatus
JP2757584B2 (en) Air conditioner
JP3092212B2 (en) Air conditioner
JPH10325641A (en) Refrigerating device
JP2723380B2 (en) Air conditioner
JPH04327768A (en) Air conditioner
JP2524382B2 (en) Air conditioner
JPH04359767A (en) Air conditioner
JPH0765825B2 (en) Air conditioner
JPH04110573A (en) Air conditioner
JP3092214B2 (en) Air conditioner
JPH05172430A (en) Air conditioning apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 14