JP2716602B2 - Generator parallel operation system - Google Patents

Generator parallel operation system

Info

Publication number
JP2716602B2
JP2716602B2 JP3180468A JP18046891A JP2716602B2 JP 2716602 B2 JP2716602 B2 JP 2716602B2 JP 3180468 A JP3180468 A JP 3180468A JP 18046891 A JP18046891 A JP 18046891A JP 2716602 B2 JP2716602 B2 JP 2716602B2
Authority
JP
Japan
Prior art keywords
voltage
generator
generators
frequency
reactive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3180468A
Other languages
Japanese (ja)
Other versions
JPH053632A (en
Inventor
昭憲 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3180468A priority Critical patent/JP2716602B2/en
Publication of JPH053632A publication Critical patent/JPH053632A/en
Application granted granted Critical
Publication of JP2716602B2 publication Critical patent/JP2716602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、並行運転時の発電機
相互間に流れる循環電流(横流)を抑制し、各発電機を
安定的に並行運転させるように制御する発電機の並行運
転システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a generator parallel operation system for controlling a circulating current (cross current) flowing between generators during parallel operation and controlling each generator to operate stably in parallel. It is about.

【0002】[0002]

【従来の技術】図4は例えば日本舶用機関学会誌,第1
0巻,第6号,「差動横流補償装置による多機並列運転
系の実機試験」坂本,根岸,武田共著に示された従来の
横流補償回路を示し、図において、1は発電機、1eは
発電機1の励磁巻線、3は自動電圧調整器、(以下、A
VRという)、4はAVR3の電圧検出変圧器、5は横
流補償用の抵抗器、6は負荷電流検出用の変流器、7は
給電用遮断器(以下、ACBという)、7aはACB7
の補助接点で、ACB7の閉で開となる。16は他の発
電機(図示しない)と並行運転する場合に、両発電機の
位相合致点で、ACB7を閉とする同期投入装置であ
る。また、図5は図4に示す横流補償回路各部の電圧,
電流のベクトル図である。
2. Description of the Related Art FIG.
Vol. 0, No. 6, "Test of a Multi-machine Parallel Operation System Using a Differential Cross-Flow Compensator", Sakamoto, Negishi, and Takeda. Is an excitation winding of the generator 1, 3 is an automatic voltage regulator, (hereinafter, A
4) AVR3 voltage detection transformer, 5 a cross current compensation resistor, 6 a load current detection current transformer, 7 a power supply breaker (hereinafter ACB), 7a ACB7
Is opened when ACB 7 is closed. Reference numeral 16 denotes a synchronous input device that closes the ACB 7 at the point where the two generators are in phase when operating in parallel with another generator (not shown). FIG. 5 shows the voltages of the respective components of the cross current compensation circuit shown in FIG.
It is a vector diagram of an electric current.

【0003】次に動作について説明する。発電機1と他
の発電機の安定な並行運転を行うには、並行運転中の各
発電機相互間に流れる無効横流の抑制が必要となる。従
って、同期投入装置16によりACB7を同期投入する
場合、ACB7の投入前は補助接点7aが閉であり、従
って、抵抗器5は短絡され、発電機1の電圧は負荷電流
に左右されずAVR3の設定電圧(一定電圧)に保持さ
れる。次に、ACB7が同期投入を完了すると、発電機
1側および母線側共にAVR3の入力回路に抵抗器5が
直列に接続され、抵抗器5に発電機1の負荷電流に比例
した電流が流れる。
Next, the operation will be described. In order to perform stable parallel operation of the generator 1 and the other generators, it is necessary to suppress the invalid cross flow flowing between the generators during the parallel operation. Therefore, when the ACB 7 is synchronously input by the synchronous input device 16, the auxiliary contact 7a is closed before the ACB 7 is input, so that the resistor 5 is short-circuited, and the voltage of the generator 1 is independent of the load current and the voltage of the AVR 3 is not affected by the load current. It is kept at the set voltage (constant voltage). Next, when the ACB 7 completes the synchronous input, the resistor 5 is connected in series to the input circuit of the AVR 3 on both the generator 1 side and the bus side, and a current proportional to the load current of the generator 1 flows through the resistor 5.

【0004】そして、この発電機電流が遅れのときに
は、抵抗器5の両端にはベクトル電圧降下Vrが発生
し、AVR3のベクトル入力電圧Vcは図5に示すベク
トル図より、ベクトル入力電圧Vc=ベクトル電圧Ve
+ベクトル電圧降下Vrとなる。すなわち、電圧が高く
無効遅れ電流が流れた発電機1では、AVR3の入力電
圧が高いという信号をAVR3に与えて、界磁巻線1e
の電流を減少させるように働き、一方、電圧が低い場合
には逆の動作が行われ、無効横流は消滅する。負荷平衡
時には、抵抗器5のベクトル電圧降下Vrも等しく、A
VR3の入力電圧も等しくなり、両発電機の電圧も一致
して、横流は流れない。
When the generator current is delayed, a vector voltage drop Vr occurs at both ends of the resistor 5, and the vector input voltage Vc of the AVR 3 is calculated from the vector diagram shown in FIG. Voltage Ve
+ Vector voltage drop Vr. That is, in the generator 1 in which the voltage is high and the reactive delay current flows, a signal indicating that the input voltage of the AVR 3 is high is given to the AVR 3 and the field winding 1 e
, On the other hand, when the voltage is low, the reverse operation is performed and the invalid cross current disappears. When the load is balanced, the vector voltage drop Vr of the resistor 5 is equal, and A
The input voltage of VR3 becomes equal, the voltages of both generators also match, and no cross current flows.

【0005】なお、上記文献の方式である差動変流器を
接続した横流補償装置では、負荷平衡時、負荷電流に比
例した電流がこれらの差動変流器および横流補償装置の
リング回路のみに流れ、抵抗器5の両端のベクトル電圧
降下Vrは零となる。従って、AVR3の入力電圧は母
線電圧の検出電圧のみとなり、電圧変動率は単独運転時
と同じく小さな値となる。
In a cross current compensator connected to a differential current transformer according to the method of the above-mentioned document, when the load is balanced, a current proportional to the load current is generated only by the differential current transformer and the ring circuit of the cross current compensator. And the vector voltage drop Vr across the resistor 5 becomes zero. Therefore, the input voltage of the AVR 3 is only the detection voltage of the bus voltage, and the voltage fluctuation rate has a small value as in the case of the single operation.

【0006】[0006]

【発明が解決しようとする課題】従来の横流補償回路は
以上のように構成されているので、発電機1の並行運転
時において負荷が平衡中でも、負荷の無効電流に比例し
て、電圧が垂下するほか、差動変流器を接続した横流補
償装置では負荷並行時は電圧変動が小さいが、発電機ご
とに制御装置を分割配置すると、差動変流器を経由した
りリング回路の断線または短絡時等には、並行運転中の
発電機1の垂下特性の相違により、発電機1の損傷およ
び系統の動揺等を招くなどの課題があった。
Since the conventional cross current compensating circuit is constructed as described above, the voltage droops in proportion to the reactive current of the load even when the load is balanced during the parallel operation of the generator 1. In addition, in a cross current compensator connected with a differential current transformer, the voltage fluctuation is small when the load is parallel, but if the control device is divided and arranged for each generator, it will pass through the differential current transformer, break the ring circuit or At the time of a short circuit or the like, there are problems such as damage to the generator 1 and instability of the system due to a difference in drooping characteristics of the generator 1 during parallel operation.

【0007】この発明は上記のような課題を解消するた
めになされたもので、両発電機間の信号の縮減および断
線,短絡検出のため、シリアル伝送装置を用いて信号を
授受し、このシリアル伝送装置による信号遅れでも、安
定な同期投入を可能にし、すなわち、投入直後の横流を
抑制し、かつ系統の電圧,周波数の変動を少なくするこ
とができるとともに、並行運転時の安定な有効・無効電
力分担を可能にする発電機の並行運転システムを得るこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. In order to reduce a signal between both generators and detect a disconnection or a short circuit, a signal is transmitted and received using a serial transmission device. Even if the signal is delayed by the transmission device, stable synchronization can be achieved, that is, cross current immediately after the synchronization can be suppressed, fluctuations in system voltage and frequency can be reduced, and stable enable / disable during parallel operation can be achieved. It is an object of the present invention to obtain a parallel operation system of a generator capable of sharing power.

【0008】[0008]

【課題を解決するための手段】この発明に係る発電機の
並行運転システムは、同期投入開始と同時に横流補償回
路の動作セットにより、各発電機の電圧,周波数を基準
値に調整した後、各発電機の位相合致点で、同期投入用
の遮断器を投入し、同期投入後は並行運転中の発電機の
有効・無効電力を分担させる端末制御装置を設け、該端
末制御装置により同期投入後の母線の電圧,周波数を一
定に制御するため、シリアル伝送装置に、各端末制御装
置間で相手側発電機の電圧,周波数および有効・無効電
力を授受させるようにしたものである。
In the parallel operation system of the generator according to the present invention, the voltage and frequency of each generator are adjusted to the reference values by the operation set of the cross current compensation circuit at the same time as the start of synchronization, and thereafter, each of the generators is adjusted. At the phase matching point of the generator, turn on the circuit breaker for synchronizing, and after the synchronizing, provide a terminal control device that shares the active / reactive power of the generator in parallel operation. In order to control the voltage and frequency of the bus at a constant level, the serial transmission device transmits and receives the voltage, frequency and active / reactive power of the partner generator between the terminal control devices.

【0009】[0009]

【作用】この発明における端末制御装置は、同期投入開
始と同時に、横流補償回路に発電機の無効電力増幅で電
圧が垂下する特性にセットさせ、また、同期投入時の電
圧,周波数の動揺防止のため、投入前に両発電機の電
圧,周波数を基準値に調整した後、これらの両発電機の
位相合致点で遮断器を投入させ、また、投入後は、有効
・無効電力の分担を行わせる。
The terminal control device according to the present invention sets the characteristic in which the voltage droops due to the reactive power amplification of the generator at the same time as the start of synchronization, and prevents fluctuation of the voltage and frequency at the time of synchronization. Therefore, before turning on, the voltage and frequency of both generators are adjusted to the reference value, and then the circuit breaker is turned on at the phase matching point of these two generators. After turning on, the active / reactive power is shared. Let

【0010】[0010]

【実施例】以下、この発明の一実施例を図について説明
する。図1において、1a,1bは発電機、2a,2b
は発電機1a,1bを駆動する原動機、2c,2dは周
波数制御用のガバナモータ、3a,3bは励磁巻線1
c,1dに電圧制御された励磁電流を供給するAVR、
4a,4bは電圧検出変圧器、5a,5bは横流補償用
の抵抗器、6a,6bは負荷電流検出用の変流器、7
a,7bはACB、7c,7dはACB7a,7bの補
助接点、8a,8bは各発電機1a,1bの出力系統電
圧を検出する電圧検出回路、9a,9bは同じく出力系
統周波数を検出する周波数検出回路、10a,10bは
同じく各出力系統の有効電力および無効電力を検出する
有効・無効電力回路である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 1a and 1b are generators, 2a and 2b
Is a prime mover that drives the generators 1a and 1b, 2c and 2d are governor motors for frequency control, and 3a and 3b are excitation windings 1.
AVR for supplying a voltage-controlled excitation current to c and 1d,
4a and 4b are voltage detection transformers, 5a and 5b are cross current compensation resistors, 6a and 6b are load current detection current transformers,
a and 7b are ACBs, 7c and 7d are auxiliary contacts of the ACBs 7a and 7b, 8a and 8b are voltage detection circuits for detecting output system voltages of the generators 1a and 1b, and 9a and 9b are frequencies for detecting the output system frequency similarly. The detection circuits 10a and 10b are active / reactive power circuits for detecting active power and reactive power of each output system .

【0011】また、11a,11bは各検出回路8a,
8b,9a,9b,10a,10bで検出されたアナロ
グデータをデジタル変換するアナログ入力回路、12
a,12bは各種演算を行う演算回路、13a,13b
は演算回路12a,12bの結果を受けて、ACB7
a,7b,AVR3a,3b,ガバナモータ2c,2d
の各制御用信号を出力するデジタル出力回路、14a,
14bは相手の演算回路12a,12b間で信号を授受
するシリアル伝送装置、15a,15bは電圧検出回路
8a,8b,周波数検出回路9a,9b,有効・無効電
力検出回路10a,10b,アナログ入力回路11a,
1b,演算回路12a,12b,デジタル出力回路13
a,13bを含む端末制御装置である。ここで、20
a,20bは界磁巻線1c,1d,AVR3a,3b,
抵抗器5a,5b,電圧検出用変圧器4a,4b,変流
器6a,6bからなる横流補償回路である。また、図2
は図1の構成のもとでの各系統における無効電力対電圧
の特性図であり、図3はこの発明の一実施例による制御
動作のフローチャートである。
Also, 11a and 11b are detection circuits 8a,
An analog input circuit for converting analog data detected by 8b, 9a, 9b, 10a, and 10b into a digital signal;
a and 12b are operation circuits for performing various operations, 13a and 13b
Receives the results of the arithmetic circuits 12a and 12b,
a, 7b, AVRs 3a, 3b, governor motors 2c, 2d
Digital output circuit for outputting each control signal of
Reference numeral 14b denotes a serial transmission device for transmitting and receiving signals between the other operation circuits 12a and 12b. Reference numerals 15a and 15b denote voltage detection circuits 8a and 8b, frequency detection circuits 9a and 9b, active / reactive power detection circuits 10a and 10b, and analog input circuits. 11a,
1b, arithmetic circuits 12a and 12b, digital output circuit 13
a and 13b are terminal control devices. Where 20
a, 20b are field windings 1c, 1d, AVRs 3a, 3b,
This is a cross current compensation circuit including resistors 5a and 5b, voltage detection transformers 4a and 4b, and current transformers 6a and 6b. FIG.
FIG. 3 is a characteristic diagram of reactive power versus voltage in each system under the configuration of FIG. 1, and FIG. 3 is a flowchart of a control operation according to an embodiment of the present invention.

【0012】次に動作について説明する。まず、各発電
機1a,1bの出力系統の電圧,周波数,有効・無効電
力は各検出回路8a,8b,9a,9b,10a,10
bで検出され、アナログ入力回路11a,11bを経由
し、演算回路12a,12bに入力される。また、互い
に他の発電機1a,1bの上記データはシリアル伝送装
置14a,14bを介して演算回路12a,12bにそ
れぞれ入力される(ステップST1)。また、各発電機
1a,1bが単独か並行かを、ACB7a,7bの補助
接点7c,7dの状態に応じた信号にもとづいて、演算
回路12a,12bで判断する(ステップST2)。演
算回路12a,12bで単独と判断した場合には、デジ
タル出力回路13a,13bのリレー13c,13d
で、抵抗器5a,5bを短絡し、電圧垂下をほぼ零とす
る(ステップST3)。
Next, the operation will be described. First, the voltage, frequency, and active / reactive power of the output system of each generator 1a, 1b are determined by each of the detection circuits 8a, 8b, 9a, 9b, 10a, 10
b, and input to the arithmetic circuits 12a and 12b via the analog input circuits 11a and 11b. The data of the other generators 1a and 1b are input to the arithmetic circuits 12a and 12b via the serial transmission devices 14a and 14b, respectively (step ST1). The arithmetic circuits 12a and 12b determine whether the generators 1a and 1b are independent or in parallel based on the signals corresponding to the states of the auxiliary contacts 7c and 7d of the ACBs 7a and 7b (step ST2). If the arithmetic circuits 12a and 12b determine that they are independent, the relays 13c and 13d of the digital output circuits 13a and 13b
Then, the resistors 5a and 5b are short-circuited and the voltage droop is reduced to substantially zero (step ST3).

【0013】さらに、この状態で、演算回路12a,1
2bは各検出回路8a,8b,9a,9bにより検出さ
れた電圧,周波数を内部基準値と比較し、この比較結果
をその内部基準値とするようデジタル出力回路13a,
13bを経由し、AVR3a,3bおよびガバナモータ
2c,2dを制御する(ステップST4)。このため、
電圧特性は図2のV1 のようにほぼ一定となる。
Further, in this state, the operation circuits 12a, 1
2b compares the voltage and frequency detected by each of the detection circuits 8a, 8b, 9a, 9b with an internal reference value, and uses the digital output circuits 13a, 13a,
AVRs 3a, 3b and governor motors 2c, 2d are controlled via 13b (step ST4). For this reason,
Voltage characteristic is approximately constant as V 1 of the FIG.

【0014】次に、並行運転動作について、ACB7a
を同期投入する場合について説明する。まず、並行運転
開始信号(図示せず)を出力し、並行運転開始と判定さ
れると(ステップST5)、各横流補償回路をセットす
る。すなわち、補助接点7c,7dはACB7a,7b
の補助接点を1度リレー増幅したもので(図示せず)、
並行運転を開始すると、ディジタル出力回路13a,1
3bの出力でこの補助接点増幅用のリレーのコイルを断
とし、補助接点7c,7dを開にし、AVR3a,3b
の入力回路に抵抗器5a,5bを直列に接続し、図2の
2 に示すように、発電機1a,1bに電圧垂下特性を
つける(ステップST6)。このとき、発電機1a,1
bに無効電力負荷があれば、電圧が垂下する。そこで、
並行運転(同期投入)後に系統の電圧,周波数に変動が
生じないよう、同期投入前に各々独立に発電機1a,1
bの電圧および周波数を、図2のV3 に示すように基準
値に制御する(ステップST7,ST8)。この場合、
周波数については、ABC投入側の(低負荷側)の発電
機1aでは基準値より若干高めとし、両機の位相合わせ
および投入後の逆電力発生防止を容易とする。
Next, regarding the parallel operation, the ACB 7a
Will be described. First, a parallel operation start signal (not shown) is output, and when it is determined that the parallel operation is started (step ST5), each cross current compensation circuit is set. That is, the auxiliary contacts 7c and 7d are connected to the ACBs 7a and 7b.
Auxiliary contact of the relay is amplified once (not shown)
When the parallel operation starts, the digital output circuit 13a, 1
With the output of 3b, the coil of this auxiliary contact amplification relay is disconnected.
And the auxiliary contacts 7c and 7d are opened, and AVRs 3a and 3b
Input circuit resistors 5a of, connect 5b in series, as shown in V 2 of FIG. 2, the generator 1a, put a voltage drooping characteristic to 1b (step ST6). At this time, the generators 1a, 1
If there is a reactive power load at b, the voltage will droop. Therefore,
Before the synchronous operation, the generators 1a and 1a are independently controlled so that the voltage and frequency of the system do not fluctuate after the parallel operation (synchronous operation).
The voltage and frequency of b, is controlled to the reference value as shown in V 3 of FIG. 2 (step ST7, ST8). in this case,
The frequency of the generator 1a on the ABC input side (low load side) is slightly higher than the reference value to facilitate phase matching of both the generators and prevention of reverse power generation after the input.

【0015】次に、この状態で両発電機1a,1bの位
相が合致するか否かを判定して(ステップST9)、合
致するとACB7aの投入信号を出力し(ステップST
10)、並行運転を開始する(ステップST11)。A
CB7aの閉後の瞬間は両機の電圧,周波数はほぼ一致
し、また、横流補償回路もセットされているため、従来
技術に示す原理により、同時に横流補償が開始され、安
定な無効電力分担が行われる。
Next, in this state, it is determined whether or not the phases of the two generators 1a and 1b match (step ST9), and when they match, an input signal of the ACB 7a is output (step ST9).
10), parallel operation is started (step ST11). A
At the moment after the CB 7a is closed, the voltages and frequencies of the two units are almost the same, and the cross current compensation circuit is also set. Therefore, the cross current compensation is started at the same time according to the principle shown in the prior art, and stable reactive power sharing is performed. Will be

【0016】この場合、従来技術で示されるACB7a
の閉後の横流補償回路セットでは、両発電機1a,1b
間のシリアル伝送の遅れにより、両発電機1a,1b間
の横流補償回路セットに差が生じ、例えば図2におい
て、発電機1aはACB7aの閉で即セットされるた
め、V2 の特性となるが、発電機1bはシリアル伝送で
遅れ、V1 の特性のまま、ACB7aが閉となるケース
もあり、発電機1bに過大な無効電力が流れることとな
る。本発明はこれらを防止できる。
In this case, the ACB 7a shown in the prior art is used.
In the cross flow compensation circuit set after closing, the two generators 1a, 1b
The delay of the serial transmission between both the generator 1a, a difference occurs in the cross current compensation circuit set between 1b, in FIG. 2, for example, the generator 1a is to be immediately set in the closed ACB7a, the characteristic of V 2 There, the generator 1b is delayed serial transmission, remains characteristic of V 1, there are cases where ACB7a is closed, so that the flow is excessive reactive power to the generator 1b. The present invention can prevent these.

【0017】また、ACB7aが閉じ、シリアル伝送に
よる安定した制御が可能な時間後は、並行運転中の他の
発電機1bの電圧,周波数,有効・無効電力をシリアル
伝送装置14a,14bで入力し、電圧,周波数につい
ては、演算回路12a,12bで両発電機1a,1bの
電圧,周波数の平均値が内部設定値(基準値)と等しく
なるように制御する。また、有効・無効電力について
は、演算回路12a,12bで、発電機1a,1bの有
効・無効電力は演算により設定値(基準値)、すなわ
ち、当該発電機1a,1bの有効電力は、設定有効電力
=全有効電力負荷×(当該機定格有効電力/並行運転中
の発電機の定格有効電力の総和)となるようにガバナモ
ータ2c,2dを、一方、発電機1a,1bの無効電力
は、設定無効電力=全無効電力負荷×(当該機の定格無
効電力/並行運転中の発電機の定格無効電力の総和)と
なるようにAVR3a,3bを、それぞれデジタル出力
回路13a,13bを経由して制御する(ステップST
12)。なお、上記実施例では両発電機1a,1bの情
報交換を行うのにシリアル伝送装置14a,14bを用
いる場合を示したが、情報交換ができれば他の装置を使
用してもよい。
After the time when the ACB 7a is closed and stable control by serial transmission is possible, the voltage, frequency, active / reactive power of the other generator 1b in parallel operation is input by the serial transmission devices 14a and 14b. , Voltage and frequency are controlled by the arithmetic circuits 12a and 12b so that the average value of the voltage and frequency of both generators 1a and 1b becomes equal to the internally set value (reference value). Regarding the active / reactive power, the active / reactive powers of the generators 1a and 1b are calculated by the arithmetic circuits 12a and 12b by calculation to set values (reference values), that is, the active powers of the generators 1a and 1b are set. The governor motors 2c and 2d are set so that active power = total active power load × (the rated active power of the machine / the sum of the rated active powers of the generators operating in parallel), while the reactive power of the generators 1a and 1b is AVRs 3a and 3b are digitally output such that set reactive power = total reactive power load × (rated reactive power of the machine / sum of rated reactive power of generators operating in parallel)
Control is performed via the circuits 13a and 13b (step ST
12). In the above embodiment, the case where the serial transmission devices 14a and 14b are used to exchange information between the two generators 1a and 1b has been described, but other devices may be used as long as the information can be exchanged.

【0018】[0018]

【発明の効果】以上のように、この発明によれば同期投
入開始と同時に横流補償回路の動作セットにより、各発
電機の電圧,周波数を基準値に調整した後、各発電機の
位相合致点で、同期投入用の遮断器を投入し、同期投入
後は並行運転中の発電機の有効・無効電力を分担させる
端末制御装置とを設け、該端末制御装置により同期投入
後の母線の電圧,周波数を一定に制御するため、シリア
ル伝送装置に、各端末制御装置間で相手側発電機の電
圧,周波数および有効・無効電力を授受させるように構
成したので、遮断器の同期投入時のシリアル伝送等の遅
れによる横流の増大、また系統の電圧,周波数の動揺を
防止でき、両発電機間の完全な同期が必要でない運転装
置どうしで、分散制御による安定な並行運転を実現でき
るものが得られる効果がある。
As described above, according to the present invention, the voltage and frequency of each generator are adjusted to the reference values by the operation set of the cross current compensation circuit at the same time as the start of synchronization, and then the phase matching point of each generator is adjusted. And a terminal control device for turning on the circuit breaker for synchronizing, and sharing the active / reactive power of the generators operating in parallel after synchronizing, and a terminal control device for controlling the voltage of the bus after synchronizing by the terminal control device. In order to control the frequency to be constant, the serial transmission device is configured to transmit and receive the voltage, frequency and active / reactive power of the partner generator between each terminal control device. It is possible to prevent an increase in cross flow due to delays, etc., and to prevent fluctuations in system voltage and frequency, and achieve stable parallel operation by distributed control between operating devices that do not require perfect synchronization between both generators. Effect There is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例による発電機の並行運転シ
ステムを示す回路図である。
FIG. 1 is a circuit diagram showing a parallel operation system of a generator according to an embodiment of the present invention.

【図2】図1の構成のもとでの各発電機の無効電力対出
力電圧の関係を示す特性図である。
FIG. 2 is a characteristic diagram showing a relationship between reactive power and output voltage of each generator under the configuration of FIG.

【図3】この発明の一実施例による発電機の並行運転制
御の動作手順を示すフローチャートである。
FIG. 3 is a flowchart showing an operation procedure of parallel operation control of the generator according to one embodiment of the present invention.

【図4】従来の横流補償回路を示す回路図である。FIG. 4 is a circuit diagram showing a conventional cross current compensation circuit.

【図5】従来の横流補償回路各部の電圧,電流を示すベ
クトル図である。
FIG. 5 is a vector diagram showing a voltage and a current of each section of the conventional cross current compensation circuit.

【符号の説明】 1a 発電機 1b 発電機 7a 遮断器 7b 遮断器 14a シリアル伝送装置 14b シリアル伝送装置 15a 端末制御装置 15b 端末制御装置 20a 横流補償回路 20b 横流補償回路[Description of Signs] 1a Generator 1b Generator 7a Circuit breaker 7b Circuit breaker 14a Serial transmission device 14b Serial transmission device 15a Terminal control device 15b Terminal control device 20a Cross current compensation circuit 20b Cross current compensation circuit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 同期投入により並行運転される2つの発
電機の負荷電流に比例した横流補償用の電圧を、上記発
電機の界磁巻線に供給する横流補償回路と、同期投入開
始と同時に上記横流補償回路の動作セットにより、上記
発電機の電圧,周波数を基準値に調整した後、各発電
機の位相合致点で、同期投入用の遮断器を投入し、同期
投入後は並行運転中の発電機の有効・無効電力を分担さ
せる端末制御装置と、該端末制御装置により同期投入後
の母線の電圧,周波数を一定に制御するため、各端末制
御装置間で相手側発電機の電圧,周波数および有効・無
効電力を授受するシリアル伝送装置とを備えた発電機の
並行運転システム。
1. A cross current compensation circuit for supplying a cross current compensation voltage proportional to a load current of two generators operated in parallel by synchronous input to a field winding of said generator, the set of operations described above cross current compensation circuit, the
After adjusting the voltage and frequency of each generator to the reference value, at the phase matching point of each generator, turn on the circuit breaker for synchronizing, and after synchronizing, the active and reactive power of the generators operating in parallel A terminal control device to be shared, and the terminal control device transmits and receives the voltage, frequency, and active / reactive power of the counterpart generator between each terminal control device in order to control the voltage and frequency of the bus after synchronization. A parallel operation system of a generator including a serial transmission device.
JP3180468A 1991-06-26 1991-06-26 Generator parallel operation system Expired - Fee Related JP2716602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3180468A JP2716602B2 (en) 1991-06-26 1991-06-26 Generator parallel operation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3180468A JP2716602B2 (en) 1991-06-26 1991-06-26 Generator parallel operation system

Publications (2)

Publication Number Publication Date
JPH053632A JPH053632A (en) 1993-01-08
JP2716602B2 true JP2716602B2 (en) 1998-02-18

Family

ID=16083752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3180468A Expired - Fee Related JP2716602B2 (en) 1991-06-26 1991-06-26 Generator parallel operation system

Country Status (1)

Country Link
JP (1) JP2716602B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7319307B2 (en) * 2005-12-16 2008-01-15 General Electric Company Power balancing of multiple synchronized generators
ES2368952T3 (en) * 2008-05-27 2011-11-23 Abb Schweiz Ag STARTING DEVICE FOR AT LEAST TWO SYNCHRONIC MACHINES.
KR101339107B1 (en) * 2012-06-19 2014-01-02 국방과학연구소 Parallel operative generator and parallel operative generating system having the same and a method of parallel operating generator
DE102014119158A1 (en) * 2014-12-19 2016-06-23 Maschinenfabrik Reinhausen Gmbh Selective parallel running procedure for measuring / control devices

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57208829A (en) * 1981-06-16 1982-12-22 Mitsubishi Electric Corp Cross current compensating device
JPH0799909B2 (en) * 1988-05-02 1995-10-25 三菱電機株式会社 Parallel operation device

Also Published As

Publication number Publication date
JPH053632A (en) 1993-01-08

Similar Documents

Publication Publication Date Title
US5729059A (en) Digital no-break power transfer system
US6239511B1 (en) Power station having a generator which is driven by a turbine, as well as a method for operating such a power station
US4210948A (en) Method and apparatus for monitoring line voltage in a polyphase source
JPS6071000A (en) Voltage regulator
WO2009013591A2 (en) Power systems and methods using an uninterruptible power supply to transition to generator-powered operation
US5317500A (en) Active no-break power transfer control for a VSCF power generating system
JP2716602B2 (en) Generator parallel operation system
US3748493A (en) Over and under excitation protection circuit for alternating current power systems including improved demodulator circuit
US4777376A (en) Lightweight starting system for an electrically compensated constant speed drive
JPH02197216A (en) Method and circuit for relectively cutting off faulty channel of power system
US5451854A (en) Procedure for reducing the starting current of a squirrel-cage motor, and a squirrel-cage motor unit designed for implementing the procedure
US6396247B1 (en) Exciter system with protection for manual regulator failure and an electric generator incorporating same
US6621672B2 (en) Circuit breaker having analog override
JP4530365B2 (en) Distributed power supply
US20020167298A1 (en) Power adjustment apparatus
JPH02228296A (en) Discharge circuit and discharge method of dc filter capacitor
JP2000358331A (en) Individual operation detector for synchronous generator
JPH0746763A (en) Reactive power regulator
JP3397608B2 (en) Power grid connection protection device
JP2882141B2 (en) Device with overcurrent detection circuit
SU1327229A1 (en) Method of automatic starting and self=starting of electric motors in emergency conditions
SU1092691A1 (en) Method of controlling synchronous generator when energizing and device for effecting same
JPS61224834A (en) Automatic load shift paraller off apparatus for parallel operation dynamo
JPH05146075A (en) Power flow controller
JPS6035895B2 (en) Parallel operation device for alternator

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees