JP2709242B2 - Method for producing grain-oriented silicon steel sheet - Google Patents

Method for producing grain-oriented silicon steel sheet

Info

Publication number
JP2709242B2
JP2709242B2 JP4192471A JP19247192A JP2709242B2 JP 2709242 B2 JP2709242 B2 JP 2709242B2 JP 4192471 A JP4192471 A JP 4192471A JP 19247192 A JP19247192 A JP 19247192A JP 2709242 B2 JP2709242 B2 JP 2709242B2
Authority
JP
Japan
Prior art keywords
steel sheet
silicon steel
grain size
oriented silicon
peripheral speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4192471A
Other languages
Japanese (ja)
Other versions
JPH0631303A (en
Inventor
賢一 荒井
和志 石山
正基 中野
将直 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP4192471A priority Critical patent/JP2709242B2/en
Publication of JPH0631303A publication Critical patent/JPH0631303A/en
Application granted granted Critical
Publication of JP2709242B2 publication Critical patent/JP2709242B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、方向性珪素鋼板の製
造法に係り、特に磁束密度が高く、鉄損の低い薄手の方
向性珪素鋼板の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain oriented silicon steel sheet, and more particularly to a method for producing a thin grain oriented silicon steel sheet having a high magnetic flux density and a low iron loss.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】周知の
ように方向性珪素鋼板は高い磁束密度と低い鉄損という
長所を併せ待ち、電力用変圧器、発電機、可飽和アクト
ルなどに広く利用されている。しかし近年、電気、電子
機器の使用周波数の高周波化や一層の省エネルギー化の
要請から、更に鉄損の低い方向性珪素鋼板が求められる
ようにになってきた。鉄損はヒステリシス損と渦電流損
に分けられ、この内渦電流損は特に周波数が高くなると
増大が著しくなる。渦電流損を減らすためには鋼板の板
厚を薄くすることと、板内にできる磁区の幅を何らかの
手段で狭くすることが有効である。
2. Description of the Related Art As is well known, oriented silicon steel sheets have the advantages of high magnetic flux density and low iron loss, and are widely used in power transformers, generators, saturable actuators, and the like. Have been. However, in recent years, demands for higher frequencies of use of electric and electronic devices and further energy saving have led to a demand for a grain-oriented silicon steel sheet having a lower iron loss. Iron loss is divided into hysteresis loss and eddy current loss, of which the eddy current loss increases remarkably especially at higher frequencies. In order to reduce the eddy current loss, it is effective to reduce the thickness of the steel plate and to narrow the width of the magnetic domain formed in the plate by some means.

【0003】従来より、Goss法又は一冷圧法と呼ば
れる方法により製造された、(110)[001]結晶
粒集合組織を有する方向性珪素鋼板を出発材料として、
冷間圧延により(111)[112]集合組織を有する
厚さ150μm以下の薄帯となし、更に非酸化雰囲気の
高温熱処理を施すことにより三次再結晶を起こさせ、平
均結晶粒径が5mm以上の(110)[001]方位が
高度に集積された低損失方向性珪素鋼薄帯を製造するこ
とが提案されている(特開昭63−171827;IE
EE TRANSACTION ON MAGNETI
CS,Vol.25,No.5,3949(198
9);特開平3−100123)。
Conventionally, a directional silicon steel sheet having a (110) [001] crystal grain texture manufactured by a method called the Goss method or a single cold pressure method is used as a starting material.
It is formed into a ribbon having a thickness of 150 μm or less having a (111) [112] texture by cold rolling, and further subjected to a high-temperature heat treatment in a non-oxidizing atmosphere to cause tertiary recrystallization, and the average crystal grain size is 5 mm or more. It has been proposed to produce a low loss directional silicon steel ribbon having a highly integrated (110) [001] orientation (Japanese Patent Application Laid-Open No. 63-171827; IE).
EE TRANSACTION ON MAGNETI
CS, Vol. 25, no. 5,3949 (198
9); JP-A-3-100123).

【0004】板厚に関しては、上記特開昭63−171
827に示されている方法を用いることにより、従来の
Goss法又は一冷圧法では200μm程度が下限であ
ったものが、150μm以下のものも製造可能となって
きている。
[0004] Regarding the thickness of the sheet, see JP-A-63-171.
By using the method shown in No. 827, the lower limit of about 200 μm in the conventional Goss method or the single cold pressure method can be reduced to 150 μm or less.

【0005】磁区の細分化に関しては、従来のGoss
法又は一冷圧法では仕上焼鈍前に鋼板表面にMgOを主
成分とする焼鈍分離剤を塗布し、1100〜1300℃
で焼鈍する事により鋼板表面にフォルステライト(Mg
2 SiO4 )層を形成させ、このフォルステライト被膜
と鋼板の熱膨張率差を利用して鋼板に張力を付与し磁区
細分化を図るという方法が取られている。
[0005] Regarding the subdivision of magnetic domains, the conventional Goss
Method or one cold pressure method, an annealing separator containing MgO as a main component is applied to the surface of the steel sheet before finish annealing, and the temperature is from 1100 to 1300 ° C.
Forsterite (Mg)
2 SiO 4 ) layer is formed, and a tension is applied to the steel sheet by utilizing the difference in the thermal expansion coefficient between the forsterite film and the steel sheet to achieve magnetic domain refining.

【0006】しかし、特開昭63−171827の技術
に於ては、仕上焼鈍は鋼板の表面を清浄にし、表面エネ
ルギーの働きにより(110)[001]方位を形成さ
せる方法を取っているため、従来技術の様に仕上焼鈍時
に鋼板表面にセラミック被膜を形成させることはできな
い。
However, in the technique of Japanese Patent Application Laid-Open No. 63-171827, the finish annealing uses a method of cleaning the surface of a steel sheet and forming a (110) [001] orientation by the action of surface energy. It is not possible to form a ceramic coating on the steel sheet surface during finish annealing as in the prior art.

【0007】このため、これらの改良技術として、同様
の方法で作られた方向性珪素鋼薄帯に機械的歪を付与
し、磁区幅を狭くして鉄損を低減する方法(特開平1−
137988)、エッチングで微細溝を形成することに
より鉄損を低減する方法(特開平3−87314)等が
試みられている。
[0007] Therefore, as an improved technique, a method of imparting mechanical strain to a directional silicon steel ribbon produced by the same method, narrowing the magnetic domain width and reducing iron loss (Japanese Patent Laid-Open No. Hei.
137988), a method of reducing iron loss by forming fine grooves by etching (Japanese Unexamined Patent Publication No. 3-87314) and the like have been tried.

【0008】しかし、機械的歪を付与して磁区を細分化
した方向性珪素鋼板を製造しても、それを最終製品まで
加工した後、歪取焼鈍を施せば、歪付与による磁区細分
化効果は消失してしまう。また、エッチングにより溝形
成して磁区細分化する方法は、歪取焼鈍による効果喪失
は無いものの、適切な間隔で表面エッチングをする工程
は繁雑であり、コストアップは避けられない。
[0008] However, even when a grain-oriented silicon steel sheet in which magnetic domains are subdivided by applying mechanical strain is manufactured, if it is processed into a final product, and then subjected to strain relief annealing, the effect of magnetic domain subdivision by applying strain is obtained. Disappears. In the method of forming grooves by etching and subdividing the magnetic domains, although the effect is not lost by strain relief annealing, the step of performing surface etching at appropriate intervals is complicated, and an increase in cost is inevitable.

【0009】上記理由から、三次再結晶により(11
0)[001]方位を形成させた方向性珪素鋼板に対
し、簡便且つ永続的効果の有る磁区細分化技術が求めら
れてきている。
For the above reasons, (11)
0) For a grain-oriented silicon steel sheet having a [001] orientation, a magnetic domain refining technique that has a simple and permanent effect has been demanded.

【0010】近年その1つの方法として、電気学会,マ
グネティックス研究会,資料MAG−91−118で発
表されたように、熱処理条件を変化させる事により、平
均結晶粒径を1mm程度まで低下させ、その効果により
磁区細分化を図る試みが行なわれた。この方法は、効果
が永続的で、かつ余分な工程を必要としない優れた方法
であり、この資料から平均結晶粒径を更に小さくすれ
ば、更に鉄損が低減する事が期待される。しかしなが
ら、この熱処理条件を変更する事による平均結晶粒径の
低下は約1mmが下限であり、それ以上の平均結晶粒径
の低下は他の手段によらねばならなかった。
In recent years, as one method, as disclosed in the Institute of Electrical Engineers of Japan, Magnetics Research Group, and document MAG-91-118, the average crystal grain size is reduced to about 1 mm by changing the heat treatment conditions. Attempts were made to subdivide the magnetic domains by the effect. This method is an excellent method that has a permanent effect and does not require an extra step. From this document, it is expected that a further reduction in the average crystal grain size will further reduce iron loss. However, the lower limit of the average crystal grain size by changing the heat treatment conditions is about 1 mm as a lower limit, and any further reduction in the average crystal grain size must be performed by other means.

【0011】この発明はかかる事情に鑑みてなされたも
のであって、(110)[001]集合組織を有する方
向性珪素鋼板を出発材料として冷間圧延と熱処理を施し
三次再結晶により再度(110)[001]集合組織を
形成させる薄方向性珪素鋼板の製造方法において、熱処
理条件の制御以外に三次再結晶後の平均結晶粒径を制御
する手段を与え、安定して1.5mm以下、更には熱処
理条件の制御では達成し得ない1mm以下の平均結晶粒
径をも容易に得ることができる薄い方向性珪素鋼板を提
供することを目的とする。
The present invention has been made in view of such circumstances, and uses a grain-oriented silicon steel sheet having a (110) [001] texture as a starting material, performs cold rolling and heat treatment, and re-executes (110) by tertiary recrystallization. ) [001] In the method for producing a grain-oriented silicon steel sheet for forming a texture, a means for controlling the average crystal grain size after the tertiary recrystallization is provided in addition to the control of the heat treatment conditions, so that the method is stable to 1.5 mm or less It is an object of the present invention to provide a thin grain-oriented silicon steel sheet which can easily obtain an average crystal grain size of 1 mm or less which cannot be achieved by controlling heat treatment conditions.

【0012】[0012]

【課題を解決するための手段及び作用】この発明は、上
記課題を解決するために、(110)[001]集合組
織を有する方向性珪素鋼板を出発材料とし、これに冷間
圧延と熱処理を施し、三次再結晶により再度(110)
[001]集合組織を形成させて薄い方向性珪素鋼板を
製造するに際し、冷間圧延時の圧延ロール周速を30m
m/秒以下とすることを特徴とする方向性珪素鋼板の製
造方法を提供する。
In order to solve the above problems, the present invention uses a grain oriented silicon steel sheet having a (110) [001] texture as a starting material, and performs cold rolling and heat treatment on the sheet. And tertiary recrystallization again (110)
[001] In producing a thin grain-oriented silicon steel sheet by forming a texture, the rolling roll peripheral speed during cold rolling is set to 30 m.
m / sec or less; and a method for producing a grain-oriented silicon steel sheet.

【0013】本願発明者は、熱処理条件の制御以外に三
次再結晶後の平均結晶粒径を制御する方法について検討
を重ねた結果、出発材料である(110)[001]集
合組織を有する方向性珪素鋼板に冷間圧延を施す際に、
圧延ロール周速を30mm/秒以下とすることにより容
易に解決できることを見出した。
The inventor of the present invention has repeatedly studied a method of controlling the average crystal grain size after the tertiary recrystallization in addition to the control of the heat treatment conditions. As a result, it was found that the starting material had a (110) [001] texture. When performing cold rolling on silicon steel sheet,
It has been found that the problem can be easily solved by setting the peripheral speed of the rolling roll to 30 mm / sec or less.

【0014】ロール周速を遅くすると仕上焼鈍による三
次再結晶粒の平均粒径が小さくなる理由は明確には判っ
ていないが、ロール周速を遅くする事により被圧延材料
中に生ずる変形組織が変化し、熱処理過程における三次
再結晶前の二次再結晶の時点で(110)[001]方
位を持つ結晶粒が板内に細かく均一に分散して存在する
傾向となり、それが核となって三次再結晶が進行するた
め、三次再結晶完了後の平均結晶粒径も小さくなるので
あろうと推察される。
The reason why the average grain size of the tertiary recrystallized grains due to the finish annealing decreases when the roll peripheral speed is reduced is not clearly understood. However, the deformation microstructure generated in the material to be rolled by reducing the roll peripheral speed is reduced. At the time of the secondary recrystallization before the tertiary recrystallization in the heat treatment process, the crystal grains having the (110) [001] orientation tend to be finely and uniformly dispersed in the plate, which becomes a nucleus. It is presumed that the average crystal grain size after the completion of the tertiary recrystallization will be smaller because the tertiary recrystallization proceeds.

【0015】図7にロール周速が40.0mm/秒及び
21.7mm/秒の二水準で冷間圧延を施した試料に温
度を変えて1時間熱処理した時のB8 の変化、図8に図
7における900℃で熱処理した各試料における(11
0)面が板面に揃った結晶粒の粒径分布、表1に各試料
の(110)面が板面に揃った結晶粒の面積率、平均粒
径、単位面積当りの個数及びそれらに対し1150℃、
1時間焼鈍した時の三次再結晶の平均粒径を示す。
FIG. 7 shows the change in B 8 when the sample subjected to cold rolling at two levels of the roll peripheral speed of 40.0 mm / sec and 21.7 mm / sec was heat-treated for 1 hour while changing the temperature, FIG. In FIG. 7, (11) in each sample heat-treated at 900 ° C.
Table 1 shows the grain size distribution of the crystal grains having the (0) plane aligned with the plate surface, and Table 1 shows the area ratio, the average particle diameter, the number per unit area of the crystal grains having the (110) plane aligned with the plate surface, and the like. 1150 ° C,
The average particle size of the tertiary recrystallization after annealing for 1 hour is shown.

【0016】図7より、ロール周速が変わると一次再結
晶(600〜700℃)、二次再結晶(800〜900
℃)過程でのB8 の挙動が大幅に変化していることか
ら、集合組織がロール周速により変化していることが推
測される。しかしいずれの場合でも1100℃程度以上
の温度ではB8 が1.9T以上になっており、三次再結
晶が完了すれば(110)[001]方位が形成されて
いることがわかる。
FIG. 7 shows that primary recrystallization (600-700 ° C.) and secondary recrystallization (800-900)
Since the behavior of B 8 in the process of (° C.) changes significantly, it is presumed that the texture changes with the peripheral speed of the roll. However, in any case, B 8 is 1.9 T or more at a temperature of about 1100 ° C. or more, and it can be seen that the (110) [001] orientation is formed when the tertiary recrystallization is completed.

【0017】図8から三次再結晶前の二次再結晶完了時
点での(110)面が板面に揃った結晶粒の粒径分布は
明らかにロール周速が遅い方が細粒側によっており、表
1の平均粒径及び単位面積当りの結晶粒の個数を見ても
上述した推測が裏付けられている。
FIG. 8 shows that the grain size distribution of the crystal grains having the (110) plane aligned with the sheet surface at the time of completion of the secondary recrystallization before the tertiary recrystallization is clearly due to the finer grain side when the roll peripheral speed is lower. Looking at the average particle diameter and the number of crystal grains per unit area in Table 1, the above assumption is supported.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【実施例】【Example】

(実施例1) (Example 1)

【0020】板厚280μmの方向性珪素鋼板に120
0℃、1×10-3Paの雰囲気下で10時間、不純物除
去のための予備焼鈍を施したものを出発材料とし、ワー
クロール径20mmの4段圧延機で、ロール周速30m
m/秒以下の速度で板厚35μmまで冷間圧延した後、
300mmの均熱範囲を有する抵抗加熱炉で、1150
℃、1.5×10-3Paの雰囲気下で21mm/min
の速度で板を動かしながら連続焼鈍を施した。
A 280 μm grain oriented silicon steel sheet has a thickness of 120 μm.
The starting material was pre-annealed for 10 hours in an atmosphere of 0 ° C. and 1 × 10 −3 Pa for removing impurities, using a four-high rolling mill having a work roll diameter of 20 mm and a roll peripheral speed of 30 m.
After cold rolling to a plate thickness of 35 μm at a speed of m / sec or less,
In a resistance heating furnace having a soaking range of 300 mm, 1150
21 ° C / min in an atmosphere of 1.5 ° C and 1.5 × 10 −3 Pa
The sheet was continuously annealed while moving at a speed of.

【0021】比較のため、上記出発材料と同じ出発材料
に同じ圧延機でロール周速30mm/秒以上の条件で板
厚35μmまで冷間圧延した後、上と同じ条件で仕上焼
鈍を施した。これらの試料の平均結晶粒径及び保磁力の
値を図1に、磁気特性の値を図2に示す。
For comparison, the same starting material as described above was cold-rolled to a sheet thickness of 35 μm with the same rolling mill at a roll peripheral speed of 30 mm / sec or more, and then subjected to finish annealing under the same conditions as above. FIG. 1 shows the values of the average crystal grain size and the coercive force of these samples, and FIG. 2 shows the values of the magnetic characteristics.

【0022】図1から、ロール周速が遅いほど平均結晶
粒径は小さくなっており、周速30mm/秒以下であれ
ば安定して1.5mm以下の平均結晶粒径が得られるこ
とが確認される。
From FIG. 1, it was confirmed that the average crystal grain size becomes smaller as the peripheral speed of the roll becomes slower, and that the average crystal grain size of 1.5 mm or less can be obtained stably at a peripheral speed of 30 mm / sec or less. Is done.

【0023】再結晶組織はエッチビット法で観察した結
果全て(110)[001]方位を持つ三次再結晶組織
であり、図2からわかるようにどの試料もB8 が1.9
T以上の高い磁束密度を示す。
The recrystallized structure are all the result of observation by an etch-bit method (110) [001] cubic recrystallization texture with orientation All samples B 8 As can be seen from Figure 2 1.9
It shows a high magnetic flux density of T or more.

【0024】保磁力に関しては周速25mm/秒以下に
なると上昇し始めるため、ヒステリシス損失は周速の速
い場合に比べ増大してしまう事が懸念されるが、高周波
域ではヒステリシス損失よりも渦電流損失の方が支配的
になるため、結晶粒径が小さくなることによる磁区細分
化効果の方がメリットが大きい。これに関しては実施例
3において詳細に説明する。これに対して、図1から明
らかなように、ロール周速が30mm/秒を超すと平均
結晶粒径が1.5mmより大きくなるものが見られる。
Since the coercive force starts to increase when the peripheral speed is 25 mm / sec or less, there is a concern that the hysteresis loss increases as compared with the case where the peripheral speed is high. Since the loss is more dominant, the magnetic domain refinement effect due to the smaller crystal grain size has a greater merit. This will be described in detail in a third embodiment. On the other hand, as is apparent from FIG. 1, when the roll peripheral speed exceeds 30 mm / sec, the average crystal grain size becomes larger than 1.5 mm.

【0025】しかし、組織は、ロール周速が30mm/
秒以下のものと同様に、(110)[001]三次再結
晶であり、図2に示すように、どの試料もB8 が1.9
T以上であった。 (実施例2)
However, the structure has a roll peripheral speed of 30 mm /
Sec as with the following ones, (110) [001] is a tertiary recrystallization, as shown in FIG. 2, All samples B 8 1.9
T or more. (Example 2)

【0026】実施例1と同じ出発材料に同じ圧延機でロ
ール周速30mm/秒以下の条件で板厚35μmまで冷
間圧延を施した後、1150℃、1.0×10-3Paの
雰囲気の赤外線集中加熱炉で1時間バッチ焼鈍を行なっ
た。
After the same starting material as in Example 1 was subjected to cold rolling to a sheet thickness of 35 μm under the condition of a roll peripheral speed of 30 mm / sec or less in the same rolling mill, an atmosphere of 1150 ° C. and 1.0 × 10 −3 Pa was applied. For 1 hour in an infrared concentrated heating furnace.

【0027】比較のため、上記出発材料と同じ出発材料
に同じ圧延機でロール周速30mm/秒以上の条件で板
厚35μmまで冷間圧延した後、上と同じ条件で仕上焼
鈍を施した。これらの試料の平均結晶粒径を図3に磁気
特性を図4に示す。実施例1と同様にロール周速30m
m/秒以下であれば平均結晶粒径は1.5mm以下とな
る。組織も実施例1と同様(110)[001]三次再
結晶粒であり、図4から明らかなように、B8 特性が
1.9T以上であることが確認された。これに対して、
図3から明らかなように、ロール周速30mm/秒を超
えると平均結晶粒径が1.5mm以上となるものが見ら
れる。
For comparison, the same starting material as above was cold-rolled to a sheet thickness of 35 μm under the same rolling mill conditions at a roll peripheral speed of 30 mm / sec or more, and then subjected to finish annealing under the same conditions as above. FIG. 3 shows the average crystal grain size of these samples, and FIG. 4 shows the magnetic characteristics. Roll peripheral speed 30 m as in Example 1.
If m / sec or less, the average crystal grain size will be 1.5 mm or less. Organization is similar (110) [001] cubic recrystallized grains as in Example 1, as is clear from FIG. 4, B 8 characteristics it was confirmed that not less than 1.9 T. On the contrary,
As is clear from FIG. 3, when the roll peripheral speed exceeds 30 mm / sec, the average crystal grain size becomes 1.5 mm or more.

【0028】しかし、組織は、ロール周速が30mm/
秒以下のものと同様に、(110)[001]三次再結
晶粒であり、図4に示すように、どの試料もB8 が1.
9T以上であった。 (実施例3)
However, the structure has a roll peripheral speed of 30 mm /
Sec as with the following ones, (110) [001] is a three-primary recrystallization grains, as shown in FIG. 4, All samples B 8 1.
It was 9T or more. (Example 3)

【0029】実施例2及びその比較例の試料の中から平
均結晶粒径0.2mm〜1.4mmの試料を選び、ロー
レンツSEM法で磁区を観察し、試料の幅1mm当りの
磁壁枚数を数えた。その結果を図5に示す。
A sample having an average crystal grain size of 0.2 mm to 1.4 mm was selected from the samples of Example 2 and its comparative example, and the magnetic domains were observed by Lorentz SEM, and the number of domain walls per 1 mm width of the sample was counted. Was. The result is shown in FIG.

【0030】また、平均結晶粒径0.44mmの試料と
1.0mmの試料の鉄損値を周波数50Hz〜1000
Hzの間でBm=1.3Tの条件で測定した結果を図6
に示す。図5より、平均結晶粒径が小さいほど磁区幅が
狭くなること、また、図6より平均結晶粒径が小さくな
れば高周波域での鉄損が改善されることが確認される。
The iron loss values of the sample having an average crystal grain size of 0.44 mm and the sample having an average crystal grain size of
FIG. 6 shows the result of measurement under the condition of Bm = 1.3T between Hz.
Shown in From FIG. 5, it is confirmed that the magnetic domain width becomes narrower as the average crystal grain size becomes smaller, and that the iron loss in a high frequency range is improved when the average crystal grain size becomes smaller as shown in FIG.

【0031】[0031]

【発明の効果】以上説明したように、この発明によれ
ば、(110)[001]集合組織を有する方向性珪素
鋼板を出発材料として低鉄損の薄い方向性珪素鋼板を製
造するに当り冷間圧延のロール周速を30mm/秒以下
にするという簡易な方法により、平均結晶粒径を1.5
mm以下、更には1mm以下という従来技術では達成困
難であった小さな値とすることができ、それにより磁区
幅を狭くして高周波域での鉄損を下げることができる薄
い方向性珪素鋼板の製造方法が提供される。
As described above, according to the present invention, a directional silicon steel sheet having a (110) [001] texture is used as a starting material to produce a low-loss thin directional silicon steel sheet. The average crystal grain size is reduced to 1.5 by a simple method of setting the roll peripheral speed of the cold rolling to 30 mm / sec or less.
mm or less, and even 1 mm or less, which can be a small value that was difficult to achieve with the conventional technology, thereby producing a thin grain-oriented silicon steel sheet capable of narrowing the magnetic domain width and reducing iron loss in a high frequency range. A method is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1において、ロール周速と製造された珪
素鋼板の平均結晶粒径及び保磁力との関係を示す図。
FIG. 1 is a diagram showing a relationship between a peripheral speed of a roll and an average crystal grain size and a coercive force of a manufactured silicon steel sheet in Example 1.

【図2】実施例1において、ロール周速と製造された珪
素鋼板の磁気特性との関係を示す図。
FIG. 2 is a diagram showing a relationship between a roll peripheral speed and magnetic properties of a manufactured silicon steel sheet in Example 1.

【図3】実施例2において、ロール周速と製造された珪
素鋼板の平均結晶粒径との関係を示す図。
FIG. 3 is a view showing a relationship between a roll peripheral speed and an average crystal grain size of a manufactured silicon steel sheet in Example 2.

【図4】実施例2において、ロール周速と製造された珪
素鋼板の磁気特性との関係を示す図。
FIG. 4 is a diagram showing a relationship between a peripheral speed of a roll and magnetic properties of a manufactured silicon steel sheet in Example 2.

【図5】方向性珪素鋼板の結晶粒径と磁壁の数との関係
を示す図。
FIG. 5 is a diagram showing the relationship between the crystal grain size of a grain-oriented silicon steel sheet and the number of domain walls.

【図6】平均結晶粒径0.44mmの試料と1.0mm
の試料の鉄損値を周波数50Hz〜1000Hzの間で
測定した結果を示す図。
FIG. 6 shows a sample having an average crystal grain size of 0.44 mm and 1.0 mm
The figure which shows the result of having measured the iron loss value of the sample of between 50Hz-1000Hz.

【図7】ロール周速が40.0mm/秒及び21.7m
m/秒の冷間圧延後の熱処理温度とB8 との関係を示す
図。
FIG. 7: Roll peripheral speed of 40.0 mm / sec and 21.7 m
diagram showing the relationship between the heat treatment temperature and the B 8 after cold rolling m / sec.

【図8】図7における900℃で熱処理した試料におけ
る(110)面が板面に揃った結晶粒の粒径分布を示す
図。
8 is a view showing a grain size distribution of crystal grains in which a (110) plane is aligned with a plate surface in a sample heat-treated at 900 ° C. in FIG. 7;

フロントページの続き (72)発明者 大川 将直 宮城県仙台市太白区松が丘3−4 ハイ ツ松が丘B−103 (56)参考文献 特開 平2−151308(JP,A) 特開 昭63−171827(JP,A) 特開 昭62−127421(JP,A) 特公 平3−54008(JP,B2)Continuation of the front page (72) Inventor Masanao Okawa 3-4 Matsugaoka, Taisaku-ku, Sendai, Miyagi Prefecture Heights Matsugaoka B-103 (56) References JP-A-2-151308 (JP, A) JP-A-63-171827 (JP, A) JP-A-62-127421 (JP, A) JP-B-3-54008 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (110)[001]集合組織を有する
方向性珪素鋼板を出発材料とし、これに冷間圧延と熱処
理を施し、三次再結晶により再度(110)[001]
集合組織を形成させて薄い方向性珪素鋼板を製造するに
際し、冷間圧延時の圧延ロール周速を30mm/秒以下
とすることを特徴とする方向性珪素鋼板の製造方法。
1. A grain-oriented silicon steel sheet having a (110) [001] texture is used as a starting material, which is subjected to cold rolling and heat treatment, and is again subjected to tertiary recrystallization to (110) [001].
A method for producing a grain-oriented silicon steel sheet, characterized in that, when producing a thin grain-oriented silicon steel sheet by forming a texture, the peripheral speed of a rolling roll during cold rolling is set to 30 mm / sec or less.
JP4192471A 1992-07-20 1992-07-20 Method for producing grain-oriented silicon steel sheet Expired - Lifetime JP2709242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4192471A JP2709242B2 (en) 1992-07-20 1992-07-20 Method for producing grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4192471A JP2709242B2 (en) 1992-07-20 1992-07-20 Method for producing grain-oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
JPH0631303A JPH0631303A (en) 1994-02-08
JP2709242B2 true JP2709242B2 (en) 1998-02-04

Family

ID=16291848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4192471A Expired - Lifetime JP2709242B2 (en) 1992-07-20 1992-07-20 Method for producing grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JP2709242B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7307354B2 (en) * 2018-06-21 2023-07-12 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic properties

Also Published As

Publication number Publication date
JPH0631303A (en) 1994-02-08

Similar Documents

Publication Publication Date Title
EP1108794B1 (en) Electrical steel sheet suitable for compact iron core and manufacturing method therefor
WO1986002950A1 (en) Method of manufacturing unidirectional electromagnetic steel plates of low iron loss
KR0182802B1 (en) Grain-oriented electrical steel sheet with very low core loss and method of producing the same
PL118192B1 (en) Method of manufacture of magnetic thin steel sheet of textured graining orientirovannojj zernistost'ju
JP3882103B2 (en) Low iron loss unidirectional electrical steel sheet with tension-applying anisotropic coating
JP2709242B2 (en) Method for producing grain-oriented silicon steel sheet
AU2002327631A1 (en) Method of producing (110)[001] grain oriented electrical steel using strip casting
JPH10130729A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
EP1436433A4 (en) Method of producing (110) 001] grain oriented electrical steel using strip casting
JP3799878B2 (en) Electrical steel sheet and method for manufacturing the same
JP3081118B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2679927B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH02107722A (en) Production of grain-oriented electrical steel easy to punch and having metallic luster
JP2001158914A (en) Method for producing double oriented silicon steel sheet
JPH1017931A (en) Production of grain oriented silicon steel sheet
JP3456860B2 (en) Manufacturing method of unidirectional electrical steel sheet with extremely excellent iron loss characteristics
JP2002363646A (en) Method for producing specular grain oriented silicon steel sheet having no need of decarburizing annealing
JPH0623411B2 (en) Manufacturing method of electrical steel sheet with small anisotropy
JP2786577B2 (en) Manufacturing method of grain-oriented silicon steel sheet
KR950002894B1 (en) Making method of oriented electromagnetic steel plate
JP3474599B2 (en) Manufacturing method of ultra-high silicon electrical steel sheet
JP4196550B2 (en) Method for producing grain-oriented electrical steel sheet
JPS59104429A (en) Preparation of non-directional electromagnetic steel strip
KR100356171B1 (en) Method of Forming Glassy Film on Low Iron Loss Ultra-thin Silicon Steel Sheet