JPH08159589A - Multi-room type air conditioner and operating method therefor - Google Patents

Multi-room type air conditioner and operating method therefor

Info

Publication number
JPH08159589A
JPH08159589A JP29927394A JP29927394A JPH08159589A JP H08159589 A JPH08159589 A JP H08159589A JP 29927394 A JP29927394 A JP 29927394A JP 29927394 A JP29927394 A JP 29927394A JP H08159589 A JPH08159589 A JP H08159589A
Authority
JP
Japan
Prior art keywords
control valve
refrigerant flow
flow control
opening
superheat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29927394A
Other languages
Japanese (ja)
Other versions
JP3384150B2 (en
Inventor
Susumu Nakayama
進 中山
Yozo Hibino
陽三 日比野
Hiroshi Yasuda
弘 安田
Shinichiro Yamada
眞一朗 山田
Kenichi Nakamura
憲一 中村
Satoru Yoshida
悟 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29927394A priority Critical patent/JP3384150B2/en
Publication of JPH08159589A publication Critical patent/JPH08159589A/en
Application granted granted Critical
Publication of JP3384150B2 publication Critical patent/JP3384150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To simplify the structure and to reduce the cost by controlling the superheat degree of a compressor and controlling the capacities of indoor units in a multi-room type air conditioner in which a liquid return tube having a refrigerant flow rate control valve is omitted. CONSTITUTION: A multi-room split type air conditioner has an outdoor unit 100, a plurality of indoor units 200, 300 connected by a closed circuit via a liquid tube 122 and a gas tube 121, and comprises first superheat degree detecting means (discharge pressure detector 114 and discharge temperature detector 115) for obtaining the superheat degree of a compressor 105. The conditioner also comprises second superheat degree detecting means (inlet and outlet temperature detectors 204, 205; 304, 305) for obtaining the superheat degrees of indoor heat exchangers 201, 202. The first refrigerant flow rate control valve opening for setting the superheat degrees of the exchangers 201, 301 to set superheat degree, and second refrigerant flow rate control valve opening for setting the superheat degree of the compressor 105 to a target superheat degree are calculated, and the first refrigerant flow rate control valve opening is corrected based on the second refrigerant flow rate control valve opening to control a refrigerant flow rate control valve 117.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多室空気調和機およびそ
の運転方法に係り、特に各室内機に備えた冷媒流量制御
弁を制御する多室空気調和機及びその運転方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room air conditioner and an operating method thereof, and more particularly to a multi-room air conditioner for controlling a refrigerant flow control valve provided in each indoor unit and an operating method thereof.

【0002】[0002]

【従来の技術】従来の多室空気調和機においては、特開
平3−75459号公報記載のように、液配管と圧縮機
吸入側とを接続する液戻し配管に設けた冷媒流量制御弁
の開度を制御して、圧縮機の過熱度を制御していた。ま
た、各室内機に設けた冷媒流量制御弁の開度を制御し
て、各室内機の空調能力を制御していた。
2. Description of the Related Art In a conventional multi-chamber air conditioner, as described in JP-A-3-75459, a refrigerant flow control valve provided in a liquid return pipe connecting a liquid pipe and a compressor suction side is opened. Control the degree of superheat of the compressor. Moreover, the opening degree of the refrigerant flow control valve provided in each indoor unit is controlled to control the air conditioning capacity of each indoor unit.

【0003】また、特開平4−254159号公報に記
載のように、各室内機に設けた流量制御弁の全体開度に
基づいて圧縮機の過熱度を制御すると共に、少なくとも
一つの室内機からの空調能力要求が変化した際に、運転
中の全ての室内機の流量制御弁の開度を変化させてい
た。
Further, as described in Japanese Patent Application Laid-Open No. 4-254159, the superheat degree of the compressor is controlled based on the overall opening of the flow control valve provided in each indoor unit, and at least one indoor unit is operated. When the air-conditioning capacity requirement of the above changed, the opening degree of the flow control valves of all the indoor units in operation was changed.

【0004】さらに、多室空気調和機の暖房能力制御に
おいては、特開平3−294752号公報に記載のよう
に、室内機の能力比(供給能力/要求能力)がアンバラ
ンスであり、能力比が最小である室内機の冷媒流量制御
弁の開度が全開のときには、能力比が最大の室内機の冷
媒流量制御弁の開度を絞っていた。
Further, in the heating capacity control of the multi-room air conditioner, as described in Japanese Patent Laid-Open No. 3-2944752, the capacity ratio (supply capacity / required capacity) of the indoor units is unbalanced and the capacity ratio is unbalanced. When the opening degree of the refrigerant flow rate control valve of the indoor unit with the minimum is fully open, the opening degree of the refrigerant flow rate control valve of the indoor unit with the maximum capacity ratio is narrowed.

【0005】[0005]

【発明が解決しようとする課題】上記従来の技術の最初
に述べたものにおいては、液戻し配管に設けた冷媒流量
制御弁の開度を制御して圧縮機の過熱度を制御してお
り、液戻し配管と冷媒流量制御弁を必要とし、製品コス
トがかさむとともに、機器の構成が複雑になるという不
具合があった。◆また、上記従来技術の2番目に記載の
ものにおいては、各室内機の流量制御弁の全体開度で圧
縮機の過熱度を制御している。つまり、各室内機の要求
能力が全て最大で変化しないときには各室内機の流量制
御弁開度比で全体開度を案分しその案分比を、各室内機
の流量制御弁開度としている。しかし、室内機能力と各
室内機の流量制御弁に要求される弁開度との比は一定で
はないから、各室内機で流量制御弁開度比率を上記案分
比に固定すると流量制御弁開度が変化し、各室内機の供
給能力のバランスがくずれ能力不足のものが発生するお
それがある。◆さらに、上記従来技術の最後に述べたも
のにおいては、暖房時に能力比が最小の室内機の冷媒流
量制御弁の開度が全開のとき、能力比が最大の室内機の
冷媒流量制御弁の開度を絞るように制御するので、能力
比が最大の室内機を探し、能力バランスをとるまでに多
大な時間を要するという問題がある。
In the first description of the above-mentioned prior art, the degree of superheat of the compressor is controlled by controlling the opening degree of the refrigerant flow control valve provided in the liquid return pipe. The liquid return pipe and the refrigerant flow rate control valve are required, which increases the product cost and complicates the device configuration. In addition, in the second prior art described above, the superheat degree of the compressor is controlled by the overall opening of the flow control valve of each indoor unit. That is, when the required capacity of each indoor unit does not change at maximum, the overall opening is divided by the flow control valve opening ratio of each indoor unit, and the proportion is set as the flow control valve opening of each indoor unit. . However, since the ratio of the indoor functional force to the valve opening required for the flow control valve of each indoor unit is not constant, if the flow control valve opening ratio is fixed to the above-mentioned proportional ratio in each indoor unit, the flow control valve The opening may change, and the supply capacity of each indoor unit may be unbalanced, resulting in a lack of capacity. Further, in the last-mentioned conventional technology, when the opening of the refrigerant flow control valve of the indoor unit with the minimum capacity ratio is fully opened during heating, the refrigerant flow control valve of the indoor unit with the maximum capacity ratio is Since the control is performed so that the opening degree is narrowed, there is a problem that it takes a lot of time to find the indoor unit having the maximum capacity ratio and balance the capacity.

【0006】本発明の目的は、上記従来の技術に記載さ
れた課題を解消し、製品のコストを低減すると共に、短
時間に各室内機を快適空調状態にすることができる空気
調和機を提供することにある。◆また、従来用いられて
きた吸入圧力センサーやバイパス回路等の複雑な構成を
必要とせず、簡素で信頼性の高い空気調和機を提供する
ことにある。
An object of the present invention is to provide an air conditioner which solves the problems described in the above prior art, reduces the cost of the product, and can bring each indoor unit into a comfortable air conditioning state in a short time. To do. ◆ Also, it is to provide a simple and highly reliable air conditioner that does not require a complicated structure such as a suction pressure sensor and a bypass circuit which have been used conventionally.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の第1の態様は圧縮機及び室外熱交換器を備
えた室外機と、第1の冷媒流量制御弁及び室内熱交換器
を備えた複数台の室内機とを液配管及びガス配管を用い
て接続して形成された冷凍サイクルを有し、この冷凍サ
イクルを制御する制御装置を備えた多室空気調和機にお
いて、前記圧縮機の過熱度を得る第1の過熱度検出手段
と、前記各々の室内熱交換器の過熱度を得る第2の過熱
度検出手段とを設け、この第2の過熱度検出手段から得
られた各々の室内熱交換器の過熱度を設定過熱度にする
前記第1の冷媒流量制御弁開度を演算し、前記圧縮機の
入口側と前記液配管とを第2の冷媒流量制御弁を介して
バイパス接続する液戻し配管を仮想したときに前記第1
の過熱度検出手段から得られた圧縮機の過熱度を目標過
熱度にする前記第2の冷媒流量制御弁の開度を演算し、
この第2の冷媒流量制御弁の開度に基づいて前記第1の
冷媒流量制御弁の弁開度を補正して制御する制御手段を
前記制御装置に設けたものである。
In order to achieve the above object, a first aspect of the present invention is an outdoor unit having a compressor and an outdoor heat exchanger, a first refrigerant flow control valve and an indoor heat exchange. In a multi-chamber air conditioner having a refrigeration cycle formed by connecting a plurality of indoor units equipped with a cooling device using a liquid pipe and a gas pipe, and a control device for controlling the refrigeration cycle, A first superheat degree detecting means for obtaining the superheat degree of the compressor and a second superheat degree detecting means for obtaining the superheat degree of each of the indoor heat exchangers are provided, and the second superheat degree detecting means is provided. The first refrigerant flow rate control valve opening that sets the superheat degree of each indoor heat exchanger to the set superheat degree is calculated, and the second refrigerant flow rate control valve is connected to the inlet side of the compressor and the liquid pipe. When the liquid return pipe for bypass connection is hypothesized, the first
Calculating the degree of opening of the second refrigerant flow control valve that makes the superheat of the compressor obtained from the superheat detecting means
The control device is provided with control means for correcting and controlling the valve opening degree of the first refrigerant flow rate control valve based on the opening degree of the second refrigerant flow rate control valve.

【0008】また、本発明の第2の態様は、圧縮機及び
室外熱交換器を備えた室外機と、第1の冷媒流量制御弁
及び室内熱交換器を備えた複数台の室内機とを液配管及
びガス配管を用いて接続して形成された冷凍サイクルを
有し、この冷凍サイクルを制御する制御装置を備えた多
室空気調和機において、前記圧縮機の過熱度を得る第1
の過熱度検出手段と、前記各々の室内熱交換器の過熱度
を得る第2の過熱度検出手段と、前記圧縮機の入口側と
前記液配管とを第2の冷媒流量制御弁を介してバイパス
接続する液戻し配管とを設け、この第2の過熱度検出手
段から得られた各々の室内熱交換器の過熱度を設定過熱
度にする前記第1の冷媒流量制御弁開度、および、前記
第1の過熱度検出手段から得られた圧縮機の過熱度を目
標過熱度にする前記第2の冷媒流量制御弁の開度を演算
し、この第2の冷媒流量制御弁の開度に基づいて前記第
1の冷媒流量制御弁の弁開度を補正して制御する制御手
段を前記制御装置に設けたものである。
A second aspect of the present invention comprises an outdoor unit having a compressor and an outdoor heat exchanger, and a plurality of indoor units having a first refrigerant flow control valve and an indoor heat exchanger. A multi-chamber air conditioner having a refrigeration cycle formed by connecting using liquid pipes and gas pipes and provided with a control device for controlling the refrigeration cycle.
Superheat degree detection means, second superheat degree detection means for obtaining the superheat degree of each of the indoor heat exchangers, the inlet side of the compressor and the liquid pipe via a second refrigerant flow control valve. A liquid return pipe for bypass connection is provided, and the first refrigerant flow control valve opening degree that sets the superheat degree of each indoor heat exchanger obtained from the second superheat detection means to a set superheat degree, and The opening degree of the second refrigerant flow rate control valve that makes the superheat degree of the compressor obtained from the first superheat degree detecting means the target superheat degree is calculated, and the opening degree of the second refrigerant flow rate control valve is calculated. The control device is provided with control means for correcting and controlling the valve opening degree of the first refrigerant flow control valve based on the above.

【0009】そして、好ましくは、前記液戻し配管に設
けた第2の冷媒流量制御弁が故障したときにこの液戻し
配管内の冷媒の流れを止める閉止手段を前記液戻し配管
に設けたものである。◆さらに、好ましくは、前記第1
の過熱度検出手段は圧縮機の吐出部近傍に設けた吐出圧
力検出器及び吐出温度検出器であり、前記第2の過熱度
検出手段は各々の室内熱交換器の冷媒入口部及び出口部
近傍に夫々設けた温度検出器としたことにある。◆ま
た、本発明の第3の態様は、圧縮機を有する室外機と、
冷媒流量制御弁及び室内熱交換器を備えた複数台の室内
機とを液配管及びガス配管を用いて接続して形成した冷
凍サイクルと、この冷凍サイクルを制御する制御装置と
を備えた多室空気調和機の運転方法において、前記制御
装置が前記各室内機に設けた過熱度検出手段の出力に基
づいて、各室内機の運転能力を目標能力にする各室内機
の冷媒流量制御弁の開度変化量(ΔEVIa1、ΔEV
Ia2、…)を演算するステップと、液配管と圧縮機吸
入側とを第2の冷媒流量制御弁を介して液戻し配管で接
続していると想定し、前記圧縮機に設けた過熱度検出手
段が検出する過熱度を設定過熱度にする第2の冷媒流量
制御弁の開度変化量ΔEVBを演算するステップと、こ
の第2の冷媒流量制御弁の開度変化量ΔEVBに基づい
て前記第1の冷媒流量制御弁の開度変化量(ΔEVIa
1、ΔEVIa2、…)を補正した開度変化量(ΔEV
I1、ΔEVI2、…)を演算するステップとを有する
ことにある。
Further, preferably, the liquid return pipe is provided with a closing means for stopping the flow of the refrigerant in the liquid return pipe when the second refrigerant flow control valve provided in the liquid return pipe fails. is there. ◆ Furthermore, preferably, the first
The superheat degree detecting means is a discharge pressure detector and a discharge temperature detector provided near the discharge portion of the compressor, and the second superheat degree detecting means is near the refrigerant inlet portion and outlet portion of each indoor heat exchanger. The temperature detectors are provided in each. In addition, a third aspect of the present invention is an outdoor unit having a compressor,
A multi-chamber having a refrigeration cycle formed by connecting a plurality of indoor units equipped with a refrigerant flow control valve and an indoor heat exchanger using a liquid pipe and a gas pipe, and a control device for controlling this refrigeration cycle In the method for operating an air conditioner, the control device opens the refrigerant flow control valve of each indoor unit that makes the operating capacity of each indoor unit a target capacity based on the output of the superheat detection means provided in each indoor unit. Degree of change (ΔEVIa1, ΔEV
Ia2, ...) and the liquid pipe and the compressor suction side are assumed to be connected by a liquid return pipe via a second refrigerant flow control valve, and the superheat detection provided in the compressor is detected. Calculating a degree of opening change amount ΔEVB of the second refrigerant flow rate control valve for making the degree of superheat detected by the means a set degree of superheat; and the step of calculating the opening degree change amount ΔEVB of the second refrigerant flow rate control valve. Amount of change in the opening of the refrigerant flow control valve of No. 1 (ΔEVIa
1, ΔEVIA2, ..., Corrected opening change amount (ΔEV
I1, ΔEVI2, ...).

【0010】そして、好ましくは、前記第1の冷媒流量
制御弁の補正した開度変化量を演算するステップは、前
記第2の冷媒流量制御弁の開度変化量ΔEVBが正のと
き、前記第1の冷媒流量制御弁の開度変化量(ΔEVI
a1、ΔEVIa2、…)の最小値を求め、この最小値
と前記第1の冷媒流量制御弁の開度変化量(ΔEVIa
1、ΔEVIa2、…)との偏差で第2の冷媒流量制御
弁の開度変化量ΔEVBを案分した量に基づいて、各室
内機の冷媒流量制御弁の開度変化量(ΔEVI1、ΔE
VI2、…)を演算するものである。
[0010] Preferably, the step of calculating the corrected opening change amount of the first refrigerant flow control valve is such that when the opening change amount ΔEVB of the second refrigerant flow control valve is positive. The amount of change in the opening of the refrigerant flow control valve of No. 1 (ΔEVI
a1, ΔEVIa2, ..., A minimum value is obtained, and the minimum value and the opening change amount of the first refrigerant flow control valve (ΔEVIa).
1, ΔEVIa2, ...) Based on the amount by which the opening change amount ΔEVB of the second refrigerant flow control valve is proportioned, the opening change amount of the refrigerant flow control valve of each indoor unit (ΔEVI1, ΔE).
VI2, ...) Is calculated.

【0011】また、好ましくは、前記第1の冷媒流量制
御弁の補正した開度変化量を演算するステップは、前記
第2の冷媒流量制御弁の開度変化量ΔEVBが正のと
き、前記第1の冷媒流量制御弁の開度変化量(ΔEVI
a1、ΔEVIa2、…)の最大値を求め、この最大値
と前記第1の冷媒流量制御弁の開度変化量(ΔEVIa
1、ΔEVIa2、…)との偏差で第2の冷媒流量制御
弁の開度変化量ΔEVBを案分した量に基づいて、各室
内機の冷媒流量制御弁の開度変化量(ΔEVI1、ΔE
VI2、…)を演算するものである。
Further, preferably, the step of calculating the corrected opening change amount of the first refrigerant flow control valve includes the step of calculating the corrected opening change amount EVEVB of the second refrigerant flow control valve when the opening change amount ΔEVB is positive. The amount of change in the opening of the refrigerant flow control valve of No. 1 (ΔEVI
a), the maximum value of ΔEVIa2, ..., And the maximum value and the opening change amount of the first refrigerant flow control valve (ΔEVIa)
1, ΔEVIa2, ...) Based on the amount by which the opening change amount ΔEVB of the second refrigerant flow control valve is proportioned, the opening change amount of the refrigerant flow control valve of each indoor unit (ΔEVI1, ΔE).
VI2, ...) Is calculated.

【0012】さらに、また好ましくは、前記第1の冷媒
流量制御弁の補正した開度変化量を演算するステップ
は、前記第2の冷媒流量制御弁の開度変化量ΔEVBが
零のとき、前記第1の冷媒流量制御弁の開度変化量(Δ
EVIa1、ΔEVIa2、…)の平均値を求め、この
平均値と前記第1の冷媒流量制御弁の開度変化量(ΔE
VIa1、ΔEVIa2、…)との偏差で第2の冷媒流
量制御弁の開度変化量ΔEVBを案分した量に基づい
て、各室内機の冷媒流量制御弁の開度変化量(ΔEVI
1、ΔEVI2、…)を演算するものである。
Still further preferably, the step of calculating the corrected opening change amount of the first refrigerant flow control valve includes the step of calculating the corrected opening change amount ΔEVB of the second refrigerant flow control valve when the opening change amount ΔEVB is zero. Amount of change in opening of the first refrigerant flow control valve (Δ
The average value of EVIa1, ΔEVIa2, ... Is calculated, and the average value and the opening change amount of the first refrigerant flow control valve (ΔE).
VIa1, ΔEVIa2, ...) Based on the amount of deviation of the second refrigerant flow control valve ΔEVB from the deviation from the deviations of the first refrigerant flow control valve of each indoor unit (ΔEVI).
1, ΔEVI2, ...) Is calculated.

【0013】本発明の第4の態様は、圧縮機を有する室
外機と、冷媒流量制御弁及び室内熱交換器を備えた複数
台の室内機とを液配管及びガス配管を用いて接続して形
成した冷凍サイクルと、この冷凍サイクルを制御する制
御装置とを備えた多室空気調和機の運転方法において、
前記制御装置が前記各室内機に設けた過熱度検出手段の
出力に基づいて、各室内機の運転能力を目標能力にする
各室内機の冷媒流量制御弁の開度変化量(ΔEVIa
1、ΔEVIa2、…)を演算するステップと、前記圧
縮機に設けた過熱度検出手段が検出する過熱度を設定過
熱度にする、液配管と圧縮機吸入側とを接続する液戻し
配管中に設けた第2の冷媒流量制御弁の開度変化量ΔE
VBを演算するステップと、この第2の冷媒流量制御弁
の開度変化量ΔEVBに基づいて前記第1の冷媒流量制
御弁の開度変化量(ΔEVIa1、ΔEVIa2、…)
を補正した開度変化量(ΔEVI1、ΔEVI2、…)
を演算するステップとを有することにある。
In a fourth aspect of the present invention, an outdoor unit having a compressor and a plurality of indoor units equipped with a refrigerant flow rate control valve and an indoor heat exchanger are connected using a liquid pipe and a gas pipe. In a method for operating a multi-room air conditioner including a formed refrigeration cycle and a control device that controls this refrigeration cycle,
Based on the output of the superheat detection means provided in each indoor unit by the control device, the opening change amount (ΔEVIa) of the refrigerant flow control valve of each indoor unit that makes the operating capacity of each indoor unit a target capacity.
1, ΔEVIa2, ...), and in the liquid return pipe connecting the liquid pipe and the suction side of the compressor for setting the superheat degree detected by the superheat degree detecting means provided in the compressor to the set superheat degree. Opening change amount ΔE of the provided second refrigerant flow control valve
Based on the step of calculating VB, and the opening change amount ΔEVB of the second refrigerant flow control valve, the opening change amount of the first refrigerant flow control valve (ΔEVIa1, ΔEVIa2, ...).
Amount of change in opening corrected (ΔEVI1, ΔEVI2, ...)
And the step of computing

【0014】そして好ましくは、前記第2の冷媒流量制
御弁が故障した時に、液戻し配管の冷媒の流れをこの配
管中に設けた閉止手段を用いて閉止するステップを有す
るものである。
Preferably, the method further comprises the step of closing the flow of the refrigerant in the liquid return pipe using a closing means provided in the pipe when the second refrigerant flow control valve fails.

【0015】また好ましくは、前記補正された第1の冷
媒流量制御弁の開度変化量(ΔEVI1、ΔEVI2、
…)から演算された第1の冷媒流量制御弁の演算開度
(EVIa1、EVIa2、…)の最大値が全開値以上
となったときに、この最大値と全開値との偏差を夫々の
第1の冷媒流量制御弁の演算開度(EVIa1、EVI
a2、…)から減算するステップを有することを特徴と
する請求項て、各室内機の冷媒流量制御弁の開度(EV
I1、EVI2、…)とするものである。
Further, preferably, the opening change amount of the corrected first refrigerant flow control valve (ΔEVI1, ΔEVI2,
When the maximum value of the calculated opening degree (EVIa1, EVIa2, ...) Of the first refrigerant flow control valve calculated from the above is greater than or equal to the fully open value, the deviation between the maximum value and the fully open value is calculated as the first value. No. 1 refrigerant flow control valve calculation opening (EVIa1, EVI
a2, ...), the opening (EV) of the refrigerant flow control valve of each indoor unit.
I1, EVI2, ...).

【0016】[0016]

【作用】仮想的に液戻し配管と冷媒流量制御弁を圧縮機
吸込み口と液配管との間に設け、この冷媒流量制御弁の
開度変化量を圧縮機の過熱度から計算する。そして、各
室内機の過熱度から室内機に備えた冷媒流量制御弁の開
度変化量を求め、この変化量で液戻し配管中の冷媒制御
弁の開度の計算値を案分し、案分した液戻し配管中の冷
媒制御弁の開度に応じて各室内機の冷媒流量制御弁の開
度を変化させる。これにより、冷媒流量制御弁を介した
液戻し配管が無くても、圧縮機の過熱度制御と各室内機
の能力制御が可能となる。◆また、暖房運転時、各室内
機の冷媒流量制御弁の計算開度の最大値が全開値以上と
なっても、計算開度の最大値と全開値との偏差を各室内
機の冷媒流量制御弁の計算開度から減じることにより、
各室内機の能力バランスを短時間に行なえる。
The liquid return pipe and the refrigerant flow control valve are virtually provided between the compressor suction port and the liquid pipe, and the opening change amount of the refrigerant flow control valve is calculated from the degree of superheat of the compressor. Then, the opening change amount of the refrigerant flow control valve provided in the indoor unit is obtained from the degree of superheat of each indoor unit, and the calculated value of the opening of the refrigerant control valve in the liquid return pipe is divided by this change amount. The opening of the refrigerant flow control valve of each indoor unit is changed according to the opening of the refrigerant control valve in the divided liquid return pipe. As a result, the superheat control of the compressor and the capacity control of each indoor unit can be performed without the liquid return pipe via the refrigerant flow control valve. ◆ In addition, during heating operation, even if the maximum calculated opening of the refrigerant flow control valve of each indoor unit exceeds the fully open value, the difference between the maximum calculated opening and the fully open value is used as the refrigerant flow rate of each indoor unit. By subtracting from the calculated opening of the control valve,
The capacity of each indoor unit can be balanced in a short time.

【0017】[0017]

【実施例】以下、本発明の一実施例を図面により説明す
る。図1は多室空気調和機の冷凍サイクル構成図であ
り、室外機100には2台の室内機が接続されて、冷凍
サイクルを構成し、これにより多室空気調和機が形成さ
れる。◆室外機100は、モータ回転数が可変の圧縮機
105、四方弁106、室外熱交換器101、過冷却器
111、室外ファン103、逆止弁110、キャピラリ
チューブ109、アキュムレータ104、室外制御器1
51、吐出圧力検出器114及び吐出温度検出器115
を備えている。ここで、室外制御器151には吐出圧力
検出器114及び吐出温度検出器115が検出した信号
が入力されており、また、室外制御器151からは圧縮
機105のモータ回転数を制御する信号が出力される。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a refrigeration cycle of a multi-room air conditioner. Two outdoor units are connected to the outdoor unit 100 to form a refrigeration cycle, and thus a multi-room air conditioner is formed. The outdoor unit 100 includes a compressor 105 having a variable motor speed, a four-way valve 106, an outdoor heat exchanger 101, a subcooler 111, an outdoor fan 103, a check valve 110, a capillary tube 109, an accumulator 104, and an outdoor controller. 1
51, discharge pressure detector 114 and discharge temperature detector 115
It has. Here, the signals detected by the discharge pressure detector 114 and the discharge temperature detector 115 are input to the outdoor controller 151, and a signal for controlling the motor speed of the compressor 105 is output from the outdoor controller 151. Is output.

【0018】室内機200及び室内機300は同様の構
成であり、室外機200は室内熱交換器201、膨張弁
202、室内ファン203、温度検出器204、20
5、206、207及び室内制御器208を備えてい
る。そして、室内制御器208には温度検出器204、
205、206、207が検出した温度情報が入力され
ており、室内制御器208は膨張弁202の開度を制御
している。
The indoor unit 200 and the indoor unit 300 have the same structure, and the outdoor unit 200 includes an indoor heat exchanger 201, an expansion valve 202, an indoor fan 203, and temperature detectors 204, 20.
5, 206, 207 and an indoor controller 208. The indoor controller 208 includes a temperature detector 204,
The temperature information detected by 205, 206, and 207 is input, and the indoor controller 208 controls the opening degree of the expansion valve 202.

【0019】同様に室内機300は室内熱交換器30
1、膨張弁302、室内ファン303、温度検出器30
4、305、306、307及び室内制御器308を備
えており、室内制御器308には温度検出器304、3
05、306、307が検出した温度情報が入力されて
おり、室内制御器308は膨張弁302の開度を制御し
ている。◆さらに、室内制御器208、308と室外制
御器151間は伝送線によって接続されている。
Similarly, the indoor unit 300 includes the indoor heat exchanger 30.
1, expansion valve 302, indoor fan 303, temperature detector 30
4, 305, 306, 307 and an indoor controller 308, and the indoor controller 308 includes temperature detectors 304, 3
The temperature information detected by 05, 306, and 307 is input, and the indoor controller 308 controls the opening degree of the expansion valve 302. Further, the indoor controllers 208, 308 and the outdoor controller 151 are connected by a transmission line.

【0020】次に、このように構成した多室空気調和機
の冷房運転時の動作について説明する。まず、冷媒の流
れを説明する。ガス配管121及び液配管122部に示
す実線矢印は冷媒の流れ方向を表している。また、室内
器200、300内の実線矢印は空気の流れ方向を表し
ている。◆圧縮機105から吐出された冷媒は、四方弁
106を通って、室外熱交換器101へ流入し、室外フ
ァン103から送風された室外空気と熱交換して縮す
る。この凝縮した冷媒は、逆止弁110によって流れが
阻止されるために逆止弁110を通らずに過冷却器11
1へ流入し、室外ファン103から送風された室外空気
と熱交換して過冷却した液冷媒となる。この過冷却した
液冷媒は、キャピラリチューブ109で若干減圧され、
液及びガスの二相冷媒となって室外機100を流出した
後、液配管122へ流入し、2台の室内機200、30
0へ送られる。室内機200に入った二相冷媒は膨張弁
202でさらに減圧され、室内熱交換器201へ流入
し、室内ファン203から送風された室内空気と熱交換
して蒸発する。一方、室内空気は室内熱交換器201に
おいて冷媒と熱交換して冷却される。その後、蒸発した
冷媒は室内機200を流出する。
Next, the operation of the thus-configured multi-room air conditioner during the cooling operation will be described. First, the flow of the refrigerant will be described. Solid arrows in the gas pipe 121 and the liquid pipe 122 indicate the flow direction of the refrigerant. In addition, the solid arrows in the indoor units 200 and 300 represent the air flow direction. The refrigerant discharged from the compressor 105 flows into the outdoor heat exchanger 101 through the four-way valve 106 and exchanges heat with the outdoor air blown from the outdoor fan 103 to be compressed. Since the flow of the condensed refrigerant is blocked by the check valve 110, the condensed refrigerant does not pass through the check valve 110 and the subcooler 11
1, and heat-exchanges with the outdoor air blown from the outdoor fan 103 to become a supercooled liquid refrigerant. The supercooled liquid refrigerant is slightly decompressed by the capillary tube 109,
It becomes a two-phase refrigerant of liquid and gas, flows out of the outdoor unit 100, then flows into the liquid pipe 122, and the two indoor units 200, 30
Sent to 0. The two-phase refrigerant that has entered the indoor unit 200 is further decompressed by the expansion valve 202, flows into the indoor heat exchanger 201, exchanges heat with the indoor air blown from the indoor fan 203, and evaporates. On the other hand, the indoor air is cooled by exchanging heat with the refrigerant in the indoor heat exchanger 201. Then, the evaporated refrigerant flows out of the indoor unit 200.

【0021】室内機300に入った液とガスの二相冷媒
は、前述の室内機200と同様に、膨張弁302でさら
に減圧され、室内熱交換器301へ流入し、室内ファン
303から送風された室内空気と熱交換して蒸発する。
一方、室内空気は室内熱交換器301において冷媒と熱
交換して冷却される。蒸発した冷媒は室内機300を流
出し、室内機200から流出してきた冷媒と合流し、ガ
ス配管121を通って室外機100へ送られる。室外機
100に入った冷媒は、四方弁106、アキュムレータ
104を通って圧縮機105に吸入され圧縮される。以
後、上記経路を循環する。
The two-phase refrigerant of liquid and gas that has entered the indoor unit 300 is further decompressed by the expansion valve 302, flows into the indoor heat exchanger 301, and is blown from the indoor fan 303, as in the above-described indoor unit 200. Evaporates by exchanging heat with indoor air.
On the other hand, the indoor air is cooled by exchanging heat with the refrigerant in the indoor heat exchanger 301. The evaporated refrigerant flows out of the indoor unit 300, merges with the refrigerant flowing out of the indoor unit 200, and is sent to the outdoor unit 100 through the gas pipe 121. The refrigerant that has entered the outdoor unit 100 passes through the four-way valve 106 and the accumulator 104 and is sucked into the compressor 105 and compressed. After that, the above-mentioned route is circulated.

【0022】次に、この多室空気調和機の制御方法につ
いて説明する。◆室内機200には、室内熱交換器20
1入口に設けた温度検出器204、室内熱交換器201
出口に設けた温度検出器205、吸い込み空気温度を検
出する温度検出器206および吹出し空気温度を検出す
る温度検出器207が備えられており、これら検出器が
検出した各温度信号は室内制御器208へ入力される。
また、室内機300には、室内熱交換器301入口に設
けた温度検出器304、室内熱交換器301出口に設け
た温度検出器305、吸い込み空気温度を検出する温度
検出器306および吹出し空気温度を検出する温度検出
器307が備えられており、これら検出器が検出した各
温度信号は室内制御器308へ入力される。そして、そ
れぞれの室内制御器208、308では、下式(1)〜
(3)に従って、各室内機の膨張弁202、302の仮
の開度変化量ΔEVIajを演算する。
Next, a method of controlling this multi-room air conditioner will be described. ◆ The indoor unit 200 includes an indoor heat exchanger 20.
Temperature detector 204 provided at one inlet, indoor heat exchanger 201
A temperature detector 205 provided at the outlet, a temperature detector 206 for detecting the intake air temperature, and a temperature detector 207 for detecting the blown air temperature are provided, and each temperature signal detected by these detectors is controlled by the indoor controller 208. Is input to.
Further, in the indoor unit 300, a temperature detector 304 provided at the inlet of the indoor heat exchanger 301, a temperature detector 305 provided at the outlet of the indoor heat exchanger 301, a temperature detector 306 for detecting the intake air temperature, and an outlet air temperature. A temperature detector 307 for detecting the temperature is provided, and each temperature signal detected by these detectors is input to the indoor controller 308. In each of the indoor controllers 208 and 308, the following equations (1) to
According to (3), the temporary opening change amount ΔEVIaj of the expansion valves 202 and 302 of each indoor unit is calculated.

【0023】 ΔEVIaj=Kp×{ΔSH(n)−ΔSH(n−1)} +Ki×ΔSH(n)×Ts ……(1) ΔSH(n)=SH−SH0 ……(2) SH=tr2−tr1 ……(3) ここで、ΔSH(n−1):1制御周期前のΔSH
(n) SH0 :目標室内熱交換器出口過熱度 tr1 :室内熱交換器入口の冷媒温度 tr2 :室内熱交換器出口の冷媒温度 Kp,Ki :制御定数 Ts :制御周期 j :室内機の番号(=1〜N) N :室内機の台数 n :制御回数 である。なお、式(2)の目標室内熱交換器過熱度SH
0は、図2に示すように、室内機の吸込み空気温度と設
定室温との偏差Δtsに従って変化する。例えば、Δt
sが4℃以下になると、目標室内熱交換器過熱度SH0
は増加する。これにより、室内機の能力制御が可能とな
る。各室内機の膨張弁202、302の仮の開度変化量
ΔEVIajは室外制御器151へ伝送され、同時に、
温度検出器204、205、304、305が検出した
信号も室外制御器151へ伝送される。
ΔEVIaj = Kp × {ΔSH (n) −ΔSH (n−1)} + Ki × ΔSH (n) × Ts (1) ΔSH (n) = SH-SH0 (2) SH = tr2- tr1 (3) where ΔSH (n-1): ΔSH before one control cycle
(N) SH0: Target indoor heat exchanger outlet superheat degree tr1: Indoor heat exchanger inlet refrigerant temperature tr2: Indoor heat exchanger outlet refrigerant temperature Kp, Ki: Control constant Ts: Control cycle j: Indoor unit number ( = 1 to N) N: the number of indoor units n: the number of times of control. It should be noted that the target indoor heat exchanger superheat degree SH of equation (2)
As shown in FIG. 2, 0 changes according to the deviation Δts between the intake air temperature of the indoor unit and the set room temperature. For example, Δt
When s becomes 4 ° C or less, the target indoor heat exchanger superheat degree SH0
Will increase. As a result, it becomes possible to control the capacity of the indoor unit. The temporary opening change amount ΔEVIaj of the expansion valves 202 and 302 of each indoor unit is transmitted to the outdoor controller 151, and at the same time,
The signals detected by the temperature detectors 204, 205, 304, 305 are also transmitted to the outdoor controller 151.

【0024】室外制御器151では、図1に一点鎖線で
示した配管、すなわち液配管122から冷媒流量制御弁
117を介してアキュムレータ104入口へバイパスす
る液戻し配管116があると仮定して、吐出温度検出器
115が検出した圧縮機の吐出温度tdを目標吐出温度
td0とするように、冷媒流量制御弁117の開度変化
量ΔEVBを式(4)および式(5)により計算する。
In the outdoor controller 151, assuming that there is a liquid return pipe 116 that bypasses from the liquid pipe 122 to the inlet of the accumulator 104 through the refrigerant flow control valve 117 from the pipe shown by the dashed line in FIG. The opening change amount ΔEVB of the refrigerant flow control valve 117 is calculated by the equations (4) and (5) so that the compressor discharge temperature td detected by the temperature detector 115 becomes the target discharge temperature td0.

【0025】 ΔEVB= Kp×{Δtd(n)−Δtd(n−1)} +Ki×Δtd(n)×Ts +Kd×{Δtd(n)−2×Δtd(n−1) +Δtd(n−2)}/Ts ……(4) Δtd(n)=td−td0 ……(5) ここで、Δtd(n−1):1制御周期前のΔtd
(n) Δtd(n−2):2制御周期前のΔtd(n) td :吐出温度 td0 :目標吐出温度 Kp,Ki,Kd:制御定数 Ts :制御周期 である。なお、式(5)中の目標吐出温度td0は、図
3に示すように、吐出圧力検出器114で検出した圧縮
機の吐出圧力に従って変化する。室外制御器151は、
前述の冷媒流量制御弁117の開度変化量ΔEVBと、
室内機の膨張弁202、302の仮の開度変化量ΔEV
Iajとから、表1を用いて室内機の膨張弁202、3
02の実際の開度変化量ΔEVIjを計算し、各室内機
200、300の室内制御器208、308へこの開度
変化量ΔEVIjを伝送する。
ΔEVB = Kp × {Δtd (n) -Δtd (n-1)} + Ki × Δtd (n) × Ts + Kd × {Δtd (n) -2 × Δtd (n-1) + Δtd (n-2) } / Ts (4) Δtd (n) = td−td0 (5) where Δtd (n−1): Δtd before the control cycle.
(N) Δtd (n−2): Δtd (n) td two control cycles before: discharge temperature td0: target discharge temperature Kp, Ki, Kd: control constant Ts: control cycle. The target discharge temperature td0 in the equation (5) changes according to the discharge pressure of the compressor detected by the discharge pressure detector 114, as shown in FIG. The outdoor controller 151 is
The opening change amount ΔEVB of the refrigerant flow control valve 117,
Temporary opening change amount ΔEV of the expansion valves 202 and 302 of the indoor unit
Iaj and the expansion valves 202, 3 of the indoor unit using Table 1
02, the actual opening change amount ΔEVIj is calculated, and the opening change amount ΔEVIj is transmitted to the indoor controllers 208 and 308 of the indoor units 200 and 300.

【0026】[0026]

【表1】 [Table 1]

【0027】室外制御器151では、温度検出器20
4、205、304、305が検出した各温度信号から
室内熱交換器201と室内熱交換器301の平均蒸発温
度を算出する。室外制御器151には目標蒸発温度が予
め設定されており、目標蒸発温度と平均蒸発温度との偏
差を求め、その偏差を用いて圧縮機モータの回転数をP
ID制御する。そして、各室内機200、300の室内
制御器208、308は、伝送された実際の開度変化量
ΔEVIjにしたがって、膨張弁202、302を制御
する。なお、圧縮機モータの制御はPID制御に限るも
のではなく、比例制御等必要に応じて利用できる。
In the outdoor controller 151, the temperature detector 20
The average evaporation temperatures of the indoor heat exchanger 201 and the indoor heat exchanger 301 are calculated from the temperature signals detected by 4, 205, 304, and 305. A target evaporation temperature is preset in the outdoor controller 151, a deviation between the target evaporation temperature and the average evaporation temperature is obtained, and the rotation speed of the compressor motor is set to P by using the deviation.
ID control. Then, the indoor controllers 208 and 308 of the indoor units 200 and 300 control the expansion valves 202 and 302 according to the transmitted actual opening change amount ΔEVIj. The control of the compressor motor is not limited to the PID control, and proportional control or the like can be used as necessary.

【0028】次に、暖房運転時の動作について説明す
る。まず、冷媒の流れを説明する。ガス配管121及び
液配管122部に示した破線矢印は冷媒の流れ方向を表
している。◆冷媒の流れ方向は、前述の冷房運転とほぼ
逆方向となる。すなわち、圧縮機105から吐出された
冷媒は四方弁106を通って、ガス配管121へ流入
し、室内機200、300へ送られる。室内機200に
流入した冷媒は、初めに室内熱交換器201へ流入し、
室内ファン203から送風された室内空気と熱交換して
凝縮する。このとき、室内空気は温められる。凝縮した
冷媒は膨張弁202で減圧され、室内機200から流出
する。一方、室内機300に流入した冷媒も室内機20
0と同様に凝縮し、減圧され、室内機300を流出す
る。室内機200及び室内機300から流出した冷媒は
合流し、液配管122を通って室外機100へ流入す
る。室外機100へ流入した冷媒は逆止弁110を通っ
て、室外熱交換器101へ流入し、室外ファン103か
ら送風された室外空気と熱交換して蒸発し、四方弁10
6、アキュムレータ104を経て圧縮機105に吸入さ
れ、圧縮される。その後、この経路を循環する。
Next, the operation during the heating operation will be described. First, the flow of the refrigerant will be described. The dashed arrows shown in the gas pipe 121 and the liquid pipe 122 indicate the flow direction of the refrigerant. ◆ The flow direction of the refrigerant is almost opposite to the cooling operation described above. That is, the refrigerant discharged from the compressor 105 passes through the four-way valve 106, flows into the gas pipe 121, and is sent to the indoor units 200 and 300. The refrigerant flowing into the indoor unit 200 first flows into the indoor heat exchanger 201,
The indoor air blown from the indoor fan 203 exchanges heat with the indoor air to condense. At this time, the indoor air is warmed. The condensed refrigerant is decompressed by the expansion valve 202 and flows out from the indoor unit 200. On the other hand, the refrigerant that has flowed into the indoor unit 300 is also the indoor unit 20.
It is condensed and decompressed in the same manner as 0, and flows out of the indoor unit 300. The refrigerant flowing out from the indoor unit 200 and the indoor unit 300 merges and flows into the outdoor unit 100 through the liquid pipe 122. The refrigerant flowing into the outdoor unit 100 passes through the check valve 110, flows into the outdoor heat exchanger 101, exchanges heat with the outdoor air blown from the outdoor fan 103, and evaporates.
6, it is sucked into the compressor 105 through the accumulator 104 and is compressed. Then, it circulates through this route.

【0029】次に、この暖房運転時の空気調和機の制御
方法について説明する。◆室内機200の吸込み空気温
度を検出する温度検出器206および吹出し空気温度を
検出する温度検出器207が検出した温度情報は室内制
御器208へ入力される。また、室内機300の吸込み
空気温度を検出する温度検出器306および吹出し空気
温度を検出する温度検出器307が検出した温度情報は
室内制御器308へ入力される。そして、それぞれの室
内制御器208、308では、式(6)〜式(8)によ
り、各室内機の膨張弁202、302の仮の開度変化量
ΔEVIajを計算する。
Next, a method of controlling the air conditioner during the heating operation will be described. The temperature information detected by the temperature detector 206 that detects the intake air temperature of the indoor unit 200 and the temperature detector 207 that detects the blown air temperature is input to the indoor controller 208. The temperature information detected by the temperature detector 306 that detects the intake air temperature of the indoor unit 300 and the temperature detector 307 that detects the blown air temperature is input to the indoor controller 308. Then, in each of the indoor controllers 208 and 308, the temporary opening change amount ΔEVIaj of the expansion valves 202 and 302 of each indoor unit is calculated by Expressions (6) to (8).

【0030】 ΔEVIaj= Kp×{Δta(n)−Δta(n−1)} +Ki×Δta(n)×Ts ……(6) Δta(n)=Δt0−Δt ……(7) Δt=ta2−ta1 ……(8) ここで、Δta(n−1):1制御周期前のΔta
(n) Δt0 :目標室内機空気温度差 ta1 :室内機吸込み空気温度 ta2 :室内機吹出し空気温度 Kp,Ki :制御定数 Ts :制御周期 である。なお、式(7)中の目標室内機空気温度差Δt
0は、図4に示すように、設定室温と室内機の吸込み空
気温度との偏差Δtsに従って変化する。例えば、Δt
sが4℃以下になると、目標室内機空気温度差Δt0は
減少する。これにより、室内機の能力制御が可能とな
る。各室内機の膨張弁202、302の仮の開度変化量
ΔEVIajは室外制御器151へ伝送される。◆室外
制御器151では、冷房時と同様に、液配管から冷媒流
量制御弁117を介してアキュムレータ104入口へバ
イパスする液戻し配管116があると仮定して、吐出温
度検出器115で検出した圧縮機の吐出温度tdが目標
吐出温度td0となるように、冷媒流量制御弁117の
開度変化量ΔEVBを式(4)及び式(5)により計算
する。
ΔEVIaj = Kp × {Δta (n) -Δta (n-1)} + Ki × Δta (n) × Ts (6) Δta (n) = Δt0-Δt (7) Δt = ta2- ta1 (8) where Δta (n-1): Δta before one control cycle
(N) Δt0: target indoor unit air temperature difference ta1: indoor unit intake air temperature ta2: indoor unit blowout air temperature Kp, Ki: control constant Ts: control cycle. Note that the target indoor unit air temperature difference Δt in equation (7) is
As shown in FIG. 4, 0 changes according to the deviation Δts between the set room temperature and the intake air temperature of the indoor unit. For example, Δt
When s becomes 4 ° C. or less, the target indoor unit air temperature difference Δt0 decreases. As a result, it becomes possible to control the capacity of the indoor unit. The temporary opening change amount ΔEVIaj of the expansion valves 202 and 302 of each indoor unit is transmitted to the outdoor controller 151. In the outdoor controller 151, as in the case of cooling, it is assumed that there is a liquid return pipe 116 that bypasses the liquid pipe through the refrigerant flow rate control valve 117 to the inlet of the accumulator 104, and the compression detected by the discharge temperature detector 115 is performed. The opening change amount ΔEVB of the refrigerant flow control valve 117 is calculated by the formulas (4) and (5) so that the discharge temperature td of the machine becomes the target discharge temperature td0.

【0031】次に、前述の冷媒流量制御弁117の開度
変化量ΔEVBと、室内機の膨張弁202、302の仮
の開度変化量ΔEVIajとから、表1を用いて各室内
機の膨張弁202、302の実際の開度変化量ΔEVI
jを計算し、各室内機200、300の室内制御器20
8、308へ伝送する。吐出圧力検出器114で検出し
た吐出圧力が予め設定されている目標吐出圧力となるよ
うに、室外制御器151は圧縮機モータの回転数を制御
する。そして、各室内機200、300の室内制御器2
08、308は、伝送された実際の開度変化量ΔEVI
jにしたがって膨張弁202、302を制御する。
Next, using Table 1 from the opening change amount ΔEVB of the refrigerant flow rate control valve 117 and the temporary opening change amount ΔEVIaj of the expansion valves 202 and 302 of the indoor units, expansion of each indoor unit is performed. Actual opening change amount ΔEVI of valves 202 and 302
The indoor controller 20 of each indoor unit 200, 300 by calculating j
8, 308. The outdoor controller 151 controls the rotation speed of the compressor motor so that the discharge pressure detected by the discharge pressure detector 114 reaches a preset target discharge pressure. The indoor controller 2 of each indoor unit 200, 300
08 and 308 are the actual opening change amount ΔEVI transmitted
The expansion valves 202 and 302 are controlled according to j.

【0032】次に、本発明の多室型空気調和機の他の実
施例を図5に示す。◆図5は、室外機100に2台の室
内機200、300を並列に接続したものである。室外
機100は、モータ回転数が可変の圧縮機105、四方
弁106、室外熱交換器101、膨張弁102、室外フ
ァン103、レシーバ107、アキュムレータ104、
室外制御器151、吐出圧力検出器114及び吐出温度
検出器115を備えている。ここで、室外制御器151
には吐出圧力検出器114及び吐出温度検出器115の
検出信号が入力されており、また、室外制御器151か
らは圧縮機モータの回転数及び膨張弁102の開度を制
御する信号が出力される。なお、室内機200、300
は、図1の実施例と同様の構成である。
Next, another embodiment of the multi-room air conditioner of the present invention is shown in FIG. In FIG. 5, two indoor units 200 and 300 are connected in parallel to the outdoor unit 100. The outdoor unit 100 includes a compressor 105 whose motor rotation speed is variable, a four-way valve 106, an outdoor heat exchanger 101, an expansion valve 102, an outdoor fan 103, a receiver 107, an accumulator 104,
An outdoor controller 151, a discharge pressure detector 114, and a discharge temperature detector 115 are provided. Here, the outdoor controller 151
The detection signals of the discharge pressure detector 114 and the discharge temperature detector 115 are input to the air conditioner, and the outdoor controller 151 outputs a signal for controlling the rotation speed of the compressor motor and the opening degree of the expansion valve 102. It The indoor units 200, 300
Has the same configuration as the embodiment of FIG.

【0033】このように構成した本発明の第2の実施例
における、冷房運転時の動作を説明する。初めに、冷媒
の流れを説明する。圧縮機105から吐出された冷媒は
四方弁106を通って、室外熱交換器101へ流入し、
室外ファン103から送風された室外空気と熱交換して
凝縮する。その後、凝縮した冷媒は膨張弁102及びレ
シーバ107を経た後、室外機100から液配管122
へ流入し、室内機200及び室内機300へ送られる。
室内機200及び室内機300に流入したそれぞれの冷
媒は膨張弁202及び302で減圧された後、室内熱交
換器201及び301へ流入し、室内ファン203及び
303から送風された室内空気と熱交換して蒸発すると
ともに、室内空気は冷媒により冷却される。その後、蒸
発した冷媒は室内機200及び室内機300からガス配
管121へ流入し、室外機100へ送られる。室外機1
00に流入した冷媒は四方弁106、アキュムレータ1
04を通って圧縮機105に吸入され、圧縮される。以
後、この経路を循環する。なお、制御方法は図1の実施
例と同様である。
The operation during the cooling operation in the second embodiment of the present invention thus constructed will be described. First, the flow of the refrigerant will be described. The refrigerant discharged from the compressor 105 passes through the four-way valve 106 and flows into the outdoor heat exchanger 101,
The outdoor air blown from the outdoor fan 103 exchanges heat with the outdoor air to condense. After that, the condensed refrigerant passes through the expansion valve 102 and the receiver 107, and then from the outdoor unit 100 to the liquid pipe 122.
And is sent to the indoor unit 200 and the indoor unit 300.
The refrigerants that have flowed into the indoor units 200 and 300 are decompressed by the expansion valves 202 and 302, then flow into the indoor heat exchangers 201 and 301, and exchange heat with the indoor air blown from the indoor fans 203 and 303. As a result, the indoor air is cooled by the refrigerant. After that, the evaporated refrigerant flows from the indoor unit 200 and the indoor unit 300 into the gas pipe 121 and is sent to the outdoor unit 100. Outdoor unit 1
The refrigerant flowing into 00 is the four-way valve 106, the accumulator 1
It is drawn into the compressor 105 through 04 and compressed. After that, it circulates through this route. The control method is the same as in the embodiment of FIG.

【0034】次に、本実施例の暖房運転時の動作を説明
する。圧縮機105から吐出された冷媒は四方弁106
を通って、ガス配管121へ流入し、室内機200、3
00へ送られる。室内機200に入った冷媒は室内熱交
換器201に流入し、室内ファン203から送風された
室内空気と熱交換して凝縮する。このとき、室内空気が
温められる。凝縮した冷媒は膨張弁202を通って、室
内機200から流出する。一方、室内機300に流入し
た冷媒も室内機200と同様に凝縮し、室内機300か
ら流出する。室内機200及び室内機300を出た冷媒
は合流し、液配管122を通って室外機100へ流入す
る。室外機100へ流入した冷媒はレシーバ107を通
過し、膨張弁102で減圧して室外熱交換器101へ流
入し、室外ファン103から送風された室外空気と熱交
換して蒸発し、四方弁106、アキュムレータ104を
通って圧縮機105に吸入され圧縮される。以後、この
経路を循環する。
Next, the operation of this embodiment during the heating operation will be described. The refrigerant discharged from the compressor 105 is a four-way valve 106.
Through the gas pipe 121, and the indoor units 200, 3
Sent to 00. The refrigerant that has entered the indoor unit 200 flows into the indoor heat exchanger 201, exchanges heat with the indoor air blown from the indoor fan 203, and condenses. At this time, the indoor air is warmed. The condensed refrigerant flows out from the indoor unit 200 through the expansion valve 202. On the other hand, the refrigerant that has flowed into the indoor unit 300 also condenses like the indoor unit 200 and flows out from the indoor unit 300. The refrigerants that have left the indoor unit 200 and the indoor unit 300 merge and flow into the outdoor unit 100 through the liquid pipe 122. The refrigerant that has flowed into the outdoor unit 100 passes through the receiver 107, is decompressed by the expansion valve 102, flows into the outdoor heat exchanger 101, and exchanges heat with the outdoor air blown from the outdoor fan 103 to evaporate and the four-way valve 106. , And is sucked into the compressor 105 through the accumulator 104 and compressed. After that, it circulates through this route.

【0035】次に、制御方法について説明する。室内機
200の吸込み空気温度を検出する温度検出器206お
よび吹出し空気温度を検出する温度検出器207が検出
した検出信号は室内制御器208へ入力される。また、
室内機300の吸込み空気温度を検出する温度検出器3
06および吹出し空気温度を検出する温度検出器307
が検出した信号は室内制御器308へ入力される。それ
ぞれの室内制御器208、308は、図1の実施例と同
様に、式(6)〜(8)に従って、各室内機の膨張弁2
02、302の仮の開度変化量ΔEVIajを計算す
る。そして、各室内機の仮の膨張弁202、302の開
度変化量ΔEVIajは、室外制御器151へ伝送され
る。
Next, the control method will be described. The detection signals detected by the temperature detector 206 that detects the intake air temperature of the indoor unit 200 and the temperature detector 207 that detects the blown air temperature are input to the indoor controller 208. Also,
Temperature detector 3 for detecting the intake air temperature of the indoor unit 300
06 and temperature detector 307 for detecting blown air temperature
The signal detected by is input to the indoor controller 308. Each of the indoor controllers 208 and 308 has the expansion valve 2 of each indoor unit according to the equations (6) to (8) as in the embodiment of FIG.
The temporary opening change amount ΔEVIaj of 02 and 302 is calculated. Then, the opening change amount ΔEVIaj of the temporary expansion valves 202 and 302 of each indoor unit is transmitted to the outdoor controller 151.

【0036】室外制御器151では、図6に示すよう
に、1制御周期前の各室内機の開度EVIj(n−1)
に仮の開度変化量ΔEVIajを加えて各室内機の膨張
弁開度EVIj(n)を求める。そして、各室内機の膨
張弁開度EVIj(n)の中の最大値をEVImaxと
する。最大値EVImaxが全開開度以下の場合、仮の
開度変化量ΔEVIajを実際の開度変化量ΔEVIj
とする。最大値EVImaxが全開開度を超える場合、
仮の開度変化量ΔEVIajから(EVImax−全開
開度)を引いた値を実際の開度変化量ΔEVIjとし
て、各室内機200、300の室内制御器208、30
8へ伝送する。
In the outdoor controller 151, as shown in FIG. 6, the opening EVIj (n-1) of each indoor unit one control cycle before.
Is added to the temporary opening change amount ΔEVIaj to obtain the expansion valve opening EVIj (n) of each indoor unit. The maximum value of the expansion valve opening degrees EVIj (n) of each indoor unit is EVImax. When the maximum value EVImax is equal to or less than the full opening, the provisional opening change amount ΔEVIaj is changed to the actual opening change amount ΔEVIj.
And When the maximum value EVImax exceeds the full opening,
The indoor controller 208, 30 of each indoor unit 200, 300 is defined as a value obtained by subtracting (EVImax-fully opened opening) from the temporary opening change amount ΔEVIaj.
8 is transmitted.

【0037】また、室外制御器151は、吐出温度検出
器115で検出した圧縮機の吐出温度tdが目標吐出温
度td0になるように、膨張弁102の開度変化量ΔE
VOを式(9)および式(10)により計算し、膨張弁
102を制御する。
Further, the outdoor controller 151 controls the opening change amount ΔE of the expansion valve 102 so that the discharge temperature td of the compressor detected by the discharge temperature detector 115 becomes the target discharge temperature td0.
VO is calculated by the equation (9) and the equation (10), and the expansion valve 102 is controlled.

【0038】 ΔEVO= Kp×{Δtd(n)−Δtd(n−1)} +Ki×Δtd(n)×Ts +Kd×{Δtd(n)−2×Δtd(n−1) +Δtd(n−2)}/Ts ……(9) Δtd(n)=td−td0 ……(10) ここで、Δtd(n−1) :1制御周期前のΔtd
(n) Δtd(n−2) :2制御周期前のΔtd(n) td :吐出温度 td0 :目標吐出温度 Kp,Ki,Kd :制御定数 Ts :制御周期 である。さらに、室外制御器151は、吐出圧力検出器
114で検出した吐出圧力が予め設定した目標吐出圧力
となるように、圧縮機モータの回転数を制御する。各室
内機200、300の室内制御器208、308は、伝
送された実際の開度変化量ΔEVIjにしたがって、膨
張弁202、302の開度を制御する。
ΔEVO = Kp × {Δtd (n) -Δtd (n-1)} + Ki × Δtd (n) × Ts + Kd × {Δtd (n) -2 × Δtd (n-1) + Δtd (n-2) } / Ts (9) Δtd (n) = td-td0 (10) where Δtd (n-1): Δtd before one control cycle
(N) Δtd (n−2): Δtd (n) td two control cycles before: discharge temperature td0: target discharge temperature Kp, Ki, Kd: control constant Ts: control cycle. Further, the outdoor controller 151 controls the rotation speed of the compressor motor so that the discharge pressure detected by the discharge pressure detector 114 becomes a preset target discharge pressure. The indoor controllers 208 and 308 of the indoor units 200 and 300 control the openings of the expansion valves 202 and 302 according to the transmitted actual opening change amount ΔEVIj.

【0039】本発明のさらに他の実施例を図7に示す。
◆図7は図5の実施例に、液配管から冷媒流量制御弁1
17と電磁弁118を介して、アキュムレータ104入
口へバイパスする液戻し配管116を付加したものであ
る。この実施例の冷房時の制御方法について説明する。
なお、暖房時の制御は図5の実施例と同様であるため省
略する。◆通常運転時には、各室内機200、300の
膨張弁204、304を式(1)〜(3)に従って制御
し、各室内機の能力制御を行なう。室外機100の液戻
し配管116の電磁弁118は通常開いており、冷媒流
量制御弁117を式(4)および式(5)に従って制御
することにより圧縮機の吐出温度を制御する。ここで、
冷媒流量制御弁117を全開にしても吐出温度が高過ぎ
て目標温度まで下がらない場合、または冷媒流量制御弁
117を全閉にしても吐出温度が低過ぎて目標温度まで
上がらない場合、室外制御器151は冷媒流量制御弁1
17を異常と判断する。冷媒流量制御弁117を異常と
判断した場合、室外制御器151は電磁弁118を閉
じ、図1に示した実施例のように、表1を用いて各室内
機に設けた膨張弁202、302の開度を制御すること
により圧縮機の吐出温度と各室内機200、300の能
力を制御する。本実施例によれば、液戻し配管116に
設けた冷媒流量制御弁117が故障しても、各室内機に
設けた膨張弁によりバックアップでき、空調機の停止回
数を低減できる。
Still another embodiment of the present invention is shown in FIG.
◆ FIG. 7 shows the embodiment of FIG.
A liquid return pipe 116 that bypasses the inlet of the accumulator 104 via 17 and a solenoid valve 118 is added. A control method during cooling according to this embodiment will be described.
The control during heating is similar to that of the embodiment shown in FIG. During normal operation, the expansion valves 204 and 304 of the indoor units 200 and 300 are controlled according to the equations (1) to (3) to control the capacity of each indoor unit. The electromagnetic valve 118 of the liquid return pipe 116 of the outdoor unit 100 is normally open, and the discharge temperature of the compressor is controlled by controlling the refrigerant flow rate control valve 117 according to the equations (4) and (5). here,
If the discharge temperature is too high and does not decrease to the target temperature even if the refrigerant flow control valve 117 is fully opened, or if the discharge temperature is too low and does not reach the target temperature even if the refrigerant flow control valve 117 is fully closed, the outdoor control Is a refrigerant flow control valve 1
17 is judged to be abnormal. When it is determined that the refrigerant flow control valve 117 is abnormal, the outdoor controller 151 closes the electromagnetic valve 118, and the expansion valves 202 and 302 provided in each indoor unit using Table 1 as in the embodiment shown in FIG. The discharge temperature of the compressor and the capacity of each indoor unit 200, 300 are controlled by controlling the opening degree of the. According to the present embodiment, even if the refrigerant flow rate control valve 117 provided in the liquid return pipe 116 fails, it can be backed up by the expansion valve provided in each indoor unit, and the number of times the air conditioner is stopped can be reduced.

【0040】[0040]

【発明の効果】本発明によれば、冷媒流量制御弁を備え
た液戻し配管を省いた多室型空気調和機において、圧縮
機の過熱度を制御することにより各室内機の能力を制御
できるので、装置が簡素になると共に、コストを低減で
きる。◆また、暖房運転時に、各室内機の冷媒流量制御
弁の制御開度の最大値が全開値以上となった場合でも、
各室内機の能力バランスを短時間に行なえる。
According to the present invention, the capacity of each indoor unit can be controlled by controlling the degree of superheat of the compressor in the multi-room air conditioner which does not have the liquid return pipe provided with the refrigerant flow control valve. Therefore, the device can be simplified and the cost can be reduced. ◆ Also, during heating operation, even if the maximum value of the control opening of the refrigerant flow rate control valve of each indoor unit exceeds the fully open value,
The capacity of each indoor unit can be balanced in a short time.

【0041】[0041]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多室空気調和機の一実施例の冷凍サイ
クル構成図。
FIG. 1 is a configuration diagram of a refrigeration cycle of an embodiment of a multi-room air conditioner of the present invention.

【図2】室内機吸込み空気温度と設定温度との偏差およ
び目標室内熱交換器出口過熱度との関係を説明する説明
図。
FIG. 2 is an explanatory diagram illustrating a relationship between a deviation between an indoor unit intake air temperature and a set temperature and a target indoor heat exchanger outlet superheat degree.

【図3】吐出圧力と目標吐出温度との関係を説明する説
明図。
FIG. 3 is an explanatory diagram illustrating a relationship between a discharge pressure and a target discharge temperature.

【図4】設定温度と室内機吸込み空気温度との偏差およ
び目標室内機空気温度差との関係を説明する説明図。
FIG. 4 is an explanatory diagram illustrating a relationship between a deviation between a set temperature and an indoor unit intake air temperature and a target indoor unit air temperature difference.

【図5】本発明の多室形空気調和機の他の実施例の冷凍
サイクル構成図。
FIG. 5 is a refrigeration cycle configuration diagram of another embodiment of the multi-room air conditioner of the present invention.

【図6】室内機に設けた膨張弁の開度を求めるフローチ
ャート。
FIG. 6 is a flowchart for obtaining the opening degree of an expansion valve provided in the indoor unit.

【図7】本発明の多室形空気調和機のさらに他の実施例
の冷凍サイクル構成図。
FIG. 7 is a refrigeration cycle configuration diagram of still another embodiment of the multi-room air conditioner of the present invention.

【符号の説明】[Explanation of symbols]

100…室外機、101…室外熱交換器、102、20
2、302…膨張弁、105…圧縮機、114…吐出圧
力検出器、115…吐出温度検出器、116…液戻し配
管、117…冷媒流量制御弁、118…電磁弁、121
…ガス配管、122…液配管、151…室外制御器、2
00、300…室内機、201、301…室内熱交換
器、204、205、206、207…温度検出器、3
04、305、306、307…温度検出器、208、
308…室内制御器。
100 ... Outdoor unit, 101 ... Outdoor heat exchanger, 102, 20
2, 302 ... Expansion valve, 105 ... Compressor, 114 ... Discharge pressure detector, 115 ... Discharge temperature detector, 116 ... Liquid return pipe, 117 ... Refrigerant flow control valve, 118 ... Electromagnetic valve, 121
... Gas piping, 122 ... Liquid piping, 151 ... Outdoor controller, 2
00, 300 ... Indoor unit, 201, 301 ... Indoor heat exchanger, 204, 205, 206, 207 ... Temperature detector, 3
04, 305, 306, 307 ... Temperature detector, 208,
308 ... Indoor controller.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 眞一朗 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 (72)発明者 中村 憲一 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 (72)発明者 吉田 悟 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Shinichiro Yamada 390 Muramatsu, Shimizu-shi, Shizuoka Hitachi Air Conditioning Systems Division (72) Inventor Kenichi Nakamura 390, Muramatsu Shimizu, Shizuoka Hitachi Air Conditioning Systems Co., Ltd. (72) Inventor Satoru Yoshida 390 Muramatsu, Shimizu City, Shizuoka Prefecture Hitachi, Ltd. Air Conditioning Systems Business Unit

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】圧縮機及び室外熱交換器を備えた室外機
と、第1の冷媒流量制御弁及び室内熱交換器を備えた複
数台の室内機とを液配管及びガス配管を用いて接続して
形成された冷凍サイクルを有し、この冷凍サイクルを制
御する制御装置を備えた多室空気調和機において、 前記圧縮機の過熱度を得る第1の過熱度検出手段と、前
記各々の室内熱交換器の過熱度を得る第2の過熱度検出
手段とを設け、この第2の過熱度検出手段から得られた
各々の室内熱交換器の過熱度を設定過熱度にする前記第
1の冷媒流量制御弁開度を演算し、前記圧縮機の入口側
と前記液配管とを第2の冷媒流量制御弁を介してバイパ
ス接続する液戻し配管を仮想したときに前記第1の過熱
度検出手段から得られた圧縮機の過熱度を目標過熱度に
する前記第2の冷媒流量制御弁の開度を演算し、この第
2の冷媒流量制御弁の開度に基づいて前記第1の冷媒流
量制御弁の弁開度を補正して制御する制御手段を前記制
御装置に設けたことを特徴とする多室空気調和機。
1. An outdoor unit equipped with a compressor and an outdoor heat exchanger and a plurality of indoor units equipped with a first refrigerant flow control valve and an indoor heat exchanger are connected using a liquid pipe and a gas pipe. In a multi-room air conditioner having a refrigeration cycle formed by the above, and a control device for controlling the refrigeration cycle, a first superheat degree detecting means for obtaining a superheat degree of the compressor, and each of the indoors A second superheat degree detecting means for obtaining the superheat degree of the heat exchanger is provided, and the superheat degree of each indoor heat exchanger obtained from the second superheat degree detecting means is set to the set superheat degree. The first superheat detection is performed when a refrigerant flow control valve opening is calculated and a liquid return pipe that bypass-connects the inlet side of the compressor and the liquid pipe via a second refrigerant flow control valve is assumed. The second refrigerant flow rate for making the superheat of the compressor obtained from the means the target superheat. The control device is provided with control means for calculating the opening of the control valve and correcting and controlling the valve opening of the first refrigerant flow control valve based on the opening of the second refrigerant flow control valve. A multi-room air conditioner characterized by that.
【請求項2】圧縮機及び室外熱交換器を備えた室外機
と、第1の冷媒流量制御弁及び室内熱交換器を備えた複
数台の室内機とを液配管及びガス配管を用いて接続して
形成された冷凍サイクルを有し、この冷凍サイクルを制
御する制御装置を備えた多室空気調和機において、 前記圧縮機の過熱度を得る第1の過熱度検出手段と、前
記各々の室内熱交換器の過熱度を得る第2の過熱度検出
手段と、前記圧縮機の入口側と前記液配管とを第2の冷
媒流量制御弁を介してバイパス接続する液戻し配管とを
設け、この第2の過熱度検出手段から得られた各々の室
内熱交換器の過熱度を設定過熱度にする前記第1の冷媒
流量制御弁開度、および、前記第1の過熱度検出手段か
ら得られた圧縮機の過熱度を目標過熱度にする前記第2
の冷媒流量制御弁の開度を演算し、この第2の冷媒流量
制御弁の開度に基づいて前記第1の冷媒流量制御弁の弁
開度を補正して制御する制御手段を前記制御装置に設け
たことを特徴とする多室空気調和機。
2. An outdoor unit equipped with a compressor and an outdoor heat exchanger and a plurality of indoor units equipped with a first refrigerant flow control valve and an indoor heat exchanger are connected using a liquid pipe and a gas pipe. In a multi-room air conditioner having a refrigeration cycle formed by the above, and a control device for controlling the refrigeration cycle, a first superheat degree detecting means for obtaining a superheat degree of the compressor, and each of the indoors Second superheat detection means for obtaining the superheat of the heat exchanger, and liquid return piping for bypass-connecting the inlet side of the compressor and the liquid piping via a second refrigerant flow control valve are provided. It is obtained from the first refrigerant flow control valve opening degree that makes the degree of superheat of each indoor heat exchanger obtained from the second degree of superheat detection means a set degree of superheat, and from the first degree of superheat detection means. The second superheat of the compressor is set to the target superheat.
Control means for calculating the opening of the second refrigerant flow control valve and correcting and controlling the opening of the first refrigerant flow control valve based on the opening of the second refrigerant flow control valve. A multi-room air conditioner characterized by being installed in.
【請求項3】前記液戻し配管に設けた第2の冷媒流量制
御弁が故障したときにこの液戻し配管内の冷媒の流れを
止める閉止手段を前記液戻し配管に設けたことを特徴と
する請求項2に記載の多室空気調和機。
3. The liquid return pipe is provided with a closing means for stopping the flow of the refrigerant in the liquid return pipe when the second refrigerant flow control valve provided in the liquid return pipe fails. The multi-room air conditioner according to claim 2.
【請求項4】前記第1の過熱度検出手段は圧縮機の吐出
部近傍に設けた吐出圧力検出器及び吐出温度検出器であ
り、前記第2の過熱度検出手段は各々の室内熱交換器の
冷媒入口部及び出口部近傍に夫々設けた温度検出器であ
ることを特徴とする請求項1ないし3のいずれか1項に
記載の多室空気調和機。
4. The first superheat degree detecting means is a discharge pressure detector and a discharge temperature detector provided near a discharge portion of a compressor, and the second superheat degree detecting means is each indoor heat exchanger. The multi-room air conditioner according to any one of claims 1 to 3, wherein the temperature detectors are provided in the vicinity of the refrigerant inlet portion and the outlet portion of the refrigerant, respectively.
【請求項5】圧縮機を有する室外機と、冷媒流量制御弁
及び室内熱交換器を備えた複数台の室内機とを液配管及
びガス配管を用いて接続して形成した冷凍サイクルと、
この冷凍サイクルを制御する制御装置とを備えた多室空
気調和機の運転方法において、 前記制御装置が前記各室内機に設けた過熱度検出手段の
出力に基づいて、各室内機の運転能力を目標能力にする
各室内機の冷媒流量制御弁の開度変化量(ΔEVIa
1、ΔEVIa2、…)を演算するステップと、液配管
と圧縮機吸入側とを第2の冷媒流量制御弁を介して液戻
し配管で接続していると想定し、前記圧縮機に設けた過
熱度検出手段が検出する過熱度を設定過熱度にする第2
の冷媒流量制御弁の開度変化量ΔEVBを演算するステ
ップと、この第2の冷媒流量制御弁の開度変化量ΔEV
Bに基づいて前記第1の冷媒流量制御弁の開度変化量
(ΔEVIa1、ΔEVIa2、…)を補正した開度変
化量(ΔEVI1、ΔEVI2、…)を演算するステッ
プとを有することを特徴とする多室空気調和機の運転方
法。
5. A refrigeration cycle formed by connecting an outdoor unit having a compressor and a plurality of indoor units having a refrigerant flow rate control valve and an indoor heat exchanger using liquid pipes and gas pipes.
In a method for operating a multi-room air conditioner including a control device that controls this refrigeration cycle, based on the output of the superheat detection means provided in each indoor unit by the control device, the operating capacity of each indoor unit Amount of change in the opening of the refrigerant flow control valve of each indoor unit to make it the target capacity (ΔEVIa
1, ΔEVIa2, ...) and the superheat provided in the compressor, assuming that the liquid pipe and the compressor suction side are connected by the liquid return pipe via the second refrigerant flow control valve. Second degree of superheat detected by the degree detection means is set
Calculating the opening change amount ΔEVB of the refrigerant flow rate control valve, and the opening change amount ΔEV of the second refrigerant flow control valve.
Calculating the opening change amount (ΔEVI1, ΔEVI2, ...) Correcting the opening change amount (ΔEVIa1, ΔEVIa2, ...) Of the first refrigerant flow control valve based on B. How to operate a multi-room air conditioner.
【請求項6】前記第1の冷媒流量制御弁の補正した開度
変化量を演算するステップは、前記第2の冷媒流量制御
弁の開度変化量ΔEVBが正のとき、前記第1の冷媒流
量制御弁の開度変化量(ΔEVIa1、ΔEVIa2、
…)の最小値を求め、この最小値と前記第1の冷媒流量
制御弁の開度変化量(ΔEVIa1、ΔEVIa2、
…)との偏差で第2の冷媒流量制御弁の開度変化量ΔE
VBを案分した量に基づいて、各室内機の冷媒流量制御
弁の開度変化量(ΔEVI1、ΔEVI2、…)を演算
するものであることを特徴とする請求項5に記載の多室
空気調和機の運転方法。
6. The step of calculating a corrected opening change amount of the first refrigerant flow control valve, the step of calculating the opening change amount ΔEVB of the second refrigerant flow control valve is positive. Amount of change in opening of the flow control valve (ΔEVIa1, ΔEVIa2,
Of the opening degree of the first refrigerant flow control valve (ΔEVIa1, ΔEVIa2,
…) And the opening change amount ΔE of the second refrigerant flow control valve
The multi-chamber air according to claim 5, wherein the opening change amount (ΔEVI1, ΔEVI2, ...) Of the refrigerant flow control valve of each indoor unit is calculated based on the amount of VB. How to operate the harmony machine.
【請求項7】前記第1の冷媒流量制御弁の補正した開度
変化量を演算するステップは、前記第2の冷媒流量制御
弁の開度変化量ΔEVBが正のとき、前記第1の冷媒流
量制御弁の開度変化量(ΔEVIa1、ΔEVIa2、
…)の最大値を求め、この最大値と前記第1の冷媒流量
制御弁の開度変化量(ΔEVIa1、ΔEVIa2、
…)との偏差で第2の冷媒流量制御弁の開度変化量ΔE
VBを案分した量に基づいて、各室内機の冷媒流量制御
弁の開度変化量(ΔEVI1、ΔEVI2、…)を演算
するものであることを特徴とする請求項5に記載の多室
空気調和機の運転方法。
7. The step of calculating the corrected opening change amount of the first refrigerant flow control valve, the step of calculating the opening change amount ΔEVB of the second refrigerant flow control valve is positive when the opening change amount ΔEVB of the second refrigerant flow control valve is positive. Amount of change in opening of the flow control valve (ΔEVIa1, ΔEVIa2,
Of the first refrigerant flow rate control valve (ΔEVIa1, ΔEVIa2,
…) And the opening change amount ΔE of the second refrigerant flow control valve
The multi-chamber air according to claim 5, wherein the opening change amount (ΔEVI1, ΔEVI2, ...) Of the refrigerant flow control valve of each indoor unit is calculated based on the amount of VB. How to operate the harmony machine.
【請求項8】前記第1の冷媒流量制御弁の補正した開度
変化量を演算するステップは、前記第2の冷媒流量制御
弁の開度変化量ΔEVBが零のとき、前記第1の冷媒流
量制御弁の開度変化量(ΔEVIa1、ΔEVIa2、
…)の平均値を求め、この平均値と前記第1の冷媒流量
制御弁の開度変化量(ΔEVIa1、ΔEVIa2、
…)との偏差で第2の冷媒流量制御弁の開度変化量ΔE
VBを案分した量に基づいて、各室内機の冷媒流量制御
弁の開度変化量(ΔEVI1、ΔEVI2、…)を演算
するものであることを特徴とする請求項5に記載の多室
空気調和機の運転方法。
8. The step of calculating the corrected opening change amount of the first refrigerant flow control valve, the step of calculating the opening change amount ΔEVB of the second refrigerant flow control valve is zero when the opening change amount ΔEVB of the second refrigerant flow control valve is zero. Amount of change in opening of the flow control valve (ΔEVIa1, ΔEVIa2,
...) is calculated, and the average value and the opening change amount of the first refrigerant flow control valve (ΔEVIa1, ΔEVIa2,
…) And the opening change amount ΔE of the second refrigerant flow control valve
The multi-chamber air according to claim 5, wherein the opening change amount (ΔEVI1, ΔEVI2, ...) Of the refrigerant flow control valve of each indoor unit is calculated based on the amount of VB. How to operate the harmony machine.
【請求項9】圧縮機を有する室外機と、冷媒流量制御弁
及び室内熱交換器を備えた複数台の室内機とを液配管及
びガス配管を用いて接続して形成した冷凍サイクルと、
この冷凍サイクルを制御する制御装置とを備えた多室空
気調和機の運転方法において、 前記制御装置が前記各室内機に設けた過熱度検出手段の
出力に基づいて、各室内機の運転能力を目標能力にする
各室内機の冷媒流量制御弁の開度変化量(ΔEVIa
1、ΔEVIa2、…)を演算するステップと、前記圧
縮機に設けた過熱度検出手段が検出する過熱度を設定過
熱度にする、液配管と圧縮機吸入側とを接続する液戻し
配管中に設けた第2の冷媒流量制御弁の開度変化量ΔE
VBを演算するステップと、この第2の冷媒流量制御弁
の開度変化量ΔEVBに基づいて前記第1の冷媒流量制
御弁の開度変化量(ΔEVIa1、ΔEVIa2、…)
を補正した開度変化量(ΔEVI1、ΔEVI2、…)
を演算するステップとを有することを特徴とする多室空
気調和機の運転方法。
9. A refrigeration cycle formed by connecting an outdoor unit having a compressor and a plurality of indoor units having a refrigerant flow control valve and an indoor heat exchanger using liquid pipes and gas pipes,
In a method for operating a multi-room air conditioner including a control device that controls this refrigeration cycle, based on the output of the superheat detection means provided in each indoor unit by the control device, the operating capacity of each indoor unit Amount of change in the opening of the refrigerant flow control valve of each indoor unit to make it the target capacity (ΔEVIa
1, ΔEVIa2, ...), and in the liquid return pipe connecting the liquid pipe and the suction side of the compressor for setting the superheat degree detected by the superheat degree detecting means provided in the compressor to the set superheat degree. Opening change amount ΔE of the provided second refrigerant flow control valve
Based on the step of calculating VB, and the opening change amount ΔEVB of the second refrigerant flow control valve, the opening change amount of the first refrigerant flow control valve (ΔEVIa1, ΔEVIa2, ...).
Amount of change in opening corrected (ΔEVI1, ΔEVI2, ...)
The method for operating a multi-room air conditioner, comprising:
【請求項10】前記第2の冷媒流量制御弁が故障した時
に、液戻し配管の冷媒の流れをこの配管中に設けた閉止
手段を用いて閉止するステップを有する請求項9に記載
の多室空気調和機の運転方法。
10. The multi-chamber according to claim 9, further comprising the step of closing the flow of the refrigerant in the liquid return pipe by using a closing means provided in the pipe when the second refrigerant flow control valve fails. How to operate the air conditioner.
【請求項11】前記補正された第1の冷媒流量制御弁の
開度変化量(ΔEVI1、ΔEVI2、…)から演算さ
れた第1の冷媒流量制御弁の演算開度(EVIa1、E
VIa2、…)の最大値が全開値以上となったときに、
この最大値と全開値との偏差を夫々の第1の冷媒流量制
御弁の演算開度(EVIa1、EVIa2、…)から減
算するステップを有することを特徴とする請求項て、各
室内機の冷媒流量制御弁の開度(EVI1、EVI2、
…)とすることを特徴とする請求項5ないし10のいず
れか1項に記載の多室空気調和機の運転方法。
11. A calculated opening (EVIa1, E) of the first refrigerant flow control valve calculated from the corrected opening change amount (ΔEVI1, ΔEVI2, ...) Of the first refrigerant flow control valve.
When the maximum value of VIa2, ...
The refrigerant of each indoor unit, comprising the step of subtracting the deviation between the maximum value and the fully open value from the calculated opening (EVIa1, EVIa2, ...) Of each first refrigerant flow control valve. Opening of the flow control valve (EVI1, EVI2,
The operating method of the multi-room air conditioner according to any one of claims 5 to 10, wherein
JP29927394A 1994-12-02 1994-12-02 Multi-room air conditioner and operation method thereof Expired - Fee Related JP3384150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29927394A JP3384150B2 (en) 1994-12-02 1994-12-02 Multi-room air conditioner and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29927394A JP3384150B2 (en) 1994-12-02 1994-12-02 Multi-room air conditioner and operation method thereof

Publications (2)

Publication Number Publication Date
JPH08159589A true JPH08159589A (en) 1996-06-21
JP3384150B2 JP3384150B2 (en) 2003-03-10

Family

ID=17870416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29927394A Expired - Fee Related JP3384150B2 (en) 1994-12-02 1994-12-02 Multi-room air conditioner and operation method thereof

Country Status (1)

Country Link
JP (1) JP3384150B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376848C (en) * 2006-02-17 2008-03-26 天津美冷电梯空调有限公司 Heat resistant air conditioner for elevator
CN104764243A (en) * 2015-03-31 2015-07-08 广东美的暖通设备有限公司 Multi-online system
CN104896675A (en) * 2015-06-12 2015-09-09 广东美的暖通设备有限公司 Return air superheat degree test method of multi-split air conditioning system and multi-split air conditioning system
CN107975916A (en) * 2017-11-13 2018-05-01 珠海格力电器股份有限公司 air conditioning system control method, device and system
WO2020016959A1 (en) * 2018-07-18 2020-01-23 三菱電機株式会社 Air conditioning device and air conditioning method
CN113551437A (en) * 2020-04-23 2021-10-26 日立江森自控空调有限公司 Air conditioning system and control method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376848C (en) * 2006-02-17 2008-03-26 天津美冷电梯空调有限公司 Heat resistant air conditioner for elevator
CN104764243A (en) * 2015-03-31 2015-07-08 广东美的暖通设备有限公司 Multi-online system
CN104764243B (en) * 2015-03-31 2017-03-08 广东美的暖通设备有限公司 multiple on-line system
CN104896675A (en) * 2015-06-12 2015-09-09 广东美的暖通设备有限公司 Return air superheat degree test method of multi-split air conditioning system and multi-split air conditioning system
CN107975916A (en) * 2017-11-13 2018-05-01 珠海格力电器股份有限公司 air conditioning system control method, device and system
CN107975916B (en) * 2017-11-13 2019-05-24 珠海格力电器股份有限公司 air conditioning system control method, device and system
WO2020016959A1 (en) * 2018-07-18 2020-01-23 三菱電機株式会社 Air conditioning device and air conditioning method
CN112368518A (en) * 2018-07-18 2021-02-12 三菱电机株式会社 Air conditioner and air conditioning method
JPWO2020016959A1 (en) * 2018-07-18 2021-02-15 三菱電機株式会社 Air conditioner and air conditioner
CN112368518B (en) * 2018-07-18 2022-03-01 三菱电机株式会社 Air conditioner and air conditioning method
CN113551437A (en) * 2020-04-23 2021-10-26 日立江森自控空调有限公司 Air conditioning system and control method

Also Published As

Publication number Publication date
JP3384150B2 (en) 2003-03-10

Similar Documents

Publication Publication Date Title
JP2723953B2 (en) Air conditioner
JP2007333219A (en) Multi-type air-conditioning system
JP2974179B2 (en) Multi-room air conditioner
JP2557577B2 (en) Air conditioner
JP3384150B2 (en) Multi-room air conditioner and operation method thereof
JP2654222B2 (en) Cooling / heating mixed type multi-refrigeration cycle
JP7278065B2 (en) refrigeration cycle equipment
JPH08152204A (en) Air conditioner and operating method therefor
JP2001272149A (en) Show case cooling device
JP2006266677A (en) Air conditioner
JP2893844B2 (en) Air conditioner
JP4039100B2 (en) Air conditioner
JP2001147052A (en) Air conditioner
JP2502197B2 (en) Refrigeration cycle equipment
JP3661014B2 (en) Refrigeration equipment
JP2800362B2 (en) Multi-room air conditioner
JP2716559B2 (en) Cooling / heating mixed type multi-room air conditioner
JP3855623B2 (en) Air conditioner
WO2024111432A1 (en) Air conditioner
JPH0480569A (en) Air-conditioning machine
JP3199746B2 (en) Multi-room air conditioner
JP3444360B2 (en) Constant temperature and constant room equipment
JP2534926B2 (en) Multi-room air conditioner
WO2024079807A1 (en) Air conditioning system
JPH0611201A (en) Air conditioning apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071227

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20071227

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20071227

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071227

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071227

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20071227

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101227

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111227

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121227

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131227

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees