JP2689661B2 - Thin film electroluminescent device including optical interference filter - Google Patents

Thin film electroluminescent device including optical interference filter

Info

Publication number
JP2689661B2
JP2689661B2 JP1327901A JP32790189A JP2689661B2 JP 2689661 B2 JP2689661 B2 JP 2689661B2 JP 1327901 A JP1327901 A JP 1327901A JP 32790189 A JP32790189 A JP 32790189A JP 2689661 B2 JP2689661 B2 JP 2689661B2
Authority
JP
Japan
Prior art keywords
refractive index
dielectric
film
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1327901A
Other languages
Japanese (ja)
Other versions
JPH03187186A (en
Inventor
純 桑田
富造 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1327901A priority Critical patent/JP2689661B2/en
Publication of JPH03187186A publication Critical patent/JPH03187186A/en
Application granted granted Critical
Publication of JP2689661B2 publication Critical patent/JP2689661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、薄膜エレクトロルミネセンス装置に関し、
特に、OA機器の情報端末に用いられる薄型平板ディスプ
レイへの利用等に適している。
Description: FIELD OF THE INVENTION The present invention relates to a thin film electroluminescence device,
In particular, it is suitable for use in thin flat panel displays used for information terminals of OA equipment.

従来の技術 薄膜エレクトロルミネセンス(以下薄膜ELと略す)装
置を用いたディスプレイとして以下に示すような構成が
提案されている。第2図は、発光体層5の両側に誘電体
層4、6を設け、さらにそれを透明電極2と背面電極7
で挟み込んだ構造をしている。発光体層5として緑色発
光するZnS:Tb,F、黄橙色発光するZnS:Mnを用いた薄膜EL
ディスプレイがある。いづれも、発光の取出は、透明電
極が設けられた側のガラスの面より行っており、発光中
心より放出される光強度の約10%以下しか取り出せてい
ない。
2. Description of the Related Art The following configuration has been proposed as a display using a thin film electroluminescence (hereinafter abbreviated as "thin film EL") device. FIG. 2 shows that the dielectric layers 4 and 6 are provided on both sides of the luminous layer 5,
It has a structure sandwiched between. Thin-film EL using ZnS: Tb, F that emits green light and ZnS: Mn that emits yellow-orange light as the luminous layer 5
There is a display. In each case, the emission of light is extracted from the surface of the glass on which the transparent electrode is provided, and only about 10% or less of the intensity of light emitted from the emission center is extracted.

これは、フレネルの法則に従っており、蛍光体層内の
発光中心より放出される光が発光体層と誘電体層あるい
は透明電極層の界面で反射してしまう量が90%以上ある
ことを表わしている。言い換えれば、発光波長に対する
全反射角が約25度と大変狭いためである。
This follows Fresnel's law, which means that the amount of light emitted from the emission center in the phosphor layer is reflected by the interface between the emitter layer and the dielectric layer or transparent electrode layer in 90% or more. There is. In other words, the total reflection angle with respect to the emission wavelength is very narrow, about 25 degrees.

一方、幅広い発光波長を持つ光源の波長選択を行うた
めにファブリー・ペロー型干渉計を用いることが知られ
ている。このファブリー・ペロー型干渉計は、第3図に
示すように2枚の反射鏡8を平行に配置し、この両間隔
をLとし、反射鏡内の波数をqとするときの光の干渉条
件である。
On the other hand, it is known to use a Fabry-Perot interferometer for wavelength selection of a light source having a wide emission wavelength. In this Fabry-Perot interferometer, two reflecting mirrors 8 are arranged in parallel as shown in FIG. 3, the distance between them is L, and the interference condition of light when the wave number in the reflecting mirror is q. Is.

L・q=K・π(πは円周率) という条件を満足する光だけがこの干渉計を透過する。
但し、Kは、正の整数である。ここで同図(a)は空気
間隙の場合、同図(b)は透明固体間隙の場合を示す。
実際には反射鏡の反射率Rが大きくなると第4図のよう
に光のスペクトルの反値幅は、狭くなることがわかって
いる。同図(a)はファブリ・ペローの干渉計における
光の行路を示す図であり、同図(b)は反射面の間隙L
または入射角Qを変えたときの透過率の変化(D=0.98
−Rのとき)を示す図である。同図においてKは整数、
Dは透過率、Rは反射率を示す。これに関しては霜田光
一著レーザー物理入門(1983年4月22日、岩波書店発
行)の51頁から56頁に記載されている。
Only light that satisfies the condition L · q = K · π (π is the circular constant) passes through this interferometer.
Here, K is a positive integer. Here, FIG. 7A shows the case of an air gap, and FIG. 7B shows the case of a transparent solid gap.
Actually, it has been known that as the reflectance R of the reflecting mirror increases, the opposite value width of the spectrum of light becomes narrower as shown in FIG. FIG. 3A is a diagram showing the path of light in the Fabry-Perot interferometer, and FIG. 3B is a gap L of the reflecting surface.
Or the change in transmittance when the incident angle Q is changed (D = 0.98
It is a figure which shows (at the time of -R). In the figure, K is an integer,
D indicates the transmittance and R indicates the reflectance. This is described on pages 51-56 of Koichi Shimoda, Introduction to Laser Physics (April 22, 1983, published by Iwanami Shoten).

またさらに、この干渉計の中にレーザー媒体を挿入す
るとレーザー共振器になることも知られている。
Furthermore, it is known that a laser medium is inserted into this interferometer to form a laser resonator.

一方、繰り返し多層膜ではさまれた薄膜の干渉(いわ
ゆる、多層膜光干渉フィルタ)は、第5図に示した構造
をしているが、この様な構造を持ちしかも高い反射層を
両面にもつ薄膜の干渉特性は、第6図に示したように前
述のファブリー・ペロー干渉計と同様の効果が得られる
ことが明らかにされている。これは、屈折率の異なる光
学薄膜を発光波長λに対し反射防止の条件(n・d=
(1/4+m/2)・λ;nは屈折率、dは膜厚、m=0,1,2
…)を満たす膜厚で積層し、形成される。このことに関
して例えば、藤原史郎編光学薄膜(1985年2月25日、共
立出版株式会社発行)の30頁から34頁や98頁から129頁
に記載されている。
On the other hand, the thin film interference (so-called multilayer optical interference filter) sandwiched between the repeated multilayer films has the structure shown in FIG. 5, but it has such a structure and has a high reflection layer on both sides. It has been clarified that the interference characteristics of the thin film are similar to those of the above-mentioned Fabry-Perot interferometer, as shown in FIG. This is a condition (nd =
(1/4 + m / 2) · λ; n is the refractive index, d is the film thickness, m = 0,1,2
...) is laminated and formed to have a film thickness satisfying. Regarding this, for example, it is described on pages 30 to 34 and 98 to 129 of an optical thin film edited by Shiro Fujiwara (published on February 25, 1985, Kyoritsu Shuppan Co., Ltd.).

発明が解決しようとする課題 第2図に示した薄膜EL装置では、製法が容易である利
点を有し、輝度一電圧特性が急に立ち上がる性質を利用
してマトリックス型の電極構造を持つ薄膜ELディスプレ
イが実用化されている。一方、この薄膜EL装置の発光色
は、発光体層にZnS:Mnを用いた黄橙色とZnS:Tbを用いた
緑色しか実用化されていない。3原色を持つ薄膜EL表示
装置を製造しようとするには、赤色と青色の発光色を持
ち発光効率の高い蛍光体層用材料が各々必要であるが実
用化できるまでには至っていないのが現状である。発光
効率の向上が非常に大きな問題点である。
Problems to be Solved by the Invention The thin-film EL device shown in FIG. 2 has an advantage that the manufacturing method is easy, and utilizes the property that the luminance-voltage characteristic rises sharply, and has a matrix-type electrode structure. The display has been put to practical use. On the other hand, as the emission color of this thin film EL device, only the yellow-orange color using ZnS: Mn and the green color using ZnS: Tb in the light emitting layer have been put into practical use. In order to manufacture a thin-film EL display device having three primary colors, it is necessary to use phosphor layer materials each having red and blue emission colors and high emission efficiency, but it has not been realized yet. Is. Improvement of luminous efficiency is a very serious problem.

さらに、屈折率の異なる誘電体薄膜を多層構造にした
多層膜光干渉フィルタ3を第2図に示した薄膜EL装置に
挿入しようとすると第7図に示したように第1誘電体層
5と透明電極2の間あるいは、第2図の第1誘電体層4
自身に用いる場合が考えられる。第7図の場合は多層膜
光干渉フィルタの電気容量が電気回路として直列接続さ
れ、全体の電気容量が小さくなるために蛍光体層に有効
に電界が印加されない。そのために駆動電圧が上昇し、
この薄膜EL装置が絶縁破壊し破損してしまい安定に発光
しない問題点があった。また、第1誘電体層に多層膜光
干渉フィルタを用いる場合でも誘電体膜を多層構造にす
るために全体の電気容量が低くなり同様な絶縁破壊の問
題があった。
Furthermore, when an attempt is made to insert the multilayer optical interference filter 3 having a multilayer structure of dielectric thin films having different refractive indexes into the thin film EL device shown in FIG. 2, the first dielectric layer 5 is formed as shown in FIG. Between the transparent electrodes 2 or the first dielectric layer 4 of FIG.
It may be used for yourself. In the case of FIG. 7, the electric capacity of the multilayer optical interference filter is connected in series as an electric circuit, and since the electric capacity of the whole is small, an electric field is not effectively applied to the phosphor layer. Therefore, the drive voltage rises,
This thin film EL device has a problem in that it does not emit light stably due to dielectric breakdown and damage. Further, even when a multilayer optical interference filter is used for the first dielectric layer, the dielectric film has a multilayer structure, so that the total electric capacity becomes low and there is a similar problem of dielectric breakdown.

課題を解決するための手段 本発明は、このような問題点を解決するために、光透
過性を有する電極層と光反射電極層により、蛍光体層あ
るいは蛍光体層と誘電体層の構造体に電圧が印加される
ように構成されるとともに、前記構造体内における、光
の取出側に、前記蛍光体層より放射される発光波長の任
意の波長λを選択的に透過する多層膜の光干渉フィルタ
を、前記構造体に屈折率の低い誘電体膜1と屈折率の高
い誘電体膜2を交互にλ/4=膜厚・屈折率の式に従って
誘電体膜2、誘電体膜1の順に2層以上積層し、さらに
誘電体膜1より高い屈折率を有する蛍光体層をλ/2・N
(Nは1以上の整数)=膜厚・屈折率の式に従って積層
し、さらに誘電体膜3をλ/4・正数=膜厚・屈折率の式
に従って誘電体膜3を積層した構成にしたことを特徴と
する光干渉フィルタを含む構成にする。
Means for Solving the Problems In order to solve such a problem, the present invention provides a structure of a phosphor layer or a phosphor layer and a dielectric layer by a light-transmitting electrode layer and a light-reflecting electrode layer. Of a multilayer film that is configured to be applied with a voltage and selectively transmits an arbitrary wavelength λ of the emission wavelength emitted from the phosphor layer on the light extraction side in the structure. In the filter, the dielectric film 1 having a low refractive index and the dielectric film 2 having a high refractive index are alternately arranged on the structure in order of the dielectric film 2 and the dielectric film 1 according to the formula of λ / 4 = thickness / refractive index. Two or more layers are stacked, and a phosphor layer having a refractive index higher than that of the dielectric film 1 is λ / 2 · N.
(N is an integer greater than or equal to 1) = Layered according to the formula of film thickness / refractive index, and further the dielectric film 3 is laminated according to the formula of λ / 4 + positive number = film thickness / refractive index. The configuration includes an optical interference filter characterized by the above.

作用 上記構成によれば、薄膜EL装置内にファブリー・ペロ
ー光干渉計と同様の作用をする手段を設けたことにな
り、蛍光体層より自然放出される光がこの干渉計により
任意の発光波長に対して、方向が揃えられて取り出され
る。従って、蛍光体層内の発光中心から放出される所望
の発光波長の光を効率良く表示面から取り出させるの
で、所望の発光波長に対する発光効率が10倍以上の値が
得られる。また、多層膜光干渉フィルタの構成をこのよ
うに限定し蛍光体層に有効に電界が印加できるようにな
る。
Operation According to the above configuration, means for performing the same operation as the Fabry-Perot optical interferometer is provided in the thin film EL device, and the light spontaneously emitted from the phosphor layer is emitted by the interferometer at any emission wavelength. With respect to, it is taken out in the same direction. Therefore, since the light of the desired emission wavelength emitted from the emission center in the phosphor layer is efficiently extracted from the display surface, the emission efficiency with respect to the desired emission wavelength is 10 times or more. Further, the structure of the multilayer optical interference filter is limited as described above, and the electric field can be effectively applied to the phosphor layer.

実施例 本発明の一実施例を図に基づいて説明する。第1図
は、本発明の薄膜エレクトロルミネセンス装置の基本構
成断面図である。
Embodiment An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of the basic configuration of the thin film electroluminescent device of the present invention.

ガラス基板1の上に透明電極2を成膜し、その上に、
発光波長に対する屈折率n1が2.4程度 で誘電率ε1、
膜厚d1の第1誘電体層(a)4aとして成膜する。次に、
この上に、屈折率n2が1.5程度の光学薄膜(例えば、MgF
2(n1=1.38)、SiO2(n1=1.52))を膜厚d2で第1誘
電体層(b)4bとして成膜し、再び第1誘電体層(a)
と同じ誘電体薄膜を第1誘電体層(c)4cとして順に積
層し、再び屈折率n2で膜厚d2の第1誘電体層(d)4dを
順に積層し、さらにこの上に、屈折率n3が2.4程度で膜
厚d3の蛍光体層5を成膜し、屈折率n4の値がn3に似かよ
った2.4±0.2程度の膜厚d4の誘電体薄膜を第2誘電体層
6として成膜し、反射鏡層と電極層を兼ねた背面電極7
を形成する。ここで、第1誘電体層(a)、(b)、
(c)、(d)と蛍光体層と第2誘電体層の発光波長λ
0に対する屈折率n1とn2とn3とn4は、エリプソメータに
よって測定した。さらに、それぞれの誘電体層の膜厚d
1、d2、d4と蛍光体層の膜厚d3は多層膜光干渉フィルタ
の設計法に従って、 ni・di=λ0/4 …(1) (i=1、2) n3・d3=λ0/2・N …(2) n4・d4=λ0/2・N …(3) (Nは、正数(1、2、3…)) なる式が満足されるように決定された。
The transparent electrode 2 is formed on the glass substrate 1, and then,
With a refractive index n1 of about 2.4 for the emission wavelength and a dielectric constant ε1,
The film is formed as the first dielectric layer (a) 4a having a film thickness d1. next,
On top of this, an optical thin film with a refractive index n2 of about 1.5 (eg MgF
2 (n1 = 1.38), SiO2 (n1 = 1.52)) with a film thickness d2 as the first dielectric layer (b) 4b, and again the first dielectric layer (a)
The same dielectric thin film as the first dielectric layer (c) 4c is sequentially laminated, and the first dielectric layer (d) 4d having a refractive index n2 and a film thickness d2 is sequentially laminated again. The phosphor layer 5 having a film thickness d3 with n3 of about 2.4 is formed, and the dielectric thin film having a film thickness d4 of about 2.4 ± 0.2, which has a refractive index n4 similar to that of n3, is formed as the second dielectric layer 6. And the back electrode 7 that also serves as the reflector layer and the electrode layer
To form Here, the first dielectric layers (a), (b),
(C), (d) and the emission wavelength λ of the phosphor layer and the second dielectric layer
The refractive indices n1, n2, n3, and n4 with respect to 0 were measured by an ellipsometer. Furthermore, the film thickness d of each dielectric layer
1, d2, d4 and the film thickness d3 of the phosphor layer are ni · di = λ0 / 4 (1) (i = 1, 2) n3 · d3 = λ0 / 2 · according to the design method of the multilayer optical interference filter. N ... (2) n4.d4 = .lambda.0 / 2.N ... (3) (N is a positive number (1, 2, 3 ...)) It was decided so that the equation was satisfied.

すなわち、エレクトロルミネセンスと光干渉多層膜フ
ィルタを兼ね備えたEL素子を形成したことになる。
That is, an EL element having both electroluminescence and a light interference multilayer film filter is formed.

この第1図に示した本発明の一実施例の薄膜EL装置の
電圧一輝度特性は、第8図のようになり、蛍光体層から
の輝度を発光面より効率的に取り出せることができるこ
とが確かめられた。
The voltage-luminance characteristic of the thin film EL device of the embodiment of the present invention shown in FIG. 1 is as shown in FIG. 8, and the luminance from the phosphor layer can be efficiently extracted from the light emitting surface. I was confirmed.

さらに、蛍光体層に用いる蛍光体材料としては、主な
発光波長が580nmで、黄橙色に発光するZnS:Mnのほか
に、主な発光波長が544nmで緑色発光するZnS:Tb,Fある
いは、ZnS:Tb,P、主な発光波長が650nm近傍で赤色発光
するCaS:Eu、あるいはZnS:Sm、480nm近傍で青色発光す
るSrS:Ce、あるいはZnS:Tmを用いた。また、各第1誘電
体層(a)、(b)、(c)、(d)、第2誘電体層と
しては、酸化イットリウム膜、酸化タンタル膜、酸化ア
ルミニウム膜、酸化けい素膜、窒化けい素膜や、チタン
酸ストロンチウム膜で代表されるペロブスカイト形酸化
物誘電体膜やタンタル酸バリウム膜等のなかから発光波
長に対する屈折率を考慮にいれ選択して用いた。第1表
に本発明に用いた誘電体膜の特性を示した。
Further, as the phosphor material used for the phosphor layer, the main emission wavelength is 580 nm, in addition to ZnS: Mn that emits yellow-orange, ZnS: Tb, F that emits green light with a main emission wavelength of 544 nm, or, ZnS: Tb, P, CaS: Eu or ZnS: Sm, which mainly emits red light in the vicinity of 650 nm, and SrS: Ce or ZnS: Tm, which mainly emits blue light in the vicinity of 480 nm, were used. The first dielectric layers (a), (b), (c), and (d), and the second dielectric layer include yttrium oxide film, tantalum oxide film, aluminum oxide film, silicon oxide film, and nitride. A silicon film, a perovskite oxide dielectric film typified by a strontium titanate film, a barium tantalate film, or the like was selected by considering the refractive index with respect to the emission wavelength and used. Table 1 shows the characteristics of the dielectric film used in the present invention.

また、実施した本発明の誘電体層と蛍光体層の膜厚の
決定は、発光波長λ0と、エリプソメータや光の透過率
の測定により決定された誘電体層と蛍光体層の発光波長
に対する屈折率nの値を用いて第(1)、(2)、
(3)式より決定された。
Further, the thicknesses of the dielectric layer and the phosphor layer of the present invention carried out are determined by the emission wavelength λ0 and the refraction with respect to the emission wavelength of the dielectric layer and the phosphor layer determined by the measurement of the ellipsometer or the light transmittance. Using the value of the rate n, the first (1), (2),
It was determined from the equation (3).

本発明により所望の発光波長を持つ高発光効率を薄膜
EL装置が製造できることを確認した。
According to the present invention, a thin film with high emission efficiency having a desired emission wavelength is obtained.
We have confirmed that EL devices can be manufactured.

この時、選択する発光波長の半値幅を狭くしたほうが
発光効率の増加が顕著に現れた。さらに、光干渉多層膜
フィルタを用いた反射鏡層の反射率を発光を取り出す側
として背面電極の反射率に比べて低く設定した。
At this time, when the half-value width of the selected emission wavelength was narrowed, the luminous efficiency increased remarkably. Further, the reflectance of the reflecting mirror layer using the optical interference multilayer film filter is set lower than the reflectance of the back electrode on the side where the emitted light is taken out.

発明の効果 本発明によれば、高い発光効率で所要の発光波長で発
光する薄膜エレクトロルミネセンス装置ができ、OA機器
用端末、テレビジョン用画像表示装置、ビューファイン
ダ装置としてのフルカラーフラットディスプレイが実現
できる。
EFFECTS OF THE INVENTION According to the present invention, a thin-film electroluminescent device that emits light with a required emission wavelength with high luminous efficiency can be provided, and a full-color flat display as a terminal for OA equipment, an image display device for television, and a viewfinder device is realized. it can.

なお、本発明は、薄膜エレクトロルミネセンス装置の
みならず発光材料に電荷注入型で発光する有機材料を用
いた場合においても光干渉条件を満たした場合は、本発
明の効果が得られる。
Note that the effect of the present invention can be obtained not only in the thin-film electroluminescence device but also in the case of using an organic material that emits light in a charge injection type as a light-emitting material when the light interference condition is satisfied.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の薄膜エレクトロルミネセン
ス装置の基本構成断面図、第2図は、従来例である薄膜
EL素子の断面構造図、第3図は、ファブリー・ペロー型
干渉計の構成図、第4図は、ファブリー・ペロー型干渉
計の動作原理説明図、第5図は、多層膜光干渉フィルタ
の構成図、第6図は、多層膜光干渉フィルタの基本特性
図、第7図は、多層膜光干渉フィルタを挿入した薄膜EL
素子の例の断面構造図、第8図は、本発明の一実施例の
薄膜EL装置の輝度一電圧特性図である。 1……ガラス基板、2……透明電極、4a……第一誘電体
層(a)、4b……第1誘電体層(b)、4c……第1誘電
体層(c)、4d……第1誘電体層(d)、5……蛍光体
層、6……第2誘電体層、7……反射鏡層と電極層を兼
ねた背面電極。
FIG. 1 is a sectional view showing the basic structure of a thin film electroluminescent device according to an embodiment of the present invention, and FIG. 2 is a conventional thin film.
FIG. 3 is a cross-sectional structure diagram of an EL element, FIG. 3 is a configuration diagram of a Fabry-Perot interferometer, FIG. 4 is an operation principle explanatory diagram of the Fabry-Perot interferometer, and FIG. 5 is a multilayer optical interference filter. Configuration diagram, Fig. 6 is a basic characteristic diagram of a multilayer optical interference filter, and Fig. 7 is a thin film EL with a multilayer optical interference filter inserted.
FIG. 8 is a sectional structural view of an example of an element, and FIG. 8 is a luminance-voltage characteristic diagram of a thin film EL device of an example of the present invention. 1 ... Glass substrate, 2 ... Transparent electrode, 4a ... First dielectric layer (a), 4b ... First dielectric layer (b), 4c ... First dielectric layer (c), 4d ... ... 1st dielectric layer (d), 5 ... Phosphor layer, 6 ... 2nd dielectric layer, 7 ... Back electrode which doubled as a reflector layer and an electrode layer.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光透過性を有する電極層と光反射電極層に
より、蛍光体層あるいは蛍光体層と誘電体層の構造体に
電圧が印加されるように構成されるとともに、前記構造
体内における、光の取出側に、前記蛍光体層より放射さ
れる発光波長の任意の波長λを選択的に透過する多層膜
の光干渉フィルタを、前記構造体に屈折率の低い誘電体
膜1と屈折率の高い誘電体膜2を交互にλ/4=膜厚・屈
折率の式に従って誘電体膜2、誘電体膜1の順に2層以
上積層し、さらに誘電体膜1より高い屈折率を有する蛍
光体層をλ/2・N(Nは1以上の整数)=膜厚・屈折率
の式に従って積層し、さらに誘電体膜3をλ/4・正数=
膜厚・屈折率の式に従って誘電体膜3を積層した構成に
したことを特徴とする光干渉フィルタを含む薄膜エレク
トロルミネセンス装置。
1. A light-transmitting electrode layer and a light-reflecting electrode layer are configured so that a voltage is applied to a structure of a phosphor layer or a structure of a phosphor layer and a dielectric layer, and in the structure. On the light extraction side, a multilayer optical interference filter that selectively transmits an arbitrary wavelength λ of the emission wavelength emitted from the phosphor layer is refracted on the structure by the dielectric film 1 having a low refractive index. The dielectric film 2 having a high refractive index is alternately laminated according to the formula of λ / 4 = thickness / refractive index in the order of two or more layers of the dielectric film 2 and the dielectric film 1, and has a higher refractive index than the dielectric film 1. Phosphor layers are laminated according to the formula of λ / 2 · N (N is an integer of 1 or more) = thickness / refractive index, and further the dielectric film 3 is λ / 4 · positive number =
A thin film electroluminescence device including an optical interference filter, characterized in that dielectric films 3 are laminated according to the formulas of film thickness and refractive index.
【請求項2】誘電体層として可視域において屈折率が2
以上の値を持つペロブスカイト形酸化物あるいはタンタ
ル酸化物と可視域において屈折率が1以上2未満の酸室
化物を用いることを特徴とする請求項(1)記載の光干
渉フィルタを含む薄膜エレクトロルミネセンス装置。
2. A dielectric layer having a refractive index of 2 in the visible region.
A thin film electroluminescent device including an optical interference filter according to claim 1, wherein a perovskite type oxide or tantalum oxide having the above value and an acid chamber having a refractive index in the visible region of 1 or more and less than 2 are used. Sense device.
JP1327901A 1989-12-18 1989-12-18 Thin film electroluminescent device including optical interference filter Expired - Fee Related JP2689661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1327901A JP2689661B2 (en) 1989-12-18 1989-12-18 Thin film electroluminescent device including optical interference filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1327901A JP2689661B2 (en) 1989-12-18 1989-12-18 Thin film electroluminescent device including optical interference filter

Publications (2)

Publication Number Publication Date
JPH03187186A JPH03187186A (en) 1991-08-15
JP2689661B2 true JP2689661B2 (en) 1997-12-10

Family

ID=18204260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1327901A Expired - Fee Related JP2689661B2 (en) 1989-12-18 1989-12-18 Thin film electroluminescent device including optical interference filter

Country Status (1)

Country Link
JP (1) JP2689661B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3274527B2 (en) * 1992-09-22 2002-04-15 株式会社日立製作所 Organic light emitting device and its substrate
CA2277654A1 (en) * 1999-07-19 2001-01-19 Luxell Technologies Inc. Electroluminescent display packaging and method therefor
JP2002110344A (en) * 2000-09-29 2002-04-12 Tdk Corp Thin film el element and its manufacturing method
US7812522B2 (en) * 2004-07-22 2010-10-12 Ifire Ip Corporation Aluminum oxide and aluminum oxynitride layers for use with phosphors for electroluminescent displays
KR20080075531A (en) * 2005-11-21 2008-08-18 에이쥐씨 플랫 글래스 유럽 에스에이 Light radiation emitting panel
KR102076803B1 (en) * 2013-07-17 2020-02-12 엘지이노텍 주식회사 Optical filter and camera module for comprising the same

Also Published As

Publication number Publication date
JPH03187186A (en) 1991-08-15

Similar Documents

Publication Publication Date Title
JP2553696B2 (en) Multicolor light emitting thin film electroluminescent device
EP0653902B1 (en) Variable wavelength luminescent device and control method therefor
US5554911A (en) Light-emitting elements
JPH01220394A (en) High-intensity el element
CN110299472B (en) Array substrate, display panel and display device
JP2004247278A (en) Electroluminescent display device and its manufacturing method
JP2689661B2 (en) Thin film electroluminescent device including optical interference filter
JP2009158140A (en) Electroluminescent element, display using this, and illumination device
JP2583994B2 (en) Thin-film electroluminescence device
JPS63148597A (en) Thin film el device
KR101057349B1 (en) White light source with enhanced brightness
JPH0428197A (en) End-face radiating type electroluminescent element and its driving method
JPH04359B2 (en)
JPH088064A (en) Electroluminescent element and multicolor-emission electroluminescent element
JPS5928036B2 (en) Thin film EL element
JPH0574572A (en) Thin film el element
JP2000208257A (en) Light emitting device and image display unit
JPH0733433Y2 (en) Thin film EL device
JPH01149397A (en) Electroluminescence element
JPS5835587A (en) Thin film el element
JPH0778689A (en) Thin-film electroluminescence element
JPH07130471A (en) Electroluminescent element
JP2000195678A (en) Luminescent element and image display device
JPH01315987A (en) Multicolor display type film electroluminescence element
JPH05211094A (en) Thin film el element and reflection coefficient optimizing device thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees