JP2681974B2 - X-ray surface stress measuring device - Google Patents

X-ray surface stress measuring device

Info

Publication number
JP2681974B2
JP2681974B2 JP63046473A JP4647388A JP2681974B2 JP 2681974 B2 JP2681974 B2 JP 2681974B2 JP 63046473 A JP63046473 A JP 63046473A JP 4647388 A JP4647388 A JP 4647388A JP 2681974 B2 JP2681974 B2 JP 2681974B2
Authority
JP
Japan
Prior art keywords
sample
ray
rays
stress
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63046473A
Other languages
Japanese (ja)
Other versions
JPH01219658A (en
Inventor
晴男 関口
寛 江南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63046473A priority Critical patent/JP2681974B2/en
Publication of JPH01219658A publication Critical patent/JPH01219658A/en
Application granted granted Critical
Publication of JP2681974B2 publication Critical patent/JP2681974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は、試料の表面層や薄膜の応力をX線の回折強
度により測定する装置に関する。
TECHNICAL FIELD The present invention relates to an apparatus for measuring stress of a surface layer or a thin film of a sample by X-ray diffraction intensity.

(従来技術) 金属表面層の応力測定は、通常X線の回折強度を検出
することにより行なわれているが、X管球のターゲット
を構成する材料に制約がある関係上、X線エネルギーが
特定されてしまって表面から一定の深さ、例えば鉄の
(211)面をクロム管球を使用して測定すると、X線が
t=6μmまで透過するため(第3図)、この厚さ6μ
mの平均値として検出されることになる。
(Prior Art) The stress measurement of the metal surface layer is usually performed by detecting the diffraction intensity of X-rays, but the X-ray energy is specified because of the restriction on the material forming the target of the X-tube. Therefore, when measuring a certain depth from the surface, for example, the iron (211) plane using a chrome tube, X-rays penetrate up to t = 6μm (Fig. 3), so this thickness 6μ
It will be detected as the average value of m.

このような問題を解消するため、目的とする物質をX
線の侵入深さより薄く薄膜状に形成して測定する方法も
提案されているが、薄膜を基板に形成する関係上、基板
をなす母材からの回折線や蛍光X線の影響により依然と
して測定精度が低いという問題を抱えている。
In order to solve such problems, X
A method of forming a thin film thinner than the penetration depth of the line has been proposed, but because the thin film is formed on the substrate, the measurement accuracy is still affected by the influence of the diffraction line and fluorescent X-ray from the base material forming the substrate. Has a problem of low.

(目的) 本発明はこのような問題に鑑みてなされたものであっ
て、その目的とするところは基板に薄膜を形成すること
なく、可及的に薄い層についての応力を高い精度により
測定することができる新規なX線応力測定装置を提供す
ることにある。
(Purpose) The present invention has been made in view of such a problem, and an object of the present invention is to measure a stress in a thinnest possible layer with high accuracy without forming a thin film on a substrate. An object of the present invention is to provide a new X-ray stress measurement device that can perform the measurement.

(発明の概要) すなわち、本発明が特徴とするところは、線源からの
X線をソーラスリットを介して照射するX線照射手段
と、該手段からのX線に対して試料面を略平行に近い角
度に保持する試料載置手段と、試料からの回折X線を検
出する検出手段と、試料平面上で直交する2方向の回折
強度に基づいて各方向の応力を演算する信号処理手段を
備えるようにした点にある。
(Summary of the Invention) That is, the feature of the present invention is that an X-ray irradiating means for irradiating X-rays from a radiation source through a solar slit and a sample surface substantially parallel to the X-rays from the means. A sample mounting means for holding the sample at an angle close to, a detection means for detecting diffracted X-rays from the sample, and a signal processing means for calculating stress in each direction based on diffraction intensity in two directions orthogonal to each other on the sample plane. There is a point to prepare.

(実施例) そこで以下に本発明の詳細を図示した実施例に基づい
て説明する。
(Embodiment) Therefore, the details of the present invention will be described below based on an illustrated embodiment.

第1図は本発明の一実施例を示したものであって、図
中符号1は、X線管球2の照射口前方に配設された一次
側ソーラスリットで、後述する試料載置台3の表面に対
して可及的に小さい入射角βで試料にX線を入射させる
ように設定されている。3は前述の試料載置台で、第2
図に示したように、X線光路を含む平面に垂直な軸Aに
より回動可能な基台3aに取付けた第1の枠3b、3bにX線
光路を含む平面上の軸3cに対しても回動可能に取付けた
第2の枠3dの面内で回動可能に取付けて構成されてい
る。
FIG. 1 shows an embodiment of the present invention, in which reference numeral 1 is a primary side solar slit arranged in front of an irradiation opening of an X-ray tube 2, and a sample mounting table 3 described later. The X-rays are set to enter the sample at an incident angle β that is as small as possible with respect to the surface. 3 is the above-mentioned sample mounting table, and the second
As shown in the figure, the first frames 3b and 3b mounted on the base 3a rotatable about the axis A perpendicular to the plane including the X-ray optical path are attached to the axis 3c on the plane including the X-ray optical path. Is also rotatably attached within the plane of the second frame 3d rotatably attached.

再び第1図に戻って、4は試料からの回折X線を受け
る検出器で、試料載置台3側に配設された二次側ソーラ
スリット5を介して回折X線を受け、その信号を後述す
る信号処理装置に出力するように構成されている。
Returning to FIG. 1 again, 4 is a detector for receiving the diffracted X-rays from the sample, which receives the diffracted X-rays through the secondary side solar slit 5 arranged on the sample mounting table 3 side, and outputs the signal. It is configured to output to a signal processing device described later.

6は、前述の信号処理装置で、マイクロコンピュータ
からなり後述する式に基づいて検出器4からの回折強度
信号を処理するように構成されている。
Reference numeral 6 denotes the above-described signal processing device, which is composed of a microcomputer and is configured to process the diffraction intensity signal from the detector 4 based on the equation described later.

つぎに、このように構成した装置の動作について説明
する。
Next, the operation of the apparatus thus configured will be described.

試料を載置台3に固定して、従来行なわれていたX線
応力測定法における入射角θよりさらにαだけX線の入
射角を試料表面側に寄せて、X線入射方向に対する角度
を、例えば鉄の(211)面の応力が測定可能な角度βに
セットする。
The sample is fixed to the mounting table 3, and the incident angle of the X-ray is shifted toward the sample surface side by α more than the incident angle θ in the conventional X-ray stress measurement method. The stress on the (211) plane of iron is set to an angle β at which it can be measured.

このような準備を終えた段階で装置を作動させると、
X線は、一次側ソーラスリット1により略々平行ビーム
となって極めて浅い入射角βでもって試料に入射するか
ら、試料の表面近傍で急速に減衰して深部まで到達する
ことができず、試料の極めて浅い層でのみ回折を受け
る。
When the device is activated when such preparations are completed,
The X-ray becomes a substantially parallel beam by the primary side solar slit 1 and enters the sample with an extremely shallow incident angle β, so that it cannot be rapidly attenuated near the surface of the sample and reach the deep portion. Is diffracted only in the extremely shallow layer of.

すなわち、従来法によるX線の入射角をθ、θ−β=
αとすると、 照射されたX線は、 なる関係に基づいて減衰するから、強度が1/100まで
減衰する点までの深さをt1とすると、X線の侵入深さt1
は、 e−2μt/(sinθ・t)=100 なる関係式により表わされる。
That is, the incident angle of the X-ray by the conventional method is θ, θ−β =
If it is α, the irradiated X-ray is As the depth to the point where the intensity is attenuated to 1/100 is t 1 , the penetration depth of X-ray is t 1
Is expressed by a relational expression of e −2 μt / (sin θ · t) = 100.

ここで、 2/sinθとして1/sin(θ−α)+1/sin(θ+α) とすると、侵入深さt1は、t1/t0=0.6つまり従来法に
おける侵入深さt0の60%(3.5μm)となる。
Here, assuming that 2 / sin θ is 1 / sin (θ−α) + 1 / sin (θ + α), the penetration depth t 1 is t 1 / t 0 = 0.6, that is, 60% of the penetration depth t 0 in the conventional method. (3.5 μm).

試料に侵入したX線は、表面層近傍の応力に依存した
回折X線となって二次側ソーラスリット5を介して検出
器4に入射する。
The X-rays that have entered the sample become diffracted X-rays that depend on the stress in the vicinity of the surface layer and enter the detector 4 via the secondary side solar slit 5.

ところで、試料面は、X線に対して略々並行に近い角
度にセットされているため、X線光路に対して垂直方向
(第4図x軸方向)の応力成分σxだけでなく、光路に
水平方向(図中y軸方向)の応力成分σyを含んだ値σ
x′、つまりσx+K・σyとして回折強度が検出され
る。
By the way, since the sample surface is set at an angle almost parallel to the X-ray, not only the stress component σx in the direction perpendicular to the X-ray optical path (x-axis direction in FIG. 4) but also in the optical path. A value σ that includes the stress component σy in the horizontal direction (y-axis direction in the figure)
The diffraction intensity is detected as x ′, that is, σx + K · σy.

このようにして試料の一方向についての測定が終了し
た段階で、試料載置台3を90度回動させ、再び前述と同
様の過程により回折強度を求めると、一次側ソーラスリ
ット1からのX線は前回の測定における軸方向に直交し
たY軸方向成分σyにX軸方向成分σxが影響した値σ
y′、つまりσy+K・σxとして回折強度が検出され
る。
When the measurement of the sample in one direction is completed in this way, the sample mounting table 3 is rotated by 90 degrees, and the diffraction intensity is obtained again by the same process as described above, and the X-ray from the primary side solar slit 1 is obtained. Is the value σ that the X-axis direction component σx affects the Y-axis direction component σy orthogonal to the axial direction in the previous measurement.
The diffraction intensity is detected as y ′, that is, σy + K · σx.

2方向の測定が終了した段階で、上記測定結果σx′
=σx+K・σy、及びσy′ =σy+K・σxを基に真のX方向の応力σx、及び
Y方向の応力σyについて求めると、 σx=(σx′−σy′)/K−1 σy=(σy′−σx′)/K−1 となる。
When the measurement in two directions is completed, the above measurement result σx ′
= Σx + K · σy and σy ′ = σy + K · σx, the true stress σx in the X direction and the stress σy in the Y direction are calculated as σx = (σx′−σy ′) / K−1 σy = (σy ′ −σx ′) / K−1.

(なお、定数Kは、試料表面と放射線の入射角βによ
り幾何的に決まる定数で、理論的にもまた、実験的、つ
まり表面応力が既知である標準試料を用いて測定してお
くことができるものである。) これにより、極めて浅い表面層についての2方向の正
確な応力を得ることになる。
(The constant K is a constant that is geometrically determined by the incident angle β of the sample surface and the radiation, and theoretically and experimentally, that is, it may be measured using a standard sample whose surface stress is known. This makes it possible to obtain accurate bidirectional stresses for extremely shallow surface layers.

なお、この実施例においては、基板材料を試料とする
場合を例に採って説明したが、母材表面に薄膜を形成し
た試料に適用してもX線侵入深さが極めて小さいから、
母材による回折X線の発生を抑えて薄膜応力を正確に測
定できることは明らかである。
In this embodiment, the case where the substrate material is used as the sample has been described as an example, but since the X-ray penetration depth is extremely small even when applied to the sample in which the thin film is formed on the surface of the base material,
It is obvious that thin film stress can be accurately measured by suppressing the generation of diffracted X-rays by the base material.

また、この実施例においては、極表面層の応力測定に
ついて説明したが、入射角を極めて浅く取ることができ
る関係上、θ走査面に対して強い集合組織を持つ材料に
あっても、十分な回折強度を得ることができる角度に入
射角を設定することが可能となる。
Further, in this example, the stress measurement of the extreme surface layer was described, but since the incident angle can be made extremely shallow, even a material having a strong texture with respect to the θ scanning plane is sufficient. It is possible to set the incident angle to an angle at which the diffraction intensity can be obtained.

(効果) 以上、説明したように本発明によれば、線源からのX
線をソーラスリットを介して照射するX線照射手段と、
該手段からのX線に対して試料面を略並行に近い角度に
保持する試料載置手段と、試料からの回折X線を検出す
る検出手段と、試料平面上で直交する2方向の回折強度
に基づいて各方向の応力を演算する信号処理手段を備え
たので、侵入深さを従来法における60パーセント程度に
抑えて母材等からの回折線や蛍光X線の発生を防止して
表面層の応力を高い精度により測定することができる。
(Effect) As described above, according to the present invention, X from the radiation source is
X-ray irradiation means for irradiating rays through a solar slit,
Sample mounting means for holding the sample surface at an angle nearly parallel to the X-rays from the means, detection means for detecting diffracted X-rays from the sample, and diffraction intensity in two directions orthogonal to each other on the sample plane. Since the signal processing means for calculating the stress in each direction based on the above is provided, the penetration depth is suppressed to about 60% in the conventional method to prevent the generation of diffraction lines and fluorescent X-rays from the base material, etc. Can be measured with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す装置の構成図、第2図
は同上装置に使用する試料台の一実施例を示す側面図、
第3、4図はそれぞれ同上装置の動作を示す説明図であ
る。 1……一次側ソーラスリット 2……X線管球 3……試料載置台、4……X線検出器 5……二次側ソーラスリット
FIG. 1 is a block diagram of an apparatus showing an embodiment of the present invention, FIG. 2 is a side view showing an embodiment of a sample table used in the same apparatus,
3 and 4 are explanatory views showing the operation of the above apparatus. 1 …… Primary side solar slit 2 …… X-ray tube 3 …… Sample mount table 4 …… X-ray detector 5 …… Secondary side solar slit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】線源からのX線をソーラスリットを介して
照射するX線照射手段と、該手段からのX線に対して試
料面を略平行に近い角度に保持する試料載置手段と、試
料からの回折X線を検出する検出手段と、試料平面上で
直交する2方向の回折強度に基づいて各方向の応力を演
算する信号処理手段を備えてなるX線表面応力測定装
置。
1. X-ray irradiating means for irradiating X-rays from a radiation source through a solar slit, and sample placing means for holding a sample surface at an angle substantially parallel to the X-rays from the means. An X-ray surface stress measuring device comprising a detecting means for detecting diffracted X-rays from a sample and a signal processing means for calculating stress in each direction based on diffraction directions in two directions orthogonal to each other on a sample plane.
JP63046473A 1988-02-29 1988-02-29 X-ray surface stress measuring device Expired - Lifetime JP2681974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63046473A JP2681974B2 (en) 1988-02-29 1988-02-29 X-ray surface stress measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63046473A JP2681974B2 (en) 1988-02-29 1988-02-29 X-ray surface stress measuring device

Publications (2)

Publication Number Publication Date
JPH01219658A JPH01219658A (en) 1989-09-01
JP2681974B2 true JP2681974B2 (en) 1997-11-26

Family

ID=12748159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63046473A Expired - Lifetime JP2681974B2 (en) 1988-02-29 1988-02-29 X-ray surface stress measuring device

Country Status (1)

Country Link
JP (1) JP2681974B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149081A (en) * 1974-10-25 1976-04-27 Hitachi Ltd Shiryono etsukususenoryokusokuteiho

Also Published As

Publication number Publication date
JPH01219658A (en) 1989-09-01

Similar Documents

Publication Publication Date Title
KR102070263B1 (en) Angle calibration for grazing-incidence x-ray fluorescence (gixrf)
US7583788B2 (en) Measuring device for the shortwavelength x ray diffraction and a method thereof
US7813470B2 (en) Three-dimensional contents determination method using transmitted x-ray
CN109374659B (en) Positioning method of short-wavelength X-ray diffraction test sample
US7600916B2 (en) Target alignment for X-ray scattering measurements
JP2821585B2 (en) In-plane distribution measuring method and apparatus
JP2681974B2 (en) X-ray surface stress measuring device
US20220412901A1 (en) Device and method for measuring short-wavelength characteristic x-ray diffraction based on array detection
US5418828A (en) Nondestructive method and apparatus for imaging grains in curved surfaces of polycrystalline articles
US5872830A (en) Device and method of imaging or measuring of a radiation source
JPS5875051A (en) Method and device for determining orientation of crystal
CN113984815A (en) Efficient Compton scattering imaging system based on inverse Compton scattering X-ray source
US3504178A (en) Method for determining crystall-ographic orientation
JPH05296946A (en) X-ray diffraction device
JP2780324B2 (en) X-ray thickness gauge
JP3626965B2 (en) X-ray apparatus and X-ray measurement method
JP2952284B2 (en) X-ray optical system evaluation method
WO2001096841A2 (en) X-ray reflectivity apparatus and method
JPH02266249A (en) Method for measuring x-ray diffraction of crystal plane
JP3777581B2 (en) Film thickness measurement method using X-ray diffraction method
JPH02107952A (en) X-ray diffraction measurement for powder
JP2594220B2 (en) X-ray fluorescence analysis method
JPH01244344A (en) Apparatus for measuring x-ray absorbing spectrum
JP2020139829A (en) Three-dimensional image generation device and coefficient calculation method for three-dimensional image generation device
JPH03269351A (en) X-ray measuring method for main strain distribution of thin film