JP2679206B2 - Manufacturing method of anisotropic rare earth magnet - Google Patents

Manufacturing method of anisotropic rare earth magnet

Info

Publication number
JP2679206B2
JP2679206B2 JP1526589A JP1526589A JP2679206B2 JP 2679206 B2 JP2679206 B2 JP 2679206B2 JP 1526589 A JP1526589 A JP 1526589A JP 1526589 A JP1526589 A JP 1526589A JP 2679206 B2 JP2679206 B2 JP 2679206B2
Authority
JP
Japan
Prior art keywords
rare earth
earth magnet
extrusion molding
magnet
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1526589A
Other languages
Japanese (ja)
Other versions
JPH02196408A (en
Inventor
俊哉 木南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP1526589A priority Critical patent/JP2679206B2/en
Publication of JPH02196408A publication Critical patent/JPH02196408A/en
Application granted granted Critical
Publication of JP2679206B2 publication Critical patent/JP2679206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は希土類磁石の製造方法に関し、詳しくは素
材を所定形状に成形する方法に特徴を有するものに関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for producing a rare earth magnet, and more particularly to a method characterized by a method for forming a raw material into a predetermined shape.

(従来の技術) 希土類磁石は優れた磁気特性を有することから、近年
その開発・研究が盛んに行われている。
(Prior Art) Since rare earth magnets have excellent magnetic characteristics, their development and research have been actively conducted in recent years.

この希土類磁石には等方性磁石と異方性磁石とがある
が、異方性磁石を得るためには少なくとも最終形状に成
形するまでの段階で素材を温間で塑性変形させることが
必要である。その塑性変形の一手段として、磁石素材を
押出成形することが考えられているが、このような押出
成形によって素材を所定形状に成形する場合、製品とし
ての特性を一定に保つためにその端部を一部切り捨てる
ことが必要となる。しかしながらこのように成形体の一
部を切り捨てることになればそれだけ材料の歩留率は悪
くなり、ひいては製品のコストが高くなってしまう。
There are isotropic magnets and anisotropic magnets in this rare earth magnet, but in order to obtain an anisotropic magnet, it is necessary to warm plastically deform the material at least in the stage until it is formed into the final shape. is there. It is considered to extrude a magnet material as one means of the plastic deformation, but when the material is formed into a predetermined shape by such extrusion molding, its end portion is kept in order to keep the characteristics as a product constant. Will need to be truncated. However, if a part of the molded body is cut off in this way, the yield rate of the material becomes worse, and the cost of the product becomes higher.

(課題を解決するための手段) 本発明はこのような課題を解決するためになされたも
のであり、その要旨は、希土類磁石用素材を成形した後
磁化処理して異方性磁石を製造するに際し、該素材の成
形方法として、ダイスの凹所内に充填した素材をポンチ
の押込みにより後方に押し出す後方押出成形法を用いる
とともに、該押出成形の際に該素材の前記凹所底部側の
所定厚み部分をダミーメタルにて置換し、且つ該押出成
形後において成形体を押出方向と直角な方向に磁化処理
して磁石化することにある。
(Means for Solving the Problems) The present invention has been made in order to solve such problems, and the gist thereof is to manufacture an anisotropic magnet by molding a material for a rare earth magnet and then magnetizing it. In this case, as a molding method of the material, a backward extrusion molding method is used in which the material filled in the recess of the die is pushed backward by pushing the punch, and at the time of the extrusion molding, a predetermined thickness of the material on the bottom side of the recess is used. A part is replaced with a dummy metal, and after the extrusion molding, the molded body is magnetized in a direction perpendicular to the extrusion direction to be magnetized.

(作用及び発明の効果) 本発明によれば成形と異方化処理とを同時に行うこと
ができる。即ち前述したように異方性の磁石を得るため
には、少なくとも最終形状に成形するまでの段階で素材
を温間で塑性変形させることが必要であるが、本発明の
後方押出成形法を用いればこのような塑性変形と成形と
を同時に行うことができる。
(Operation and Effect of the Invention) According to the present invention, molding and anisotropic treatment can be performed at the same time. That is, as described above, in order to obtain an anisotropic magnet, it is necessary to plastically deform the raw material at least at the stage until it is formed into the final shape, but the backward extrusion molding method of the present invention is used. For example, such plastic deformation and forming can be performed at the same time.

しかも本発明によれば、高価且つ貴重な希土類磁石材
料の消費を極力抑え得て歩留りを高めることができる。
Moreover, according to the present invention, the consumption of expensive and valuable rare earth magnet materials can be suppressed as much as possible, and the yield can be increased.

即ち希土類磁石を塑性変形させて最終形状に成形する
場合、一部切捨て部分が出るのを避けられないが、本発
明においては成形方法として後方押出を用いるととも
に、最終的に切捨て部分となる素材のダイス凹所底部側
の一部を代用メタル、即ちダミーメタルにて置換するよ
うにしていることから、かかるダミーメタルとして低廉
な材料(例えば36Ni−Fe)を用いておけば、成形後切捨
て部分となるのはこの低廉なダミーメタル部分であり、
その分だけ希土類磁石素材の切捨て量は少なくなって、
歩留率が飛躍的に向上するのである。
That is, when plastically deforming the rare earth magnet to form the final shape, it is inevitable that a part of the cut-out portion will come out, but in the present invention, backward extrusion is used as the forming method, and the material of the cut-out portion is finally formed. Since a part of the bottom side of the die recess is replaced with a substitute metal, that is, a dummy metal, if a low-priced material (for example, 36Ni-Fe) is used as such a dummy metal, it will be cut off after molding. It is this cheap dummy metal part,
As a result, the amount of rare earth magnet material cut off is reduced,
The yield rate is dramatically improved.

(実施例) 次に本発明の特徴をより明確にすべく以下にその実施
例を詳述する。
(Example) Next, in order to clarify the characteristics of the present invention, the example will be described in detail below.

[実施例1] R−Fe−B系合金粉末(Rは希土類元素)の一例とし
てFe−30Nd−1B(重量%)の合金粉末を非酸化性雰囲気
中700℃(一般には600〜900℃)の温度,1.5t/cm2の圧力
で30mmφの円板に圧粉した。そして第1図に示すように
この圧粉体10をダイス12の凹所14内に充填するととも
に、底部にダミーメタル16を置いて温度700℃(一般に
は600〜900℃),圧力2t/cm2の条件でポンチ18を押し込
んで後方押出成形し、外形30mmφ,内径24mmφのリング
成形体20(第2図)に成形した。尚ダミーメタル16とし
ては36Ni−Feを用いた。
[Example 1] As an example of an R-Fe-B based alloy powder (R is a rare earth element), an alloy powder of Fe-30Nd-1B (% by weight) is 700 ° C in a non-oxidizing atmosphere (generally 600 to 900 ° C). The powder was pressed into a 30 mmφ disk at a temperature of 1.5 t / cm 2 . Then, as shown in FIG. 1, the green compact 10 is filled in the recess 14 of the die 12, and the dummy metal 16 is placed on the bottom of the die at a temperature of 700 ° C. (generally 600 to 900 ° C.) and a pressure of 2 t / cm. The punch 18 was pushed in under the conditions of No. 2 and backward extrusion molding was performed to form a ring molded body 20 (Fig. 2) having an outer diameter of 30 mmφ and an inner diameter of 24 mmφ. As the dummy metal 16, 36Ni-Fe was used.

次に成形体20を取り出して半径方向に磁化し、その特
性値としての最大エネルギー積(BH)maxを測定したと
ころ、32MGOeであった。尚、後方押出成形後、成形体20
の端部を一部切り捨てたが、その際希土類磁石素材の切
捨て量は極く僅か(底部側1mmのみ)で足りた。かかる
後方押出成形の場合、一般に底部側の切捨て部分の厚み
は、通常、リング成形体20の肉厚以上となる(3mm以
上)が、本例ではこれが1mmで足りたのである。
Next, the molded body 20 was taken out, magnetized in the radial direction, and the maximum energy product (BH) max as its characteristic value was measured and found to be 32 MGOe. After the rear extrusion molding, the molded body 20
A part of the end of was cut off, but the amount of rare earth magnet material cut off was extremely small (only 1 mm on the bottom side). In the case of such rear extrusion molding, the thickness of the cut-off portion on the bottom side is generally not less than the wall thickness of the ring molded body 20 (3 mm or more), but in this example, 1 mm is sufficient.

[比較例1] Fe−30Nd−1B(重量%)の合金粉末を温度700℃,厚
み1.5t/cm2で外形30mmφ,内径24mmφのリング状に圧粉
した後磁化して等方性のリング磁石を得た。このとき、
圧粉体の厚みは10mmであり、このうち底部5mmを切り捨
てることが必要であった(製品厚み5mm)。
[Comparative Example 1] Fe-30Nd-1B (wt%) alloy powder was pressed into a ring shape having an outer diameter of 30 mmφ and an inner diameter of 24 mmφ at a temperature of 700 ° C. and a thickness of 1.5 t / cm 2 , and was magnetized to form an isotropic ring. I got a magnet. At this time,
The green compact had a thickness of 10 mm, of which it was necessary to cut off the bottom 5 mm (product thickness 5 mm).

Fe−30Nd−1B(重量%)の合金粉末を厚み2.5mm,67mm
φの36Ni鋼の中空缶に充填して真空脱気し、これを温度
700℃で前方押出加工した後半径方向に磁化した。この
とき成形体の厚みは10mmで、このうち5mmの切り捨てが
必要であった(製品厚み5mm)。
Fe-30Nd-1B (wt%) alloy powder 2.5mm, 67mm thick
Fill a φ36Ni steel hollow can and degas it in a vacuum,
It was extruded at 700 ° C and magnetized in the radial direction. At this time, the thickness of the molded body was 10 mm, of which 5 mm had to be cut off (product thickness 5 mm).

これらの結果から解るように、本例の方法によれば希
土類磁石材料の切捨て量が少なくて済み、材料の歩留率
が向上する効果が生ずる。
As can be seen from these results, according to the method of this example, the amount of the rare earth magnet material to be cut off can be reduced, and the yield rate of the material can be improved.

以上本発明の実施例を詳述したが、本発明はその主旨
を逸脱しない範囲において、当業者の知識に基づき種々
変更を加えた態様で実施することが可能である。
Although the embodiments of the present invention have been described in detail above, the present invention can be implemented in a mode in which various modifications are made based on the knowledge of those skilled in the art without departing from the spirit of the invention.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は夫々本発明の一実施例方法を説明す
るための説明図である。 12:ダイス 14:凹所 16:ダミーメタル 18:ポンチ 18:ポンチ 20:成形体
1 and 2 are explanatory views for explaining a method of an embodiment of the present invention. 12: Die 14: Recess 16: Dummy metal 18: Punch 18: Punch 20: Molded body

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】希土類磁石用素材を成形した後磁化処理し
て異方性磁石を製造するに際し、該素材の成形方法とし
て、ダイスの凹所内に充填した素材をポンチの押込みに
より後方に押し出す後方押出成形法を用いるとともに、
該押出成形の際に該素材の前記凹所底部側の所定厚み部
分をダミーメタルにて置換し、且つ該押出成形後におい
て成形体を押出方向と直角な方向に磁化処理して磁石化
することを特徴とする異方性希土類磁石の製造方法。
1. A method for forming an anisotropic magnet by magnetizing a material for a rare earth magnet and then magnetizing the material, and as a method for molding the material, the material filled in the recess of the die is pushed backward by pushing a punch. While using the extrusion molding method,
During the extrusion molding, the predetermined thickness portion of the material on the bottom side of the recess is replaced with a dummy metal, and after the extrusion molding, the molded body is magnetized in a direction perpendicular to the extrusion direction to be magnetized. And a method for producing an anisotropic rare earth magnet.
JP1526589A 1989-01-25 1989-01-25 Manufacturing method of anisotropic rare earth magnet Expired - Lifetime JP2679206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1526589A JP2679206B2 (en) 1989-01-25 1989-01-25 Manufacturing method of anisotropic rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1526589A JP2679206B2 (en) 1989-01-25 1989-01-25 Manufacturing method of anisotropic rare earth magnet

Publications (2)

Publication Number Publication Date
JPH02196408A JPH02196408A (en) 1990-08-03
JP2679206B2 true JP2679206B2 (en) 1997-11-19

Family

ID=11884029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1526589A Expired - Lifetime JP2679206B2 (en) 1989-01-25 1989-01-25 Manufacturing method of anisotropic rare earth magnet

Country Status (1)

Country Link
JP (1) JP2679206B2 (en)

Also Published As

Publication number Publication date
JPH02196408A (en) 1990-08-03

Similar Documents

Publication Publication Date Title
JP3033127B2 (en) Rare earth magnet alloy with good hot workability
JP3132393B2 (en) Method for producing R-Fe-B based radial anisotropic sintered ring magnet
JP2679206B2 (en) Manufacturing method of anisotropic rare earth magnet
EP0348038B1 (en) Manufacturing method of a permanent magnet
JP2002057015A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JP3057897B2 (en) Manufacturing method of anisotropic rare earth magnet
JP2870883B2 (en) Method for producing radially anisotropic NdFeB magnet
JPH09129463A (en) Manufacturing method and device of rare earth cylindrical magnet material
JP3196224B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JP2791616B2 (en) Manufacturing method of ring-shaped magnet material
JP2689445B2 (en) Rare earth magnet manufacturing method
JP2002356703A (en) Method for producing longitudinal anisotropic magnet material
JP2002057014A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JP2811708B2 (en) Rare earth-iron permanent magnet manufacturing method and mold used for it
JPS61140108A (en) Manufacture of permanent magnet
JPH0997730A (en) Manufacture of sintered permanent magnet
JPH1154352A (en) Manufacture of r-t-b radial anisotropic ring-like sintered magnet
JP2005340261A (en) Rare earth thin plate magnet and manufacturing method thereof
JP2583113B2 (en) Rare earth magnet manufacturing method
JP2001015325A (en) Radial anisotropic rare earth magnet having circular arc section, and manufacturing method and manufacturing equipment thereof
JP3351554B2 (en) Manufacturing method of sintered anisotropic magnet
JPS62264609A (en) Manufacture of cylindrical rare-earth magnet
KR100198358B1 (en) Method for manufacturing high energy permanent magnet in rare earth system
JP2920638B2 (en) Method for manufacturing resin-bonded magnet
JP3078633B2 (en) Manufacturing method of sintered anisotropic magnet