JP2677053B2 - Exhaust particulate deposition amount detector - Google Patents

Exhaust particulate deposition amount detector

Info

Publication number
JP2677053B2
JP2677053B2 JP3171412A JP17141291A JP2677053B2 JP 2677053 B2 JP2677053 B2 JP 2677053B2 JP 3171412 A JP3171412 A JP 3171412A JP 17141291 A JP17141291 A JP 17141291A JP 2677053 B2 JP2677053 B2 JP 2677053B2
Authority
JP
Japan
Prior art keywords
exhaust
amount
engine
ratio
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3171412A
Other languages
Japanese (ja)
Other versions
JPH0518228A (en
Inventor
博通 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3171412A priority Critical patent/JP2677053B2/en
Publication of JPH0518228A publication Critical patent/JPH0518228A/en
Application granted granted Critical
Publication of JP2677053B2 publication Critical patent/JP2677053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes For Solid Components From Exhaust (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、ディーゼル機関から
排出される排気中に含まれる排気微粒子が、排気通路に
設けられた捕集部材に捕集され、この捕集された排気微
粒子の量を検出する排気微粒子堆積量検出装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention collects exhaust particulates contained in exhaust gas discharged from a diesel engine by a trapping member provided in an exhaust passage, and controls the amount of the collected exhaust particulates. The present invention relates to an exhaust particulate deposition amount detection device for detection.

【0002】[0002]

【従来の技術】ディーゼル機関は、燃焼室内における燃
料の燃焼によって排気中にカーボンなどの排気微粒子を
含んでおり、これをそのまま大気中に放出すると、環境
汚染を招いて好ましくない。これを防ぐため、排気通路
に多孔質のセラミックなどからなるフィルタを設け、こ
のフィルタを排気が通過することによって排気微粒子を
付着して捕集する方法が、従来からよく知られている。
この場合、捕集した排気微粒子の堆積量が増大すると、
排気圧力が増大して機関性能に悪影響を及ぼすので、捕
集した排気微粒子を定期的に除去してフィルタの再生作
業を行う必要がある。
2. Description of the Related Art A diesel engine contains exhaust particulates such as carbon in its exhaust due to combustion of fuel in a combustion chamber, and if it is released into the atmosphere as it is, it causes environmental pollution, which is not preferable. In order to prevent this, a method of providing a filter made of porous ceramic or the like in the exhaust passage and collecting exhaust particles by adhering the exhaust particles through the filter has been well known.
In this case, if the amount of collected exhaust particulates increases,
Since the exhaust pressure increases and adversely affects the engine performance, it is necessary to periodically remove the collected exhaust particulates and perform a filter regeneration operation.

【0003】フィルタの再生作業としては、吸気絞りを
行って排気温度を捕集された排気微粒子の燃焼温度以上
に上昇させ、その排気熱によって排気微粒子を燃焼させ
る方法(特開昭58−51235号公報参照)や、フィ
ルタ直前に電気ヒータを設置し、このヒータ熱により排
気微粒子を発火燃焼させる方法(特開昭59−2053
号公報参照)などがある。このようなフィルタの再生作
業に際しては、再生時における排気微粒子の堆積量が少
なすぎて再生時期が早すぎると、不要な吸気絞りによる
運転性の悪化や電力の浪費を招き、また再生時期が遅す
ぎて排気微粒子の堆積量が限界量を超えた場合には、燃
焼温度が高温化してフィルタ寿命が低下することとな
る。
As a filter regenerating operation, a method of performing intake throttling to raise the exhaust temperature to a temperature equal to or higher than the combustion temperature of the collected exhaust particles and burning the exhaust particles by the exhaust heat (Japanese Patent Laid-Open No. 58-51235). (See Japanese Patent Laid-Open Publication No. 59-2053) or an electric heater is installed immediately before the filter, and exhaust heater particles are ignited and burned by the heat of the heater (Japanese Patent Laid-Open No. 59-2053).
(See the official gazette). In the regeneration work of such a filter, if the amount of exhaust particulates accumulated during regeneration is too small and the regeneration time is too early, the unnecessary intake throttling deteriorates the operability and wastes electric power, and the regeneration time is delayed. If the accumulated amount of exhaust particulates exceeds the limit amount due to excess, the combustion temperature becomes high and the filter life is shortened.

【0004】このためフィルタの再生作業は、フィルタ
に捕集され堆積された排気微粒子の量が適正となったと
きを再生時期として行う必要がある。フィルタへの排気
微粒子の堆積量の検出は、機関が搭載された車両の走行
距離や走行時間に基づくもの、機関回転数と機関負荷と
から決定される単位時間当たりの排気微粒子排出量を検
索し、それを積算することによるもの、フィルタ上流側
と下流側との排気通路内におけるそれぞれの排気圧力相
互間の差に基づくもの、などがある。
For this reason, it is necessary to perform the regeneration work of the filter when the regeneration time is when the amount of the exhaust particulates collected and accumulated in the filter becomes appropriate. The amount of exhaust particulates deposited on the filter is detected based on the mileage and traveling time of the vehicle equipped with the engine, and the exhaust particulate emissions per unit time determined from the engine speed and engine load are searched. , By integrating them, based on the difference between the respective exhaust pressures in the exhaust passages on the upstream side and the downstream side of the filter, and the like.

【0005】[0005]

【発明が解決しようとする課題】ところで、このような
付着捕集タイプのフィルタでは、機関の運転状態によっ
て捕集効率が変化し、また捕集された排気微粒子の一部
は、排気圧力や排気流量の変化(増大)によりフィルタ
から離脱することがあり、この離脱する比率も運転状態
によって変化する。
By the way, in such an adhering trapping type filter, the trapping efficiency changes depending on the operating condition of the engine, and a part of the trapped exhaust particulates may be exhaust gas pressure or exhaust gas. The filter may be separated from the filter due to a change (increase) in the flow rate, and the ratio of this separation also changes depending on the operating state.

【0006】また、付着捕集タイプのフィルタに対し、
オープンハニカム触媒を用いて、排気微粒子の低減が可
能であることは、SAE900600にて公表されてい
る。このオープンハニカム触媒の場合、低速連続走行に
おいて、排気微粒子の堆積が発生するが、これにおいて
も運転条件の変化などにより堆積量が変化する。
[0006] In addition, for the filter of the trapping and collecting type,
It has been announced in SAE 900600 that exhaust particulates can be reduced by using an open honeycomb catalyst. In the case of this open honeycomb catalyst, exhaust particulate matter is deposited during low-speed continuous running, but the deposition amount also changes due to changes in operating conditions and the like.

【0007】このため、走行距離や走行時間に基づくも
のや、機関回転数と機関負荷とから排気微粒子排出量を
単に算出するものでは、正確な堆積量が把握できず、ま
たフィルタの前後差圧によるものでは、この前後差圧は
排気流量の大小に大きく影響され、つまり機関の運転状
態に応じた吸入空気量の変化や排気還流の有無などによ
って上記差圧が変動してしまい、正確な捕集状態の判断
が難しい。
For this reason, an accurate accumulation amount cannot be grasped and a differential pressure across the filter cannot be grasped by a method based on the traveling distance or the traveling time or a method that simply calculates the exhaust particulate emission amount from the engine speed and the engine load. In this case, the differential pressure between the front and rear is greatly affected by the magnitude of the exhaust gas flow rate, that is, the differential pressure fluctuates due to changes in the intake air amount according to the operating state of the engine and the presence or absence of exhaust gas recirculation. It is difficult to judge the collection status.

【0008】そこでこの発明は、排気微粒子捕集部材に
捕集されて堆積される排気微粒子の堆積量を精度よく検
出することを目的としている。
Therefore, an object of the present invention is to accurately detect the deposition amount of exhaust particulates collected and deposited by the exhaust particulate collection member.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
にこの発明は、機関の運転状態を検出する運転状態検出
手段11,13と、この運転状態検出手段11,13が
検出した機関運転状態に基づき機関から排出される排気
微粒子の量を演算する排気微粒子排出量演算手段15
と、前記運転状態検出手段11,13が検出した機関運
転状態に基づき、機関から排出される排気微粒子量のう
ち排気通路に設けられた排気微粒子捕集部材に捕集され
て堆積される比率を演算する堆積比率演算手段17と、
前記運転状態検出手段11,13が検出した機関運転状
態に基づき、機関から排出される排気微粒子量のうち前
記排気微粒子捕集部材に堆積されずに持ち去られる比率
を演算する持ち去り比率演算手段19と、前記排出量演
算手段15により演算された排気微粒子排出量、堆積比
率演算手段17により演算された堆積比率、及び持ち去
り比率演算手段19により演算された持ち去り比率に基
づき、前記排気微粒子捕集部材に捕集されて堆積される
排気微粒子堆積量を演算する堆積量演算手段21とを有
する構成としてある。
In order to achieve the above-mentioned object, the present invention is directed to operating state detecting means 11 and 13 for detecting the operating state of an engine, and engine operating state detected by the operating state detecting means 11 and 13. Exhaust particulate emission calculation means 15 for calculating the amount of exhaust particulate discharged from the engine based on
Based on the engine operating state detected by the operating state detecting means 11 and 13, the ratio of the amount of exhaust particulate discharged from the engine to be collected and deposited by the exhaust particulate collecting member provided in the exhaust passage is set. A deposition ratio calculation means 17 for calculating;
Based on the engine operating state detected by the operating state detecting means 11 and 13, a take-away ratio calculating means 19 for calculating a ratio of the exhaust particulate amount discharged from the engine that is taken away without being deposited on the exhaust particulate collecting member. And the exhaust particulate trapping amount calculated by the discharge amount computing unit 15, the deposition ratio computed by the deposition ratio computing unit 17, and the carry-out ratio computed by the carry-out ratio computing unit 19. And a deposition amount calculation means 21 for calculating the exhaust particulate deposition amount collected and deposited by the collecting member.

【0010】また、この発明は、機関の運転状態を検出
する運転状態検出手段11,13と、この運転状態検出
手段11,13が検出した機関運転状態に基づき機関か
ら排出される排気微粒子の量を演算する排気微粒子排出
量演算手段15と、排気温度を検出する排気温度検出手
段23と、排気流量を検出する排気流量検出手段25
と、前記排気温度検出手段23が検出した排気温度及び
前記排気流量検出手段25が検出した排気流量に基づ
き、機関から排出される排気微粒子量のうち排気通路に
設けられた排気微粒子捕集部材に捕集されて堆積される
比率を演算する堆積比率演算手段17と、前記排気温度
検出手段23が検出した排気温度及び前記排気流量検出
手段25が検出した排気流量に基づき、機関から排出さ
れる排気微粒子量のうち前記排気微粒子捕集部材に堆積
されずに持ち去られる比率を演算する持ち去り比率演算
手段19と、前記排出量演算手段15により演算された
排気微粒子排出量、堆積比率演算手段17により演算さ
れた堆積比率、及び持ち去り比率演算手段19により演
算された持ち去り比率に基づき、前記排気微粒子捕集部
材に捕集されて堆積される排気微粒子堆積量を演算する
堆積量演算手段21とを有する構成としてもよい。
The present invention also relates to operating state detecting means 11 and 13 for detecting the operating state of the engine, and the amount of exhaust particulate discharged from the engine based on the operating state of the engine detected by the operating state detecting means 11 and 13. Exhaust particulate emission calculation means 15, which calculates the exhaust gas temperature, exhaust temperature detection means 23 which detects the exhaust temperature, and exhaust flow rate detection means 25 which detects the exhaust flow rate.
Based on the exhaust temperature detected by the exhaust temperature detecting means 23 and the exhaust flow rate detected by the exhaust flow rate detecting means 25, the exhaust particulate collection member provided in the exhaust passage out of the exhaust particulate quantity discharged from the engine. Exhaust gas discharged from the engine on the basis of the accumulation ratio calculation means 17 for calculating the ratio of trapped and accumulated, the exhaust gas temperature detected by the exhaust gas temperature detection means 23 and the exhaust gas flow rate detected by the exhaust gas flow rate detection means 25. A carry-out ratio calculating means 19 for calculating a ratio of the amount of fine particles to be carried away without being deposited on the exhaust fine particle collecting member, and an exhaust particle discharge amount / accumulation ratio calculating means 17 calculated by the discharge amount calculating means 15. Based on the calculated deposition ratio and the carry-out ratio calculated by the carry-out ratio calculation means 19, the particles are collected and deposited on the exhaust particulate collection member. It may be configured to have a deposition amount calculating means 21 for calculating the exhaust particulate deposit amount.

【0011】[0011]

【作用】このような構成の排気微粒子堆積量検出装置に
よれば、運転状態検出手段11,13が検出した運転状
態に基づき排気微粒子排出量演算手段15が機関から排
出される排気微粒子の量を演算する。また、機関から排
出される排気微粒子のうち、排気微粒子捕集部材に捕集
されて堆積される比率は堆積比率演算手段17により、
一方堆積されずに持ち去られる比率は持ち去り比率演算
手段19により、それぞれ運転状態検出手段11,13
が検出した運転状態に基づき演算される。そして、これ
ら演算された排気微粒子量、堆積比率及び持ち去り比率
に基づき、堆積量演算手段21は排気微粒子捕集部材に
捕集されて堆積される排気微粒子堆積量を演算する。
According to the exhaust particulate matter deposition amount detection device having such a configuration, the exhaust particulate matter discharge amount computing means 15 determines the amount of exhaust particulate matter discharged from the engine based on the operating state detected by the operating state detecting means 11 and 13. Calculate Further, of the exhaust particulate matter discharged from the engine, the rate of being collected and deposited by the exhaust particulate matter collecting member is calculated by the deposition rate calculation means 17.
On the other hand, the ratios that are carried away without being accumulated are calculated by the carried-out ratio calculating means 19 and the operating state detecting means 11 and 13 respectively.
Is calculated based on the operating state detected by. Then, based on the calculated exhaust particulate amount, the deposition ratio, and the carry-out ratio, the deposition amount computing means 21 computes the exhaust particulate deposition amount collected and deposited by the exhaust particulate collection member.

【0012】また、他の構成の排気微粒子堆積量検出装
置によれば、運転状態検出手段11,13が検出した運
転状態に基づき排気微粒子排出量演算手段15が機関か
ら排出される排気微粒子の量を演算する。また、機関か
ら排出される排気微粒子のうち、排気微粒子捕集部材に
捕集されて堆積される比率は、排気温度検出手段23が
検出した排気温度及び排気流量検出手段25が検出した
排気流量に基づき堆積比率演算手段17が演算し、一方
堆積されずに持ち去られる比率は、上記排気温度及び排
気流量に基づき持ち去り比率演算手段19が演算する。
そして、これら演算された排気微粒子量、堆積比率及び
持ち去り比率に基づき、堆積量演算手段21は排気微粒
子捕集部材に捕集されて堆積される排気微粒子堆積量を
演算する。
Further, according to the exhaust particulate matter deposition amount detecting device having another configuration, the exhaust particulate matter discharge amount computing means 15 discharges the amount of exhaust particulate matter from the engine based on the operating condition detected by the operating condition detecting means 11, 13. Is calculated. The ratio of the exhaust particulate matter discharged from the engine to be collected and deposited by the exhaust particulate collection member is determined by the exhaust temperature detected by the exhaust temperature detecting means 23 and the exhaust flow rate detected by the exhaust flow rate detecting means 25. Based on the exhaust gas temperature and the exhaust gas flow rate, the carry-out ratio calculating means 19 calculates the carry-out ratio calculating means 17 based on the exhaust temperature.
Then, based on the calculated exhaust particulate amount, the deposition ratio, and the carry-out ratio, the deposition amount computing means 21 computes the exhaust particulate deposition amount collected and deposited by the exhaust particulate collection member.

【0013】[0013]

【実施例】以下、この発明の実施例を図面に基づき説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図3は、この発明の第1実施例に係わるデ
ィーゼル機関における排気微粒子堆積量検出装置を示す
全体構成図である。ディーゼル機関の機関本体1には排
気通路としての排気管3が接続され、この排気管3の途
中には、排気中に含まれるカーボンなどの排気微粒子を
捕集し、触媒が担持された排気微粒子捕集部材としての
フィルタ5が設けられている。フィルタ5の上流側の排
気入り口部付近には、フィルタ5に近接して電気ヒータ
7が設けられている。この電気ヒータ7は、フィルタ5
に付着した排気微粒子を発火燃焼させてフィルタ5の再
生を行うものであり、ヒータ駆動回路9により通電され
る。
FIG. 3 is an overall configuration diagram showing an exhaust particulate deposition amount detection device in a diesel engine according to the first embodiment of the present invention. An exhaust pipe 3 as an exhaust passage is connected to an engine body 1 of a diesel engine, and in the middle of the exhaust pipe 3, exhaust particulates such as carbon contained in the exhaust gas are collected to carry a catalyst. A filter 5 as a collection member is provided. An electric heater 7 is provided near the exhaust inlet on the upstream side of the filter 5 and close to the filter 5. This electric heater 7 has a filter 5
The exhaust particulates adhering to are ignited and burned to regenerate the filter 5, which is energized by the heater drive circuit 9.

【0015】機関本体1には、機関回転数を検出する回
転数センサ11及び機関負荷を検出する負荷センサ13
がそれぞれ設けられている。これら回転数センサ11及
び負荷センサ13で、機関の運転状態を検出する運転状
態検出手段を構成している。排気微粒子排出量演算手段
としての排出量演算回路15は、前記回転数センサ11
及び負荷センサ13が検出した機関回転数N及び機関負
荷Qに基づき、図4に示すあらかじめ設定されている単
位時間当たりの排気微粒子排出量ΔPCT(g/h)を
演算する。この排気微粒子排出量ΔPCTは、図4によ
れば排気流量(流速)が少ない低負荷低回転側で少な
く、排気流量が多くなる高負荷高回転側ほど多くなって
いる。
The engine body 1 has a rotation speed sensor 11 for detecting an engine speed and a load sensor 13 for detecting an engine load.
Are provided respectively. The rotation speed sensor 11 and the load sensor 13 constitute an operating state detecting means for detecting the operating state of the engine. The discharge amount calculation circuit 15 as a discharge particle discharge amount calculation means includes the rotation speed sensor 11
Also, based on the engine speed N and the engine load Q detected by the load sensor 13, a preset exhaust particulate matter discharge amount ΔPCT (g / h) shown in FIG. 4 is calculated. According to FIG. 4, the exhaust particulate discharge amount ΔPCT is small on the low load / low rotation side where the exhaust flow rate (flow velocity) is small, and increases on the high load / high rotation side where the exhaust flow rate increases.

【0016】堆積比率演算手段としての堆積比率演算回
路17は、前記回転数センサ11及び負荷センサ13が
検出した機関回転数N及び機関負荷Qに基づき、図5に
示すあらかじめ設定されている排気微粒子のフィルタ5
への堆積比率α(≦1)を演算する。この堆積比率α
は、機関本体1から排出される排気中の排気微粒子のう
ち、フィルタ5に付着して捕集され堆積される比率を示
すもので、図5によれば排気流量(流速)の多くなる高
負荷高回転側で小さく、逆に排気流量(流速)の少なく
なる低負荷低回転側ほど大きくなっている。この堆積比
率αの主因子は排気流量(流速)であるが、排気温度が
高くなると、排気中の可溶性有機物質(SOF)がその
まま酸化されて堆積されないため、排気温度が高い機関
高負荷側では、堆積比率αは見掛上小さくなる。
The deposit ratio calculating circuit 17 as the deposit ratio calculating means is based on the engine speed N and the engine load Q detected by the engine speed sensor 11 and the load sensor 13, and is set in advance as shown in FIG. Filter 5
The deposition rate α (≦ 1) is calculated. This deposition rate α
Represents the ratio of the exhaust particulates in the exhaust gas discharged from the engine body 1 that adhere to the filter 5 and are collected and deposited. According to FIG. 5, the exhaust flow rate (flow velocity) is high and the load is high. It is small on the high rotation side, and conversely, it is large on the low load low rotation side where the exhaust flow rate (flow velocity) decreases. The main factor of the deposition rate α is the exhaust gas flow rate (flow velocity). However, when the exhaust gas temperature becomes high, the soluble organic substance (SOF) in the exhaust gas is oxidized and is not deposited as it is, so on the engine high load side where the exhaust gas temperature is high, , The deposition rate α is apparently small.

【0017】持ち去り比率演算手段としての持ち去り比
率演算回路19は、前記回転数センサ11及び負荷セン
サ13が検出した機関回転数N及び機関負荷Qに基づ
き、図6に実線で示すあらかじめ設定されている排気微
粒子のフィルタ5に対する持ち去り比率β(≦1)を演
算する。なお、図6において一点鎖線は等排気温度を示
すものであってこの排気温度は低負荷低回転側が低く高
負荷高回転側が高くなっている。また、二点鎖線は等排
気流量を示すものであってこの排気流量は低負荷低回転
側が少なく高負荷高回転側が多くなっている。上記持ち
去り比率βは、機関本体1から排出される排気中の排気
微粒子のうち、フィルタ5に堆積されずに酸化されある
いはフィルタ5の下流に排気と共に流出する比率を示す
ものである。
The take-away ratio calculating circuit 19 as the take-away ratio calculating means is preset based on the engine speed N and the engine load Q detected by the rotation speed sensor 11 and the load sensor 13 as shown by a solid line in FIG. The carry-out ratio β (≦ 1) of the exhaust particulates to the filter 5 is calculated. In FIG. 6, the alternate long and short dash line indicates the equal exhaust temperature, and the exhaust temperature is low on the low load / low rotation side and high on the high load / high rotation side. Further, the two-dot chain line shows the equal exhaust flow rate, and this exhaust flow rate is small on the low load low rotation side and high on the high load high rotation side. The carry-out ratio β indicates a ratio of exhaust particulates in the exhaust gas discharged from the engine body 1 that are oxidized without being deposited on the filter 5 or flow out to the downstream of the filter 5 together with the exhaust gas.

【0018】図6によれば、持ち去り比率βは排気温度
や排気流量と同様に低負荷低回転側で小さく高負荷高回
転側で大きくなっている。例えば、排気温度が触媒の活
性化温度に達しない250℃未満では、水分及び軽質S
OFの離脱が主因となり、これらにより付着していた排
気微粒子がフィルタ5から離脱する。排気温度が250
℃以上では、触媒作用によるSOFの酸化と、SOFな
どよって吸着していた黒煙のドライ分の離脱が発生す
る。排気温度が600℃を超えるような高温領域では、
黒煙のドライ分が燃焼して除去される。また、排気流速
の増大によって水分及び軽質SOFなどに拘りなく黒煙
のドライ分などの離脱が発生する。
According to FIG. 6, the carry-out ratio β is small on the low load / low rotation side and large on the high load / high rotation side similarly to the exhaust temperature and the exhaust flow rate. For example, if the exhaust temperature is lower than 250 ° C. at which the catalyst activation temperature is not reached, water and light S
The removal of OF is the main cause, and exhaust particulates adhering to these are removed from the filter 5. Exhaust temperature is 250
When the temperature is higher than 0 ° C, the SOF is oxidized by the catalytic action and the dry portion of the black smoke adsorbed by the SOF or the like is released. In a high temperature range where the exhaust temperature exceeds 600 ° C,
The dry portion of black smoke is burned and removed. Further, due to the increase in the exhaust gas flow rate, the dry matter of black smoke is separated regardless of the water content and the light SOF.

【0019】次に、上記のように構成された排気微粒子
堆積量検出装置の作用を、図7に示す堆積量演算のため
の制御フローチャートに基づき説明する。まず、回転数
センサ11で検出した機関回転数Nを読み込み(ステッ
プS1)、負荷センサ13で検出した機関負荷Qを読み
込む(ステップS2)。これら検出値に基づき、機関本
体1から排出される単位時間当たりの排気微粒子排出量
(ΔPCT)は排出量演算回路15により図4から検索
して演算し(ステップS3)、堆積比率αは堆積比率演
算回路17により図5から検索して演算し(ステップS
4)、さらに持ち去り比率βは持ち去り比率演算回路1
9により図6から検索して演算する(ステップS5)。
Next, the operation of the exhaust particulate matter deposition amount detecting device configured as described above will be described with reference to the control flow chart for calculating the deposition amount shown in FIG. First, the engine speed N detected by the speed sensor 11 is read (step S1), and the engine load Q detected by the load sensor 13 is read (step S2). Based on these detected values, the exhaust particulate matter discharge amount (ΔPCT) discharged from the engine body 1 per unit time is searched by the discharge amount calculation circuit 15 from FIG. 4 and calculated (step S3), and the deposition rate α is the deposition rate. The arithmetic circuit 17 retrieves from FIG. 5 and calculates (step S
4) Further, the take-away ratio β is the take-away ratio calculation circuit 1
9 is used to retrieve from FIG. 6 for calculation (step S5).

【0020】そして、堆積量演算回路21は、前記ステ
ップS3で演算された排気微粒子排出量ΔPCTと、ス
テップS4で演算された堆積比率αとの積ΔPCT×α
を演算してこれを今回の堆積量reg1として記憶し
(ステップS6)、さらにこの堆積量reg1に今まで
の堆積量ΔPCT-1を加算してΔPCT-1+reg1を
演算しこれをreg2として記憶し(ステップS7)、
そして最後にこの堆積量に持ち去り比率βを考慮してr
eg2×(1−β)を演算して最終的な堆積量PCTを
算出する(ステップS8)。堆積量PCTが算出された
ら、この堆積量PCTが所定量以上となったときにヒー
タ駆動回路9を駆動して電気ヒータ7を加熱し、フィル
タ5に付着した排気微粒子を発火燃焼させてフィルタ5
の再生を行う。
The deposit amount calculation circuit 21 then calculates the product ΔPCT × α of the exhaust particulate emission amount ΔPCT calculated in step S3 and the deposit ratio α calculated in step S4.
Is calculated and stored as the current deposition amount reg1 (step S6), and the previous deposition amount ΔPCT −1 is added to this deposition amount reg1 to calculate ΔPCT −1 + reg1 and stored as reg2. (Step S7),
And finally, considering the carry-out ratio β in this accumulation amount, r
The final deposition amount PCT is calculated by calculating eg2 × (1−β) (step S8). When the deposition amount PCT is calculated, the heater driving circuit 9 is driven to heat the electric heater 7 when the deposition amount PCT becomes a predetermined amount or more, and the exhaust particles adhering to the filter 5 are ignited and burned to cause the filter 5 to burn.
Perform playback.

【0021】このように、上記実施例では、機関から排
出される排気中の排気微粒子のうち、フィルタ5に堆積
する堆積量の比率αと、フィルタ5に堆積せず酸化さ
れ、あるいは離脱してフィルタ5の下流に持ち去られる
持ち去り比率βとを考慮して、フィルタ5に堆積する排
気微粒子の堆積量を算出するので、機関回転数と機関負
荷とから排気微粒子排出量を単に堆積量として算出する
ものと違って、正確な堆積量が検出でき、また機関の運
転状態に応じた吸入空気量の変化や排気還流の有無など
により排気流量が変化しても、正確な捕集状態の判断が
可能となり、フィルタ5の再生を良好に行うことができ
る。
As described above, in the above-described embodiment, the ratio α of the amount of the exhaust particles in the exhaust gas discharged from the engine to be deposited on the filter 5 and the amount of the exhaust particles not deposited on the filter 5 are oxidized or separated. Since the amount of exhaust particulate matter deposited on the filter 5 is calculated in consideration of the carry-out ratio β taken away downstream of the filter 5, the exhaust particulate matter discharge amount is simply calculated as the amount of deposit from the engine speed and the engine load. Accurate accumulation amount can be detected, and even if the exhaust flow rate changes due to the change of intake air amount according to the operating condition of the engine or the presence or absence of exhaust gas recirculation, the accurate determination of the trapped state is possible. Therefore, the filter 5 can be regenerated satisfactorily.

【0022】図8は、この発明の第2実施例に係わるデ
ィーゼル機関における排気微粒子堆積量検出装置を示す
全体構成図である。この実施例は、図3に示した第1実
施例の構成に加えて、フィルタ5の上流側の排気通路3
に排気温度を検出する排気温度検出手段としての温度セ
ンサ23と、この温度センサ23が検出した排気温度及
び、回転数センサ11が検出した機関回転数の各信号の
入力を受ける排気流量検出手段としての排気流量演算回
路25とを設けたもので、その他の構成は第1実施例と
同様である。排気流量演算回路25は、図9に示す機関
回転数Nと排気温度Texhとによりあらかじめ設定さ
れている排気流量Qexhを、機関回転数及び排気温度
の各信号入力を受けて検索して決定する。
FIG. 8 is an overall configuration diagram showing an exhaust particulate matter deposition amount detecting device in a diesel engine according to a second embodiment of the present invention. In this embodiment, in addition to the configuration of the first embodiment shown in FIG. 3, the exhaust passage 3 on the upstream side of the filter 5 is provided.
A temperature sensor 23 as exhaust temperature detecting means for detecting the exhaust temperature, and an exhaust flow rate detecting means for receiving the signals of the exhaust temperature detected by the temperature sensor 23 and the engine speed detected by the rotation speed sensor 11. The exhaust flow rate calculation circuit 25 is provided, and other configurations are the same as those in the first embodiment. The exhaust flow rate calculation circuit 25 searches for and determines the exhaust flow rate Qexh preset by the engine speed N and the exhaust temperature Texh shown in FIG. 9 by receiving each signal input of the engine speed and the exhaust temperature.

【0023】堆積比率αは、図10に示すように排気流
量Qexhと排気温度Texhとによりあらかじめ設定
されているマップから検索する。図10によれば、堆積
比率αは、高負荷高回転側で小さく低負荷低回転側ほど
大きくなっている。一方、持ち去り比率βも、図11に
示すように排気流量Qexhと排気温度Texhとによ
りあらかじめ設定されているマップから検索する。図1
1によれば、持ち去り比率βは、低負荷低回転側で小さ
く高負荷高回転側で大きくなっている。また、破線で示
すL部は、排気流量Qexhが少なくても排気温度Te
xhが高ければ、持ち去り比率βが同一状態となること
を示しているが、これは排気温度の上昇により、水分及
び軽質SOFの離脱や、触媒作用によるSOFの酸化に
よる離脱、あるいはSOFなどよって吸着していた黒煙
のドライ分の離脱などがあるからである。また、一点鎖
線で示すM部においては、排気温度Texhが高温領域
であることから、排気流量Qexhに変化があっても黒
煙のドライ分が燃焼して除去されるので、持ち去り比率
βが同一状態を維持している。
As shown in FIG. 10, the deposition rate α is retrieved from a map preset by the exhaust flow rate Qexh and the exhaust temperature Texh. According to FIG. 10, the deposition rate α is small on the high load / high rotation side and is large on the low load / low rotation side. On the other hand, the carry-out ratio β is also retrieved from a map preset by the exhaust flow rate Qexh and the exhaust temperature Texh as shown in FIG. FIG.
According to 1, the carry-out ratio β is small on the low load / low rotation side and large on the high load / high rotation side. In addition, the L portion indicated by the broken line shows the exhaust temperature Te even if the exhaust flow rate Qexh is small.
If xh is high, the carry-out ratio β is in the same state, but this is due to the increase of exhaust temperature due to the separation of water and light SOF, the separation of SOF due to the catalytic action, or the separation of SOF. This is because there is a separation of the dry portion of the black smoke that has been adsorbed. Further, in the portion M indicated by the alternate long and short dash line, since the exhaust temperature Texh is in the high temperature region, the dry component of black smoke is burned and removed even if the exhaust flow rate Qexh changes, so the carry-out ratio β is It remains the same.

【0024】上記第2実施例における堆積量演算のため
の制御フローチャートを図12に示す。ここでは、機関
回転数N及び機関負荷Qを読み込んだ(ステップS1,
S2)後、ステップS11で排気温度Texhを読み込
み、さらに図4から排気微粒子排出量ΔPCTを演算し
た(ステップS3)後、ステップS12で図9から排気
流量Qexhを演算する。そして、ステップS13で図
10から堆積比率αを演算し、さらにステップS14で
図11から持ち去り比率βを演算する。その後は、前記
第1実施例と同様にして堆積量PCTを算出する。
FIG. 12 shows a control flow chart for calculating the deposit amount in the second embodiment. Here, the engine speed N and the engine load Q are read (step S1,
After S2), the exhaust temperature Texh is read in step S11, and the exhaust particulate emission amount ΔPCT is calculated from FIG. 4 (step S3). Then, the exhaust flow rate Qexh is calculated from FIG. 9 in step S12. Then, in step S13, the deposition ratio α is calculated from FIG. 10, and in step S14, the carry-out ratio β is calculated from FIG. After that, the deposition amount PCT is calculated in the same manner as in the first embodiment.

【0025】図13は、この発明の第3実施例に係わる
ディーゼル機関における排気微粒子堆積量検出装置を示
す全体構成図である。この実施例は、フィルタ5に付着
した排気微粒子の離脱などによる持ち去り比率は、その
とき堆積している排気微粒子の量によって異なるので、
排気微粒子の持ち去り比率βを考慮していない前記各実
施例と同様の堆積量reg2を、持ち去り比率演算回路
19にフィードバックして、堆積量reg2による持ち
去り比率の変化を補正している。図14は、この補正の
ための堆積量reg2に対応する持ち去り比率β1の変
化を示している。図14によれば、堆積量reg2の増
大に伴い、持ち去り比率β1も増大しており、この持ち
去り比率β1の増大度は、機関回転数Nが高くなるほど
大きくなっている。
FIG. 13 is an overall configuration diagram showing an exhaust particulate deposition amount detecting device in a diesel engine according to a third embodiment of the present invention. In this embodiment, the carry-out ratio of exhaust particles adhering to the filter 5 due to separation or the like differs depending on the amount of exhaust particles accumulated at that time.
The same deposition amount reg2 as that in each of the above-described embodiments, which does not consider the removal ratio β of exhaust particulates, is fed back to the removal ratio calculation circuit 19 to correct the change in the removal ratio due to the deposition amount reg2. FIG. 14 shows changes in the carry-out ratio β1 corresponding to the accumulation amount reg2 for this correction. According to FIG. 14, the take-away ratio β1 also increases as the deposition amount reg2 increases, and the degree of increase in the take-away ratio β1 increases as the engine speed N increases.

【0026】上記第3実施例における堆積量演算のため
の制御フローチャートを図15に示す。この制御動作に
おいては、ステップS7までは第1実施例と同様であ
り、ステップS7で堆積量reg2を演算した後に、図
14からこの堆積量reg2に対応する持ち去り比率β
1を機関回転数Nに応じて演算し(ステップS21)、
この持ち去り比率β1とステップS5で演算した持ち去
り比率βとの積β×β1を演算し、これをreg3とし
て記憶する(ステップS22)。ここで、持ち去り比率
βは1以下の値で、持ち去り比率β1は1以上の値とす
る。
FIG. 15 shows a control flowchart for calculating the accumulation amount in the third embodiment. This control operation is the same as in the first embodiment up to step S7, and after the deposition amount reg2 is calculated in step S7, the carry-out ratio β corresponding to this deposition amount reg2 from FIG.
1 is calculated according to the engine speed N (step S21),
The product β × β1 of the carry-out ratio β1 and the carry-out ratio β calculated in step S5 is calculated and stored as reg3 (step S22). Here, the take-away ratio β is a value of 1 or less, and the take-away ratio β1 is a value of 1 or more.

【0027】次に、reg3が1よりも小さいかどうか
を判断し(ステップS23)、小さいときには前記ステ
ップS7で演算した今までの堆積量reg2と1−re
g3との積reg2×(1−reg3)を演算し、最終
的な堆積量PCTを算出する(ステップS24)。前記
ステップS23でreg3が1以上のときには、reg
3を1として(ステップS25)、reg3が1を超え
ないようにしている。
Next, it is judged whether or not reg3 is smaller than 1 (step S23). When it is smaller, the accumulated amounts reg2 and 1-re calculated so far in step S7 are calculated.
The product reg2 × (1-reg3) with g3 is calculated to calculate the final deposition amount PCT (step S24). If reg3 is 1 or more in step S23, reg
3 is set to 1 (step S25) so that reg3 does not exceed 1.

【0028】このように、上記実施例では、フィルタ5
から排気微粒子が離脱あるいは酸化燃焼するなどしてフ
ィルタ5に付着しない持ち去り比率を、これまでの排気
微粒子のフィルタ5への堆積量を考慮して求め、この持
ち去り比率を用いて最終的な堆積量を算出するようにし
たので、前記第1,第2の各実施例に比べてより正確に
フィルタ5への排気微粒子の堆積量を検出することがで
きる。
Thus, in the above embodiment, the filter 5
From the above, the removal ratio that does not adhere to the filter 5 due to the release or oxidative combustion of the exhaust particles is determined in consideration of the amount of the exhaust particles accumulated on the filter 5 so far, and the removal ratio is used to determine the final removal ratio. Since the deposition amount is calculated, the deposition amount of exhaust particulates on the filter 5 can be detected more accurately than in the first and second embodiments.

【0029】なお、上記実施例におけるフィルタ5は触
媒が担持されたものとしているが、これに限ることはな
く、付着した排気微粒子が離脱するものであれば、触媒
が担持されず、単に排気微粒子を付着捕集するタイプの
フィルタであっても、この発明を適用できる。また、フ
ィルタ5の再生手段として電気ヒータ7を用いている
が、これに代えて、吸気絞りや、フィルタ上流の排気通
路に燃料を噴射するものでもよい。
It should be noted that the filter 5 in the above-mentioned embodiment is supposed to carry a catalyst, but the present invention is not limited to this, and if the adhering exhaust particulates are released, the catalyst is not loaded, and the exhaust particulates are simply deposited. The present invention can be applied even to a type of filter that adheres and collects. Further, although the electric heater 7 is used as the regeneration means of the filter 5, instead of this, the fuel may be injected into the intake throttle or the exhaust passage upstream of the filter.

【0030】[0030]

【発明の効果】以上説明してきたようにこの発明によれ
ば、機関から排出される排気中の排気微粒子のうち、排
気微粒子捕集部材に捕集されて堆積する堆積量の比率
と、排気微粒子捕集部材に堆積されずに持ち去られる比
率とを考慮して、排気微粒子捕集部材に堆積する排気微
粒子の堆積量を算出するようにしたので、機関回転数と
機関負荷とから排気微粒子排出量を単に算出するものな
どと違って、正確な堆積量を検出でき、また機関の運転
状態に応じた吸入空気量の変化や排気還流の有無などに
よる排気流量の変化があっても、正確な捕集量の検出が
可能となり、この結果排気微粒子捕集部材の再生を良好
に行うことができる。
As described above, according to the present invention, the ratio of the deposition amount of the exhaust fine particles in the exhaust gas discharged from the engine, which is collected and deposited by the exhaust fine particle collecting member, and the exhaust fine particles. The amount of exhaust particulates deposited on the exhaust particulate collection member was calculated in consideration of the ratio of being carried away without being deposited on the collection member. Accurate accumulation amount can be detected, unlike the one that simply calculates, and even if there is a change in the intake air amount according to the operating state of the engine or a change in the exhaust flow rate due to the presence or absence of exhaust gas recirculation, etc. It is possible to detect the collection amount, and as a result, it is possible to favorably regenerate the exhaust particulate collection member.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1に記載された発明のクレーム対応図で
ある。
FIG. 1 is a diagram corresponding to claims of the invention described in claim 1;

【図2】請求項2に記載された発明のクレーム対応図で
ある。
FIG. 2 is a diagram corresponding to claims of the invention described in claim 2;

【図3】この発明の第1実施例を示す排気微粒子堆積量
検出装置の全体構成図である。
FIG. 3 is an overall configuration diagram of an exhaust particulate deposition amount detection apparatus showing a first embodiment of the present invention.

【図4】機関回転数と機関負荷とから決まる、機関から
排出される単位時間当たりの排気微粒子量の特性図であ
る。
FIG. 4 is a characteristic diagram of the amount of exhaust particulate matter discharged from the engine per unit time, which is determined by the engine speed and the engine load.

【図5】機関回転数と機関負荷とから決まる、フィルタ
に対する排気微粒子の堆積比率の特性図である。
FIG. 5 is a characteristic diagram of a deposition ratio of exhaust particulates on a filter, which is determined by an engine speed and an engine load.

【図6】機関回転数と機関負荷とから決まる、フィルタ
に対する排気微粒子の持ち去り比率の特性図である。
FIG. 6 is a characteristic diagram of a carry-out ratio of exhaust particulates to a filter, which is determined by an engine speed and an engine load.

【図7】図3に示す排気微粒子堆積量検出装置における
制御動作を示すフローチャートである。
FIG. 7 is a flowchart showing a control operation in the exhaust particulate deposition amount detection device shown in FIG.

【図8】この発明の第2実施例を示す排気微粒子堆積量
検出装置の全体構成図である。
FIG. 8 is an overall configuration diagram of an exhaust particulate deposition amount detection apparatus showing a second embodiment of the present invention.

【図9】機関回転数と排気温度とから決まる、排気流量
の特性図である。
FIG. 9 is a characteristic diagram of an exhaust flow rate determined by an engine speed and an exhaust temperature.

【図10】排気流量と排気温度とから決まる、フィルタ
に対する排気微粒子の堆積比率の特性図である。
FIG. 10 is a characteristic diagram of a deposition ratio of exhaust particulates on a filter, which is determined by an exhaust flow rate and an exhaust temperature.

【図11】排気流量と排気温度とから決まる、フィルタ
に対する排気微粒子の持ち去り比率の特性図である。
FIG. 11 is a characteristic diagram of a carry-out ratio of exhaust particulates to a filter, which is determined by an exhaust flow rate and an exhaust temperature.

【図12】図8に示す排気微粒子堆積量検出装置におけ
る制御動作を示すフローチャートである。
12 is a flowchart showing a control operation in the exhaust particulate matter deposition amount detection device shown in FIG.

【図13】この発明の第3実施例を示す排気微粒子堆積
量検出装置の全体構成図である。
FIG. 13 is an overall configuration diagram of an exhaust particulate deposition amount detection apparatus showing a third embodiment of the present invention.

【図14】排気微粒子の堆積量に対応する持ち去り比率
の変化特性図である。
FIG. 14 is a change characteristic diagram of the carry-out ratio corresponding to the deposition amount of exhaust particulates.

【図15】図13に示す排気微粒子堆積量検出装置にお
ける制御動作を示すフローチャートである。
FIG. 15 is a flowchart showing a control operation in the exhaust particulate deposition amount detection device shown in FIG.

【符号の説明】[Explanation of symbols]

3 排気通路 5 フィルタ(排気微粒子捕集部材) 11 回転数センサ(運転状態検出手段) 13 負荷センサ(運転状態検出手段) 15 排出量演算回路(排気微粒子排出量演算手段) 17 堆積比率演算回路(堆積比率演算手段) 19 持ち去り比率演算回路(持ち去り比率演算手段) 21 堆積量演算回路(堆積量演算手段) 23 温度センサ(排気温度検出手段) 25 排気流量演算回路(排気流量演算手段) 3 Exhaust Passage 5 Filter (Exhaust Particle Collection Member) 11 Rotation Speed Sensor (Operating State Detection Means) 13 Load Sensor (Operating State Detection Means) 15 Emission Calculation Circuit (Exhaust Particle Emission Calculation Means) 17 Deposition Ratio Calculation Circuit ( Deposition ratio calculation means) 19 Carry-out ratio calculation circuit (carry-out ratio calculation means) 21 Deposition amount calculation circuit (deposition amount calculation means) 23 Temperature sensor (exhaust temperature detection means) 25 Exhaust flow rate calculation circuit (exhaust flow rate calculation means)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 機関の運転状態を検出する運転状態検出
手段と、この運転状態検出手段が検出した機関運転状態
に基づき機関から排出される排気微粒子の量を演算する
排気微粒子排出量演算手段と、前記運転状態検出手段が
検出した機関運転状態に基づき、機関から排出される排
気微粒子量のうち排気通路に設けられた排気微粒子捕集
部材に捕集されて堆積される比率を演算する堆積比率演
算手段と、前記運転状態検出手段が検出した機関運転状
態に基づき、機関から排出される排気微粒子量のうち前
記排気微粒子捕集部材に堆積されずに持ち去られる比率
を演算する持ち去り比率演算手段と、前記排出量演算手
段により演算された排気微粒子排出量、堆積比率演算手
段により演算された堆積比率、及び持ち去り比率演算手
段により演算された持ち去り比率に基づき、前記排気微
粒子捕集部材に捕集されて堆積される排気微粒子堆積量
を演算する堆積量演算手段とを有することを特徴とする
排気微粒子堆積量検出装置。
1. An operating state detecting means for detecting an operating state of the engine, and an exhaust particulate emission calculating means for computing the amount of exhaust particulate discharged from the engine based on the operating state of the engine detected by the operating state detecting means. A deposition ratio for calculating the ratio of the amount of exhaust particulate matter discharged from the engine, which is collected and deposited by the exhaust particulate collection member provided in the exhaust passage, based on the engine operating state detected by the operating state detecting means. A carry-out ratio calculation means for calculating a ratio of the amount of exhaust particulate matter discharged from the engine to the exhaust particulate matter collection member without being accumulated on the exhaust particulate matter collecting member, based on the operating means and the engine operating state detected by the operating state detecting means. And the exhaust particle discharge amount calculated by the discharge amount calculation means, the deposition ratio calculated by the deposition ratio calculation means, and the carry-out ratio calculation means. An exhaust particle deposition amount detection device, comprising: a deposition amount calculation means for calculating an exhaust particle deposition amount that is collected and deposited by the exhaust particle collection member based on a carry-out ratio.
【請求項2】 機関の運転状態を検出する運転状態検出
手段と、この運転状態検出手段が検出した機関運転状態
に基づき機関から排出される排気微粒子の量を演算する
排気微粒子排出量演算手段と、排気温度を検出する排気
温度検出手段と、排気流量を検出する排気流量検出手段
と、前記排気温度検出手段が検出した排気温度及び前記
排気流量検出手段が検出した排気流量に基づき、機関か
ら排出される排気微粒子量のうち排気通路に設けられた
排気微粒子捕集部材に捕集されて堆積される比率を演算
する堆積比率演算手段と、前記排気温度検出手段が検出
した排気温度及び前記排気流量検出手段が検出した排気
流量に基づき、機関から排出される排気微粒子量のうち
前記排気微粒子捕集部材に堆積されずに持ち去られる比
率を演算する持ち去り比率演算手段と、前記排出量演算
手段により演算された排気微粒子排出量、堆積比率演算
手段により演算された堆積比率、及び持ち去り比率演算
手段により演算された持ち去り比率に基づき、前記排気
微粒子捕集部材に捕集されて堆積される排気微粒子堆積
量を演算する堆積量演算手段とを有することを特徴とす
る排気微粒子堆積量検出装置。
2. An operating state detecting means for detecting an operating state of the engine, and an exhaust particulate emission amount calculating means for computing the amount of exhaust particulate discharged from the engine based on the engine operating state detected by the operating state detecting means. An exhaust temperature detecting means for detecting an exhaust temperature, an exhaust flow rate detecting means for detecting an exhaust flow rate, an exhaust temperature detected by the exhaust temperature detecting means, and an exhaust flow rate detected by the exhaust flow rate detecting means. Of the amount of exhaust particulates to be collected, a deposition ratio computing means for computing a ratio of being trapped and deposited on an exhaust particulate trapping member provided in the exhaust passage, and an exhaust temperature and an exhaust flow rate detected by the exhaust temperature detecting means. Based on the flow rate of exhaust gas detected by the detection means, a ratio of exhaust particulate matter discharged from the engine that is carried away without being deposited on the exhaust particulate collection member is calculated. Based on the exhaust gas particulate matter discharge amount calculated by the discharge ratio calculation means, the deposition ratio calculated by the deposition ratio calculation means, and the carry-out ratio calculated by the carry-out ratio calculation means. An exhaust particulate matter deposition amount detection device comprising: a deposition amount computing means for computing an exhaust particulate matter deposition amount that is collected and deposited by a collection member.
JP3171412A 1991-07-11 1991-07-11 Exhaust particulate deposition amount detector Expired - Fee Related JP2677053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3171412A JP2677053B2 (en) 1991-07-11 1991-07-11 Exhaust particulate deposition amount detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3171412A JP2677053B2 (en) 1991-07-11 1991-07-11 Exhaust particulate deposition amount detector

Publications (2)

Publication Number Publication Date
JPH0518228A JPH0518228A (en) 1993-01-26
JP2677053B2 true JP2677053B2 (en) 1997-11-17

Family

ID=15922662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3171412A Expired - Fee Related JP2677053B2 (en) 1991-07-11 1991-07-11 Exhaust particulate deposition amount detector

Country Status (1)

Country Link
JP (1) JP2677053B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810922B2 (en) * 2004-08-10 2011-11-09 日産自動車株式会社 PM deposition amount estimation controller
JP5517879B2 (en) * 2010-10-18 2014-06-11 三菱重工業株式会社 PM emission estimation device and PM emission control device for diesel engine

Also Published As

Publication number Publication date
JPH0518228A (en) 1993-01-26

Similar Documents

Publication Publication Date Title
EP1234959B1 (en) Diesel particulate filter unit and regeneration control method of the same
JP2003314249A (en) Exhaust-emission control device of internal combustion engine
JP2005090458A (en) Engine exhaust emission control device
JPH07189656A (en) Exhaust emission control device for internal combustion engine
JP4506060B2 (en) Particulate filter regeneration control device
JP3598572B2 (en) Exhaust particulate purification equipment
JP2004190667A (en) Emission control system of internal combustion engine
JP2677053B2 (en) Exhaust particulate deposition amount detector
JP3785691B2 (en) Exhaust particulate purification equipment
JPH10259711A (en) Exhaust gas purifying device for engine
JP2007056786A (en) Exhaust emission control device
JPH0861043A (en) Regenerating device for particulate filter
JP2679456B2 (en) Exhaust gas cleaning device for diesel engine
JPH0559931A (en) Exhaust purifying device of diesel engine
JP2682281B2 (en) Exhaust gas purification device for diesel engine
JP3322777B2 (en) Particulate processing equipment
JP4144557B2 (en) Exhaust purification device
JPH0559929A (en) Exhaust purifying device of diesel engine
JP4070681B2 (en) Exhaust purification device
JP2913959B2 (en) Exhaust particulate cleaning equipment
JP2616075B2 (en) Engine exhaust purification device
JPH0734857A (en) Exhaust gas purifying device for diesel engine
JPH05156933A (en) Exhaust emission control device for internal combustion engine
JP3484759B2 (en) Diesel engine exhaust purification system
JP2002250218A (en) Continuously regenerating diesel particulate filter and regeneration control method therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees