JP2670000B2 - Diamond thin film formation method - Google Patents

Diamond thin film formation method

Info

Publication number
JP2670000B2
JP2670000B2 JP4328239A JP32823992A JP2670000B2 JP 2670000 B2 JP2670000 B2 JP 2670000B2 JP 4328239 A JP4328239 A JP 4328239A JP 32823992 A JP32823992 A JP 32823992A JP 2670000 B2 JP2670000 B2 JP 2670000B2
Authority
JP
Japan
Prior art keywords
diamond
groove
substrate
base material
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4328239A
Other languages
Japanese (ja)
Other versions
JPH05311442A (en
Inventor
信吾 森本
直樹 小柳
龍夫 小畑
昇 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JPH05311442A publication Critical patent/JPH05311442A/en
Application granted granted Critical
Publication of JP2670000B2 publication Critical patent/JP2670000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】ダイヤモンドで被覆した治具、工
具においてダイヤモンド層と基材の接着力を改善するこ
とによって治具、工具の寿命、信頼性を向上させるもの
であるとともに、被覆が困難であった材質の基材上に接
着性の優れたダイヤモンド膜を被覆する方法に関する。
BACKGROUND OF THE INVENTION In jigs and tools coated with diamond, the life and reliability of jigs and tools are improved by improving the adhesion between the diamond layer and the base material. The present invention relates to a method of coating a diamond film having excellent adhesiveness on a base material made of a certain material.

【0002】[0002]

【従来の技術】気相合成法でダイヤモンドを基材上に析
出できることが判って以来、析出ダイヤモンド層を基材
間の接着力を増す試みは各所で行われ、炭化珪素等の中
間層を設ける方法(特開昭62−57802、同63−
199870)、電気化学的研磨によって表面に凹凸を
付ける方法(特開昭60−201877)、硬質粒子に
よる傷つけによって凹凸をつける方法(特開昭62−2
26889)等が提案されている。
2. Description of the Related Art Since it has been found that diamond can be deposited on a substrate by a vapor phase synthesis method, attempts have been made at various places to increase the adhesion between the deposited diamond layer and the substrate, and an intermediate layer such as silicon carbide is provided. Method (JP-A-62-57802, 63-
1998870), a method of making the surface uneven by electrochemical polishing (Japanese Patent Application Laid-Open No. 60-201877), and a method of making the surface uneven by hard particle damage (Japanese Patent Application Laid-Open No. 622-2).
26889) and the like have been proposed.

【0003】しかし、気相合成法でダイヤモンド薄膜を
析出し、接着性に優れた被覆材を造るためには、被覆さ
れる基板としては金属ではケイ素、超硬合金、セラミッ
クスでは炭化ケイ素、窒化ケイ素、焼結ダイヤモンド等
に限られている。
[0003] However, in order to deposit a diamond thin film by a vapor phase synthesis method and produce a coating material having excellent adhesiveness, the substrate to be coated is silicon for a metal, a cemented carbide, silicon carbide for a ceramic, and silicon nitride. Limited to sintered diamond, etc.

【0004】[0004]

【発明が解決しようとする課題】従来技術による凹凸付
けは規則性に欠ける高々数μmの凹凸を基材表面につけ
たアンカー効果で接着力の向上を期待した物であって充
分に接着力を増すに至っていない。特に析出膜の厚みを
増していくと蓄積された熱応力のために簡単に剥離する
ことがおきている。これらの剥離現象はダイヤモンド自
身の基材との親和力不足、格子定数のミスマッチ、熱膨
張係数の不一致等、材料の性質に基づく本質的な問題で
はあって簡単には解決できるものではないが、本発明は
新たな発想による基材との接着力向上で、実用上問題の
無い状態に改善しようとしたものである。
The concavo-convex patterning according to the prior art is a product which is expected to improve the adhesive force due to the anchor effect in which irregularities of at most several μm lacking regularity are attached to the surface of the substrate, and the adhesive force is sufficiently increased. Has not reached. In particular, when the thickness of the deposited film is increased, it is easy to peel due to the accumulated thermal stress. These exfoliation phenomena are essential problems based on the properties of the material such as lack of affinity of diamond itself with the substrate, mismatch of lattice constants, mismatch of thermal expansion coefficients, etc. The present invention is intended to improve the adhesion to a base material by a new idea, and to improve the practically acceptable state.

【0005】上記の熱膨張係数の不一致につき、詳しく
述べると、例えば熱膨張係数20×10-6/Kである銅
製の基材上に、熱フィラメント法によってダイヤモンド
(熱膨張係数3.3×10-6/K)を析出させていく
と、700〜900℃に基板が加熱されている析出中は
問題ないが、析出を終えて室温に冷却する過程で、ダイ
ヤモンド膜が剥離してしまう問題が起こるのである。
The above-mentioned mismatch of the thermal expansion coefficients is described in detail. For example, a diamond (coefficient of thermal expansion of 3.3 × 10 3) is formed on a copper base material having a thermal expansion coefficient of 20 × 10 −6 / K by a hot filament method. -6 / K), there is no problem during the deposition in which the substrate is heated to 700 to 900 ° C, but there is a problem that the diamond film peels off in the process of finishing the deposition and cooling to room temperature. It will happen.

【0006】[0006]

【課題を解決するための手段】形成されたダイヤモンド
の基材からの剥離は材質差による本質的な問題である
が、基材との接着力は他の条件が同一であれば接触面積
に比例するので接触面積の増大に注目するとともに、著
しい凹凸や亀裂のある基材上にダイヤモンドの気相合成
を行ない、亀裂部分や剥離部分等の断面を観察した結
果、ダイヤモンド気相合成に特有の現象として亀裂の幅
と同等または2倍程度の深さのところまでダイヤモンド
が密に析出することが判ったので、以下のように亀裂の
代わりに基材表面に人為的な溝を入れることにより接触
面積の増大を計り、2つの本発明に至った。即ち、気相
合成法にてダイヤモンド薄膜を形成させる方法におい
て、幅5〜200μm、深さ5〜200μmの溝をピッ
チ10〜500μmで刻んだ基材上に形成させることを
特徴とする方法の第1発明を見出すとともに、また気相
合成法にてダイヤモンド薄膜を形成させる方法におい
て、熱膨張係数がダイヤモンドの1.5倍以上の金属製
または合金製の基材上に幅5〜30μm、深さ50〜2
00μmの溝をピッチ10〜500μmにて刻んだ後、
該基材上にダイヤモンド薄膜を形成させることを特徴と
する方法の第2発明も見出した。
The peeling of the formed diamond from the substrate is an essential problem due to the material difference, but the adhesive force with the substrate is proportional to the contact area if other conditions are the same. Therefore, while paying attention to the increase in the contact area, the vapor phase synthesis of diamond was performed on the substrate with remarkable irregularities and cracks, and the results of observing the cross-sections such as cracks and delaminations showed that the phenomenon peculiar to diamond vapor phase synthesis As it was found that diamonds were densely deposited up to a depth equal to or about twice as large as the width of the crack, the contact area was increased by inserting an artificial groove in the substrate surface instead of the crack as shown below. The present invention has been completed as two inventions. That is, in the method for forming a diamond thin film by a vapor phase synthesis method, grooves having a width of 5 to 200 μm and a depth of 5 to 200 μm are formed on a base material carved at a pitch of 10 to 500 μm. (1) A method for forming a diamond thin film by a vapor phase synthesis method in which a diamond is formed on a metal or alloy substrate having a thermal expansion coefficient of 1.5 or more times that of diamond, having a width of 5 to 30 μm and a depth of 50-2
After carving a groove of 00 μm with a pitch of 10 to 500 μm,
We have also found a second invention of a method characterized by forming a diamond thin film on the substrate.

【0007】次に基材上に設ける溝の形状および配置に
ついて述べる。まず、第1発明の場合については、 (1)溝幅 溝幅が5μm未満ではダイヤモンドの回り込みが少ない
のと、逆に200μmを超えると接触面積の増加が実質
的に期待できないので溝幅は5〜200μm、好ましく
は20〜100μmである。 (2)溝の深さ 溝の深さが5μm未満では特にピッチの広いときに接触
面積の増加が得られない。他方200μmを超えると析
出ダイヤモンドで実質上埋め尽くせないので5〜200
μm、好ましくは30〜100μmである。 (3)溝ピッチ 溝のピッチが10μm未満では加工中のチッピングで溝
自体の加工ができない。他方500μmを超えると接触
面積の増加が得られないので10〜500μm、好まし
くは100〜300μmである。
Next, the shape and arrangement of the grooves provided on the base material will be described. First, in the case of the first invention, (1) Groove width When the groove width is less than 5 μm, the wraparound of the diamond is small. On the contrary, when the groove width is more than 200 μm, the contact area cannot be substantially increased. ˜200 μm, preferably 20 to 100 μm. (2) Groove depth If the groove depth is less than 5 μm, the contact area cannot be increased especially when the pitch is wide. On the other hand, if it exceeds 200 μm, it cannot be substantially filled with precipitated diamond, so that it is 5 to 200.
μm, preferably 30 to 100 μm. (3) Groove pitch If the groove pitch is less than 10 μm, the groove itself cannot be processed by chipping during processing. On the other hand, if it exceeds 500 μm, an increase in the contact area cannot be obtained, so it is 10 to 500 μm, preferably 100 to 300 μm.

【0008】次に、第2発明の場合については、 (1)溝幅 溝幅が5μm未満ではダイヤモンドの回り込みが少ない
ので十分な付着強度が得られず、逆に30μmを超える
と析出ダイヤモンドの回り込みが過大になって基材の凸
部の変形が難しくなり、熱膨張差を吸収できず、基材と
析出ダイヤモンドとの剥離を防止することは困難とな
る。また、更に好ましい溝幅としては10〜20μmで
ある。 (2)溝の深さ 溝の深さが50μm未満では基材の凸部の変形による熱
応力緩和が期待できないし、他方、200μmを超える
と基材の溝の底面と析出ダイヤモンド層との間の距離が
広くなり過ぎて耐衝撃強度が低下するなどの問題が生じ
る。また、更に好ましい溝の深さは100〜150μm
である。 (3)溝ピッチ 溝のピッチが10μm未満では溝の加工中、チッピング
等で溝自体の加工が難しいし、他方、500μmを超え
ると基材の凸部の変形が難しくなり、剥離防止の効果が
少なくなる。また、更に好ましい溝のピッチは100〜
400μmである。上記の基材の凸部とは基材の溝の両
側にある突起状の部分をいう。
Next, in the case of the second invention, (1) Groove width If the groove width is less than 5 μm, the wraparound of diamond is small, so that sufficient adhesion strength cannot be obtained. Becomes excessively large, making it difficult to deform the convex portions of the base material, making it impossible to absorb the difference in thermal expansion, and making it difficult to prevent separation of the base material and the precipitated diamond. A more preferable groove width is 10 to 20 μm. (2) Depth of groove If the depth of the groove is less than 50 μm, thermal stress relaxation due to deformation of the convex portion of the substrate cannot be expected. On the other hand, if it exceeds 200 μm, the distance between the bottom surface of the groove of the substrate and the deposited diamond layer is reduced. However, there is a problem that the impact resistance strength is lowered due to the excessively wide distance. Further, more preferable groove depth is 100 to 150 μm.
It is. (3) Groove pitch If the pitch of the groove is less than 10 μm, it is difficult to process the groove itself by chipping or the like during the processing of the groove, and if it exceeds 500 μm, it becomes difficult to deform the convex portion of the base material, and the effect of preventing peeling is reduced. Less. Further, a more preferable groove pitch is 100 to
400 μm. The convex portion of the base material mentioned above means a protruding portion on both sides of the groove of the base material.

【0009】第1および第2発明の溝の断面形状は接触
面積の増加が期待できる。三角形、逆三角形、矩形、台
形、円またはそれらの複合された物のいずれでもよい
が、好ましくは矩形である。第1および第2発明とも、
溝の配置は一方向配列、格子配列、渦巻状、同心円状ま
たはそれらの複合された物でもよい。溝の加工は基材の
種類によっても異なるがダイシングソー切込み、放電加
工、ダイヤモンド砥石切込み、放電研削加工、マスキン
グ後の電解加工、レーザー加工、化学エッチング加工等
によって行なう。
The cross-sectional shapes of the grooves of the first and second inventions can be expected to increase the contact area. It may be any of a triangle, an inverted triangle, a rectangle, a trapezoid, a circle, or a combination thereof, but is preferably a rectangle. Both the first and second inventions,
The arrangement of the grooves may be a unidirectional arrangement, a lattice arrangement, a spiral arrangement, a concentric arrangement, or a combination thereof. The grooves are formed by dicing saw cutting, electric discharge machining, diamond grindstone cutting, electric discharge grinding, electrolytic machining after masking, laser machining, chemical etching, etc., although this varies depending on the type of the base material.

【0010】第1発明の場合、基材には気相法でダイヤ
モンドを析出させるときによく使用される気相合成法に
よる炭化珪素(CVD・SiC)、焼結法による炭化珪
素(SiC)、超硬合金(WC)等を使用し、第2発明
の場合、基材として銅、チタン、クロム、金、銀、タン
グステン、タンタル、モリブデン等を使用することがで
きる。第1および第2発明とも、ダイヤモンドの析出は
熱フィラメント法、マイクロ波プラズマCVD法等の通
常行なわれている気相合成法によって行ない、ダイヤモ
ンド膜の厚さは膜状に析出していることと、強度を考慮
すると10μm以上、好ましくは50〜300μmが適
している。
In the case of the first invention, silicon carbide (CVD / SiC) by a vapor phase synthesis method, silicon carbide (SiC) by a sintering method, which is often used when depositing diamond by a vapor phase method, is used as a substrate. Cemented carbide (WC) or the like is used, and in the case of the second invention, copper, titanium, chromium, gold, silver, tungsten, tantalum, molybdenum, or the like can be used as the base material. In both the first and second inventions, diamond is deposited by a commonly used vapor phase synthesis method such as a hot filament method or a microwave plasma CVD method, and the diamond film is deposited in a film shape. Considering the strength, 10 μm or more, preferably 50 to 300 μm is suitable.

【0011】[0011]

【実施例】以下、実施例及び比較例を挙げて本発明を説
明するが、本発明はこれらの例によって限定されるもの
ではない。 実施例1〜7 焼結SiC基材(3×10mm、厚み3mm)にダイシ
ングソー切込みで表1に示す溝幅、溝深さ、ピッチで断
面が矩形の溝を格子状に入れた後、溝加工面上に厚さ2
00μmのダイヤモンドをエタノールを原料として熱フ
ィラメント法にて析出後研削テストを行なった。その研
削テストは、ダイヤモンド析出基材の半分の5mm分を
突き出し代としてWCシャンクに析出面を上にしてロー
付けし、他方の端よりメタルボンドダイヤモンドホイル
砥石(粒径400メッシュ)にて、周速度2000m/
sec 、切込み5μm/sec の研削条件にて最大3mmま
で削り込んだ。同一条件の試験片10ヶのうち研削終了
まで剥離、チッピング等の破損がおきなかった試料片数
をも表1に示す。
The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to these examples. Examples 1 to 7 A groove having a rectangular cross section having a rectangular cross section with a groove width, groove depth and pitch shown in Table 1 was cut into a sintered SiC substrate (3 × 10 mm, thickness 3 mm) with a dicing saw, and then the groove was formed. Thickness 2 on the machined surface
A diamond test of 00 μm was made from ethanol as a raw material by a hot filament method and then a grinding test was performed. In the grinding test, 5 mm, which is half of the diamond-precipitated base material, was brazed to the WC shank with the deposition surface facing up as the protrusion allowance, and the metal-bonded diamond wheel grindstone (particle size 400 mesh) was used to surround the other end. Speed 2000m /
Grinding up to 3 mm under the grinding conditions of sec and depth of cut 5 μm / sec. Table 1 also shows the number of test pieces out of 10 test pieces under the same conditions that did not suffer damage such as peeling and chipping until the grinding was completed.

【0012】[0012]

【表1】 [Table 1]

【0013】比較例1〜7 比較例1は溝加工なしで、他の比較例2〜7は表2に示
す溝幅、溝深さ、ピッチで断面が矩形の溝を設けた以外
の他の条件を同一にしてダイヤモンドを析出し、研削テ
ストを行ない、その結果を表2に示す。
Comparative Examples 1 to 7 Comparative Examples 1 to 7 have no groove processing, and Comparative Examples 2 to 7 have other groove widths, groove depths and pitches shown in Table 2 except that a rectangular cross section is provided. Diamond was deposited under the same conditions and a grinding test was conducted. The results are shown in Table 2.

【0014】[0014]

【表2】 [Table 2]

【0015】実施例8〜12 熱膨張係数が20×10-6/K(ダイヤモンドの6.1
倍)の無酸素銅基材(10×10mm、厚み2mm)に
レーザー加工により、表3に示す溝幅、溝深さ、ピッチ
で矩形断面の溝を格子状にいれた。該基材上に厚さ20
0μmのダイヤモンドをエタノールを原料として熱フィ
ラメント法にて析出後、冷却し亀裂または剥離の発生の
有無を観察した。同一条件の試験片はそれぞれ10ヶと
した。その結果を表3に示す。
Examples 8 to 12 have a coefficient of thermal expansion of 20 × 10 −6 / K (6.1 for diamond).
X) oxygen-free copper base material (10 x 10 mm, thickness 2 mm) was subjected to laser processing to form a rectangular cross-section groove in a grid shape with the groove width, groove depth, and pitch shown in Table 3. A thickness of 20 on the substrate
After 0 μm diamond was deposited by a hot filament method using ethanol as a raw material, it was cooled and observed for the occurrence of cracks or peeling. There were 10 test pieces under the same conditions. Table 3 shows the results.

【0016】[0016]

【表3】 [Table 3]

【0017】実施例13〜19 表4に示す7種の基材材料につき各々10ヶにつき溝幅
20μm、溝深さ100μm、ピッチ150μmで矩形
断面の溝を格子状に入れ、該基材上にエタノール原料に
よる熱フィラメント法にてダイヤモンドを厚さ200μ
m析出させ、冷却し亀裂または剥離発生の有無を観察
し、その結果を表4に示す。
Examples 13 to 19 For each of the seven types of base materials shown in Table 4, a groove having a rectangular cross section with a groove width of 20 μm, a groove depth of 100 μm, and a pitch of 150 μm was formed in a grid pattern. Diamond thickness of 200μ by hot filament method using ethanol raw material
m and allowed to cool and observed for the presence of cracks or peeling. The results are shown in Table 4.

【0018】[0018]

【表4】 [Table 4]

【0019】比較例8〜13 実施例8〜12と同じ無酸素銅基材につき表5に示す形
状の溝加工をレーザーにて行ない、実施例8〜12と同
じ条件にてダイヤモンドを析出し、冷却後外観観察を
し、亀裂、剥離発生をチェックし、その結果を表5に示
す。各条件の試料片はそれぞれ10ヶである。
Comparative Examples 8 to 13 The same oxygen-free copper base material as in Examples 8 to 12 was subjected to laser processing to form grooves shown in Table 5, and diamond was deposited under the same conditions as in Examples 8 to 12. After cooling, the appearance was observed and cracks and peeling were checked, and the results are shown in Table 5. The number of sample pieces under each condition is 10 pieces.

【0020】[0020]

【表5】 [Table 5]

【0021】更に実施例8〜19および比較例8〜13
につき、ダイヤモンド析出面以外の5面にエポキシ樹脂
にて保護した後、室温にて5NのHCl水溶液および2
0wt%HFと10wt%HNO3 との混酸水溶液中にそれ
ぞれ6時間試料片を浸し、その変化を確認したところ、
亀裂または剥離した試料片は金属の溶解が認められた
が、正常な試料片については、基材の溶解は認められな
かった。
Further, Examples 8 to 19 and Comparative Examples 8 to 13
After protecting the five surfaces other than the diamond deposition surface with an epoxy resin, a 5N HCl aqueous solution and 2
The test pieces were immersed in a mixed acid aqueous solution of 0 wt% HF and 10 wt% HNO 3 for 6 hours, and the change was confirmed.
Dissolution of the metal was observed in the cracked or peeled sample pieces, but no dissolution of the base material was observed in the normal sample pieces.

【0022】[0022]

【発明の効果】本発明により基材表面の溝加工で析出ダ
イヤモンドと基材間の接着力を向上させることが出来た
ので治具、工具の例に見られるようにダイヤモンド被覆
による寿命延長に役立つとともに、また、所定以上の熱
膨張係数を有する基材の場合には、析出ダイヤモンドと
基材との亀裂または剥離が見られず、接着性の優れたダ
イヤモンド被覆が行なえる。
According to the present invention, it is possible to improve the adhesive force between the deposited diamond and the substrate by grooving the surface of the substrate. Therefore, as shown in the examples of jigs and tools, it is useful for extending the life by diamond coating. In addition, in the case of a substrate having a thermal expansion coefficient equal to or higher than a predetermined value, cracks or separation between the precipitated diamond and the substrate are not observed, and diamond coating with excellent adhesiveness can be performed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小畑 龍夫 東京都大田区多摩川2丁目24番25号 昭 和電工株式会社 総合技術研究所内 (72)発明者 青山 昇 東京都大田区大森北5丁目7番12号 オ グラ宝石精機工業株式会社 本社内 (56)参考文献 特開 平3−153874(JP,A) 特開 昭62−149872(JP,A) 特開 昭62−67174(JP,A) 特開 平5−148068(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuo Obata 2-24-25 Tamagawa, Ota-ku, Tokyo Showa Denko Co., Ltd. Research Institute (72) Inventor Noboru Aoyama 5-7 Omorikita, Ota-ku, Tokyo No. 12 Ogura Gem Seiki Co., Ltd. (56) Reference JP-A-3-153874 (JP, A) JP-A-62-149872 (JP, A) JP-A-62-67174 (JP, A) Japanese Patent Laid-Open No. 5-148068 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 気相合成法にてダイヤモンド薄膜を形成
させる方法において、幅5〜200μm、深さ5〜20
0μmの溝をピッチ10〜500μmで刻んだ基材上に
形成させることを特徴とする方法。
1. A method for forming a diamond thin film by a vapor phase synthesis method, wherein the width is 5 to 200 μm and the depth is 5 to 20.
A method of forming grooves of 0 μm on a base material carved with a pitch of 10 to 500 μm.
【請求項2】 気相合成法にてダイヤモンド薄膜を形成
させる方法において、熱膨張係数がダイヤモンドの1.
5倍以上の金属製または合金製の基材上に幅5〜30μ
m、深さ50〜200μmの溝をピッチ10〜500μ
mにて刻んだ後、該基材上にダイヤモンド薄膜を形成さ
せることを特徴とする方法。
2. A method for forming a diamond thin film by a vapor phase synthesis method, wherein the coefficient of thermal expansion of diamond is 1.
Width 5-30μ on metal or alloy base more than 5 times
m, depth of 50 to 200 μm, pitch 10 to 500 μ
A method of forming a diamond thin film on the base material after carving with m.
JP4328239A 1992-03-11 1992-12-08 Diamond thin film formation method Expired - Fee Related JP2670000B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4-52783 1992-03-11
JP5278392 1992-03-11

Publications (2)

Publication Number Publication Date
JPH05311442A JPH05311442A (en) 1993-11-22
JP2670000B2 true JP2670000B2 (en) 1997-10-29

Family

ID=12924445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4328239A Expired - Fee Related JP2670000B2 (en) 1992-03-11 1992-12-08 Diamond thin film formation method

Country Status (1)

Country Link
JP (1) JP2670000B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3448884B2 (en) * 1992-12-15 2003-09-22 日本精工株式会社 Artificial diamond coating
AU8066694A (en) * 1993-11-23 1995-06-13 Plasmoteg Engineering Center An abrasive material for precision surface treatment and a method for the manufacturing thereof
US5643343A (en) * 1993-11-23 1997-07-01 Selifanov; Oleg Vladimirovich Abrasive material for precision surface treatment and a method for the manufacturing thereof
US5711773A (en) * 1994-11-17 1998-01-27 Plasmoteg Engineering Center Abrasive material for precision surface treatment and a method for the manufacturing thereof
WO1996034131A1 (en) * 1995-04-24 1996-10-31 Toyo Kohan Co., Ltd. Articles with diamond coating formed thereon by vapor-phase synthesis
US5776355A (en) * 1996-01-11 1998-07-07 Saint-Gobain/Norton Industrial Ceramics Corp Method of preparing cutting tool substrate materials for deposition of a more adherent diamond coating and products resulting therefrom
JPH10310494A (en) * 1996-05-31 1998-11-24 Ngk Spark Plug Co Ltd Production of cemented carbide member with diamond coating film
JP5078002B2 (en) * 2007-05-09 2012-11-21 株式会社不二越 Diamond film-coated member and manufacturing method thereof
WO2023181106A1 (en) * 2022-03-22 2023-09-28 国立大学法人名古屋工業大学 Diamond-coated body

Also Published As

Publication number Publication date
JPH05311442A (en) 1993-11-22

Similar Documents

Publication Publication Date Title
KR101190528B1 (en) Coating for a cutting tool and corresponding production method
EP0090657B1 (en) A method of making abrasive bodies
EP0503822B2 (en) A diamond- and/or diamond-like carbon-coated hard material
JP2002529601A (en) Polycrystalline diamond member and method for producing the same
JP5482596B2 (en) CBN insert with excellent finished surface roughness
KR910002563A (en) Thermally stable superabrasive product and its manufacturing method
JP2670000B2 (en) Diamond thin film formation method
CN102438781A (en) Method to attach or improve the attachment of articles
JP2002205272A (en) Super abrasive grain tool and its manufacturing method
JPH0730363B2 (en) Hard sintered body cutting tool
JPS61109628A (en) Diamond coated tool
JP3690626B2 (en) Diamond coating drill, end mill and manufacturing method thereof
JP5470713B2 (en) Electroformed thin blade whetstone and manufacturing method thereof
JPH08267644A (en) Diamond composite member and its manufacture
JP2595203B2 (en) High adhesion diamond coated sintered alloy and method for producing the same
JP2987956B2 (en) Diamond or diamond-like carbon coated hard material
JP3416967B2 (en) Artificial diamond coating film and method of forming the same
JPH0354180A (en) Production of diamond-coated sintered material
JPH04280974A (en) Boron nitride coated hard material
JP2002275571A (en) cBN-BASE SINTERED COMPACT, AND COATED TOOL CONSISTING THEREOF
JP3235206B2 (en) Diamond cutting tool and manufacturing method thereof
JP2832556B2 (en) Tools with diamond film
JPH04202075A (en) Production of diamond coated hard material
JP2987964B2 (en) Boron nitride coated hard material
JP2987963B2 (en) Boron nitride coated hard material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees